文档库 最新最全的文档下载
当前位置:文档库 › 重组载体质粒扩增流程

重组载体质粒扩增流程

重组载体质粒扩增流程
重组载体质粒扩增流程

重组载体质粒扩增的实验步骤:

Ⅰ、感受态细菌的制备(CaCl2化学转化法)

准备:LB液体培养基、LB固体平板(含抗生素和未含抗生素)、0.1mol/L氯化钙溶液(预冷)、细菌冻存液(0.1Mol/L CaCl2+7%/10%的DMSO或15%的甘油)、高压过的EP管等

1、将适合的冻存菌( stbl3)挑取一点(枪头沾取一点)加入盛有1ml LB液体培养基的15ml离心管中;37℃,220rpm,摇菌培养1个小时(复苏)。

2、取10μl以下刚复苏的stbl3涂布于非抗性的LB固体培养基上37℃过夜培养(纯化)。

3、挑取20多个前一天培养的细菌菌落加入3ml LB液体培养基里37℃,220rpm,摇菌培养12个小时(扩增,需使细菌老化,因为下一步摇出的菌才可处于对数生长期)。

4、以1:100的比例将3ml培养物转接于300ml LB培养基中,在37℃ 220rpm摇床上剧烈振荡培养约1.5-2小时(使细菌处于对数生长期,易于转化,可每半小时测一下OD600值,使其0.3-0.5);

5、制冰。

以下步骤开始注意无菌操作:

6.将所有培养好的菌液分装移至离心管中,在冰上冷却10分钟;

7.4℃下3000g冷冻离心10分钟;

8.弃去上清,加入 30ml预冷0.1Mol/L CaCl2 溶液,轻轻上下吸动打匀,使细胞重新悬浮,在冰放置20分钟;

9.4℃下3000g冷冻离心10分钟;

10.弃去上清,加入 5ml预冷0.1Mol/L CaCl2 溶液,用移液枪轻轻上下吸动打匀,使细菌重新悬浮;11.4℃下3000g冷冻离心10分钟;

12.弃去上清,加6ml 0.1Mol/L CaCl2+7%/10%的DMSO或15%的甘油混匀后,分装成100μl或200ul/EP 管(4℃预冷),-80℃冷冻贮存备用。

【练手实验中扩增摇菌时中途摇床关闭了一段时间(具体不详),后续接着摇菌过夜。离心时用的6000rpm,第二次离心时很快溶解,遂进行了第三次离心获取沉淀。配制冻存液忽视了甘油对氯化钙的稀释,用1.8ml 50%的甘油加入4.2ml 0.1mol/L的氯化钙,即氯化钙的浓度没有达到0.1mol/L 。分装时每个EP管含有300μl的感受态细菌。】

Ⅱ、重组载体质粒转化细菌及转化成功细菌(即转化子)的筛选

准备:含筛选抗生素的固体培养基、冰、42℃水浴锅、37℃预热的培养基

1、取100μl感受态细菌在冰上解冻,每管加质粒载体(体积≤10μl,DNA≤50ng),轻弹以混匀内容物,在冰中放置30min。

2、将EP管放到预加温到42℃的循环水浴中的浮板上,放置90s~2min,不要摇动EP管。

3、快速将EP管转移到冰浴上中,使细菌冷却1~2min

4、每离心管加400μl LB培养基,事先用水浴将培养基加温到37℃,然后将管转移到37℃摇床上,温育45min至1H使细菌复苏,并且表达质粒编码的抗生素抗性标记基因。

5、将适当体积(10μl??)已转化的感受态细菌涂布到含相应抗生素抗性(100μg/ml的终浓度)的LB

固体培养基上旋转均匀涂布直至有发涩的感觉,即使平板干燥,然后倒置平皿,于37℃培养,12~16h后可出现菌落(或者将质粒涂布均匀后在37℃孵箱里先正放培养30min左右,再倒放培养)。

【练手实验中转化VSVG质粒的平板长了2个菌落,而Δ8.2质粒的平板貌似没有菌落形成。分析原因排除了平板氨苄青霉素浓度(100μg/ml)太高,可能有两个原因:1、复苏的细菌浓度低,操作时将100μl感受态细菌加入了800μl的培养基摇菌,并且只摇菌40min;2、涂板时量太少,只加了20μl的复苏菌涂布。总的来说可能种在平板上的细菌太少。】

Ⅲ、转化细菌的扩增:

准备:LB培养基

1、挑取以上培养的转化细菌的单菌落(1至数个)于2.5ml 有氨苄抗生素的LB液体培养基里37℃ 220rpm 摇菌12H(扩增细菌)

2、将上一步摇的2.5ml细菌加入250ml抗性LB液体培养基(氨苄青霉素)里,37℃ 220rpm摇菌24H(扩增质粒)

注:扩增的质粒不能立即提取时可将所有菌液转移至离心瓶里6000rpm离心收集细菌沉淀,然后-20℃保存。【此次提质粒的细菌连同LB培养基一起冻存了,应把离心弃去培养基后仅冻存沉淀】

Ⅳ、重组载体质粒提取及纯化(《详见试剂盒质粒提取步骤》)

1 用15 ml离心管收集1-5 ml菌液。12,000 rpm离心1min,弃上清。

●根据所培养菌体的浓度与质粒的拷贝数,确定收集的菌液量。

2 加入250 μl溶液Ⅰ/RNase A混合液,漩涡剧烈振荡直至菌体完全重新悬浮。室温静置1- 2min。

3 加入250 μl溶液Ⅱ,轻柔地反复颠倒混匀5-6次。室温放置1-2 min,使菌体充分裂解,直至形成澄清的裂解溶液。

●不可剧烈混和,否则会使染色体DNA 断裂。

●此步骤不宜超过5 min。

4 加入350 μl溶液Ⅲ,立即轻柔地反复颠倒混匀5-6次。此时会出现白色絮状沉淀。

5 12,000 rpm 室温离心10 min,收集上清。

6 将上清置于DNA纯化柱中,静置1-2 min。

●如果收集的上清液过多,超过DNA 纯化柱容积(800 μl),可将上清分次加入DNA 纯化柱中。

7 12,000 rpm 离心1 min,弃滤液。

●此时质粒DNA 被吸附于DNA 纯化柱的硅胶膜上。

8 加入500 μl 溶液PB,12,000 rpm 离心1 min,弃滤液。

●此步骤的作用是将硅胶膜上吸附的蛋白、盐等杂质洗脱,以获得高质量质粒DNA。

9 加入500 μl溶液W,12,000 rpm 离心1 min,弃滤液。

●溶液W 初次使用前用无水乙醇按1: 1.5 稀释,即含60%乙醇。

10 加入500 μl溶液W,12,000 rpm 离心1 min,弃滤液。

11 12,000 rpm 离心3min,以彻底去除纯化柱中残留的液体。

12 将DNA纯化柱置于新的离心管中。向纯化柱中央处,悬空滴加50-100 μl 溶液Eluent,室温放置2 min。

● 12,000 rpm离心1 min,管底即为高纯度质粒DNA。质粒DNA 于-20℃保存

●溶液 Eluent 可用无菌双蒸水代替,但其pH 需为8.0-8.5。溶液Eluent 的加入体积视质粒拷贝数多少、依质粒浓度要求而定。

Ⅴ、重组载体质粒的浓度及纯度测定(紫外分光光度法):

测OD260、OD280(先将DNA50倍稀释即2μlDNA加入98μl溶液Eluent 中,然后加入比色皿检测)

质粒浓度=50×OD260×n

(50为每OD260值代表50μg/ml的双链DNA;OD260为260nm的吸光光度值;n为稀释倍数)

质粒纯度=OD260/OD280

(比值在1.8-2.0比较纯)

【此次提的质粒稀释50倍后OD260为0.121、OD280为0.123;所以浓度为302.5ng/ul;质粒纯度OD260/OD280为0.983,考虑蛋白参入太多】

Ⅵ、重组载体质粒的鉴定:

方法1:双酶切→电泳(插入片段在2Kb以上时);直接DNA电泳可判断整个重组载体质粒是否正确。

方法2:PCR(插入片段在2Kb以下时)→电泳

方法3:送公司测序

附:

LB培养基

将下列组分溶解在0.9L水中:

蛋白胨10g

酵母提取物5g

氯化钠10g

再补足水至1L。注:琼脂平板需添加琼脂粉12g/L,上层琼脂平板添加琼脂粉7g/L。

氨苄青霉素(ampicillin)(100mg/ml)

溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml,浓度为100mg/ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml(还是100μg?)的终浓度添加于生长培养基。

重组载体质粒转化细菌方法2:电转化

Ⅰ、电感受态细胞的制备

第一天:

1. 将适合的冻存菌( DH5α)挑取一点加入盛有1ml LB液体培养基的15ml离心管中;37℃,220rpm,摇菌培养1个小时(复苏)。

2、取10μl以下刚复苏的DH5α涂布于非抗性的LB固体培养基上37℃过夜培养。

3. 高温灭菌大的离心瓶(250-500ml)以备第二天摇瓶用

4. 准备几瓶灭菌水(总量约1.5升),保存于冷冻室中以备第二天重悬浮细胞用

第二天:

5、挑取单个前一天培养的细菌菌落加入3ml LB液体培养基里37℃,220rpm,摇菌培养12个小时。

6. 以1:100的比例取1ml菌液加入盛有100ml LB液体培养基的250ml摇瓶中37°C,220rpm,振摇2-3小时,定时监控OD.600值(培养1小时后每半小时测定一次)

7. 当O.D.600值达到0.3-0.4时,从摇床中取出摇瓶,置于冰上冷却15min至30min

8.将100ml培养基转移至离心瓶中,4°C 2500rpm下离心10min,弃上清液。

9. 加入几毫升灭菌冰水用涡旋仪或吸液管重悬浮细胞,然后加水至离心管的2/3体积稀释。

10. 4000rpm离心10分钟(还是2500rpm 10min?),小心弃去上清液

11. 同步骤9用灭菌的冰水重悬浮细胞

12. 4000rpm离心10分钟,弃上清液

13. 用20ml灭菌的、冰冷后的10%甘油重悬浮细胞

14. 4000rpm离心10分钟,小心弃去上清液(甘油稀释的细菌离心后沉淀更松散,需小心弃液)

15. 用10%甘油重悬浮细胞至最终体积为2-3ml

16. 将细胞按100μl或200ul/管等份装入微量离心管,于-80°C保存。

【可同时取100μl感受态细菌加0.01ng puc18直接电穿孔转化,检测转化效率。次日观察转化子生长情况】

Ⅱ、细胞转化

1、事先用无水乙醇清洗浸泡在无水乙醇中的电击杯,于超净台吹干,将载体质粒(名称?)、800ul无抗生素LB和0.1CM的电击杯一起置于冰上预冷。

2. 在冰上解冻一管100μl的电感受态细胞,添加1-10μl载体质粒(体积?),冰上培育约5分钟。

3. 转移DNA/细胞混合物至冷却后的2mm电穿孔容器(无泡)中,混匀后转入电击杯中.轻轻敲击电极杯使混合物均匀进入电极杯的底部.

4. 加载P1000(移液器),准备好800μl LB

5. 对电穿孔容器进行脉冲(200 欧姆, 25μFd, 2.5 千伏)(检查时间常数,应该在3以上)

6.按一下pulse键,听到蜂鸣声后,向电击杯中迅速加入800μl的LB液体培养基,重悬细胞后,转移到1.5ml的离心管中。

7. 37°C 220rpm下培养细胞40分钟至1小时以复原

8. 5000rpm,5分钟,弃上清剩100ul,涂布到带有抗生素(氨苄青霉素?)的琼脂平板上,放于37℃过夜培养,次日查看转化结果.

表达载体的构建方法及步骤

表达载体的构建方法及步骤 令狐采学 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型:

(1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。 (3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。 (5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与

载体构建流程

载体构建SOP流程: GenBank查询目的基因序列→根据ORF序列利用引物设计软件设计引物→表达目的基因的组织或细胞总RNA提取→RT-PCR获取目的基因→酶切目的基因和载体→分别纯化酶切的目的基因和载体并建立连接反应→转化→初步筛选阳性克隆→阳性克隆测序→测序正确的质粒保种并重提质粒 I.获取目的基因/序列片段 一.获取序列信息 通过GENBANK数据和生物信息的方法设计目的基因或目的片段引物(shRNA、miRNA)。 PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。

⑩避免在引物的3’端使用碱基A。 在实际设计引物中由于ORF两末端序列本身的限制,不能完全按照上述理想的设计原则,但也切记引物不能过长或过短。过长的引物不容易打开其二级结构,与模板结合缓慢,也容易形成引物二聚体,通常不超过35bp(不包括酶切位点和保护碱基)。过短的引物特异性差,扩出其它不相关片段,最终很难得到目的片段,通常不短于18bp(不包括酶切位点和保护碱基)。要将目的基因定向克隆至相应载体,需要在上下游引物两端设计不同的酶切位点,由于酶切位点位于线性末端时酶对其识别切割能力大大降低,需依据NEB目录添加相应保护碱基,酶切时可相应增加时间。 二.制备模板 1.分离高质量RNA:成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。RNA的质量决定了能够转录到cDNA上的序列信息量的最大值。现在实验室通常使用Trizol试剂法提取总RNA,可以从多种组织和细胞中提取高质量的非降解RNA。Trizol试剂法可以从最少100个细胞或1mg组织中提取RNA。在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可

重组质粒的构建经验 [技巧]

重组质粒的构建经验 [技巧] 重组质粒的构建经验~~~ 昨天我在版中我看很多谷友询问重组质粒的构建问题,有些谷友说构建质粒需要一个月,甚至更长时间,这让我联想我刚做分子生物学时候的曲折。重组质粒构建是常用的分子生物学手段,其实只是最基本的方法,一般一个星期同时构建三二个组质粒是没有问题的。在国内先进的实验中,也大都是由实验员搞定。但是其中还是有些基本的技巧需要掌握。在这里将我的心得分享于大家,这也是我本人几年来一线工作时的经验积累,以期能为谷友提供借鉴,让大家在实验中少走弯路。所涉及内容如下: 1) 克隆基因的酶切位点问题 2) 载体酶切的问题 3) 连接片段浓度比的问题在阐明上述问题同时,本人尽可能举些实验中的问题案例予以说明。 一、克隆基因的酶切位点问题 1、克隆位点选择的问题。首先要对目标基因进行酶切位点扫描分析,列出其所含酶切位点清单。然后对照质粒多克隆位点,所选择的克隆位点必须是目标基因所不含的酶切位点。这是常识,不赘述。 2、保护碱基数目的问题。在设计PCR引物时,引入酶切位点后,常常要加入保护碱基,这是大家所熟知的。但是保护碱基数量多少,可能被新手所忽视。这种忽视碰可能会大大影响后续的实验进展。一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA片段上。如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。下面是我提供这类酶的列表及其所需最少的保护碱基数,相信下列将有助于大这家的实验设计。 NcoI 4 NdeI 6 NheI 3 NotI 8 PmeI 6 SacI 3 SalI 3 SmaI 3 HindIII 3 BstI 8 SphI 4

PCR扩增原理及操作

PCR扩增反应的操作 第一节PCR扩增反应的基本原理 一、聚合酶链式反应(PCR)的基本构成 PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。 PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA 膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。反应时先将上述溶液加热,使模板DNA 在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。 1.模板DNA的变性 模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。故PCR 中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。 2.模板DNA与引物的退火 将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。 3.引物的延伸 DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用Y =(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,

载体构建的基本步骤

载体构建 一.原理 依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。 二.操作步骤 1.摇菌 取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。2.提质粒 依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。 3.酶切 按下表加入试剂。 反应所需试剂体积(单位:ul) 质粒10 所需内切酶反应缓冲液 2 所需限制性内切核酸酶 1 H2O 7 将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度) 4.电泳检测 将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。 5.连接 如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接,连接体系如下: 双蒸水5μL 10×T4 DNA连接缓冲液1μL 载体2μL 酶切后的目的基因1μL T4DNA连接酶1μL 总体积10μL 置于温箱,12-16℃,保温8-16h 6.转化 依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。 7.单克隆检测 (1)挑单克隆

先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的AMP,用枪头混匀;取1.5 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。 (2)单克隆检测 以每管摇好的菌液为模板,以原有的引物进行PCR,然后将PCR产物跑电泳,观察电泳图像中那几管的条带正确,将正确条带相对应管的菌液再抽取100μL,加到3ml(有LB液体培养液,AMP+)试管中,过夜摇;第二天重摇,将摇好的菌取1ml于1.5mlEP管中送测序,并保种。 注:①挑单克隆时,一定要挑单一圆润的菌落,有卫星斑的不挑。 ②别忘记往培养基中加AMP。 ③用接种环挑菌后,要在酒精灯上反复灼烧,然后再进行下一次挑菌。 三.注意事项 1.连接产物可短时间在-20℃保存,使用时可以取出进行后续实验; 2.在细胞转化时,冰浴和热激要严格控制好时间; 3.连接反应是DNA重组过程中的关键步骤,其成败的重要参数之一就是温度,因此要控制好连接温度。 4.进行黏末端连接时,会产生一定数量的载体自身环化分子,导致转化菌中过高的假阳性克隆背景。针对这一问题,常采用牛小肠碱性磷酸酶(CIP)去掉载体的5’-磷酸以抑制DNA 片段的自身环化。 参考: 1.刘进元,常智杰,赵广荣,等.分子生物学实验指导[M].北京:清华大学出版社,2002 2.周俊宜.分子生物学基本技能和策略[M].北京:科学出版社,2003:117-120 3.李海英,杨峰山,邵淑丽,等.现代分子生物学与基因工程[M].北京:化学工业出版社,2008:138-142 4.朱旭芬.基因工程实验指导[M].北京:高等教育出版社,2006:134-139

pcr扩增的原理和步骤

PCR 扩增的原理和步骤 聚合酶链反应(polymerasechain reaction PCR)技术是20世纪80年代中期发 展起来的一项基因检测即一种体外核酸扩增技术。它具有许多优点:特异性、易重复、高效性等,可以在几个小时完成过去几天或者更长时间完成的实验,因此这项技术在生物医学领域具有划时代的意义。但是,传统PCR技术有它的缺点,它通过电泳对扩增反应的最终产物进行定性分析而不能对起始模板准确定量,同时也无法对扩增反应实时检测且在实验过程中易污染而出现假阳性。人们为了寻找更为灵敏、快速、简便、高特异性的方法进行了许多探索研究,直到1996 年由美国Applied Biosystems公司推出了一种新的定量试验技术—荧光定量PCR(F lurogenic Quantitative Polymerase Chain Reaction,FQ-PCR;real-time quantitati ve PCR,RT-qPCR or qPCR),它是通过荧光染料或荧光标记的特异性探针,标记 跟踪PCR产物进行实时监测反应,利用与之相适应的软件对产物进行分析,计 算待测样品模板的初始浓度,实现了PCR 从定性到定量质的跨越,具有里程碑 意义。目前,此项技术已应用于干细胞研究、肿瘤学和遗传疾病研究、病原体检 测和传染病研究、药物分析、药物基因组学、植物学研究和农业生物科技等多领 域研究中。本文对实时荧光定量PCR 的原理、分类和应用进行阐述。 一、实时荧光定量PCR技术的原理 real-time quantitative PCR 技术是指在 PCR 反应体系中加入荧光基团,通过 荧光信号不断累积而实现实时监测PCR全程,然后通过标准曲线对未知模板进 行定量分析的方法。在荧光定量PCR技术中有2个概念比较重要。(1)荧光域值(t hreshold)的设定: PCR 反应的前 15 个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3~15 个循环的荧光信号标准偏差的10 倍。(2)Ct 值:C 代表Cycle,t 代表 threshold,Ct 值的含义是每个反应管内的荧光信号到达设定的域值 时所经历的循环数。在实时荧光定量PCR中,对全程PCR扩增过程进行实时检测,根据反应时间和荧光信号的变化可以绘制成一条曲线。一般来说,整条曲线可以分3个阶段:荧光背景信号阶段、荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号与背景无法区分,无法判断产物量的变化。在平台期,扩增产物已不再呈指数级的增加,所以反应终产物量与起始模板量之间已 经不存在线性关系,通过反应终产物也算不出起始DNA 拷贝数。只有在荧光产

构建重组质粒基本方法

构建重组质粒基本方法 1.cDNA编码区片段的PCR扩增 50ul ×2 模版 1 5‘引物 1 3‘引物 1 dNTP 1 10×buffer 5 Taq 1 Milliq H2O 40 2.PCR产物纯化 1、加5倍体积的PB 2、将Spin柱放于2ml收集管上 3、加样液,14Krpm,离心1min 4、弃去排出液 5、加0.75ml PE, 14Krpm,离心1min 6、弃去排出液,14Krpm,离心1min 7、将Spin柱放在洁净1.5ml的Epp管中 8、往Spin柱的膜中央加入50μl的EB(或milliq H2O),静置2min, 14Krpm, 离心1min 3.双酶切 载体和PCR产物分别用一下条件进行双酶切(反应体系均为30ul,37℃,酶切n 小时): 4.双酶切后的载体用试剂盒割胶回收 1.割胶并称重,加3倍体积的QG(胶块每100mg约合100μl的体积)

2.50℃,恒温10min,等到胶完全被溶解 3.将一个Spin柱放在一个2ml的收集管中 4.加样液,14Krpm,离心1min 5.弃去排出液 6.加0.75ml PE, 14Krpm,离心1min 7.弃去排出液,14Krpm,离心1min 8.将Spin柱放在洁净1.5ml的Epp管中 9.往Spin柱的膜中央加入50μl的EB(或milliq H2O),静置2min, 14Krpm, 离心1min 5.连接 上述双酶切产物经过纯化(其中载体酶切产物割胶回收,PCR片段酶切后纯化步骤与上述PCR产物纯化步骤相同),在T4 DNA连接酶作用下16℃连接过夜。连接体系如下: 载体 2ul PCR 片段 6ul 10xT4 buffer 1ul T4 DNA ligase 1ul 6.转化 取上述连接液5μl转化到预先制备的DH5α化学感受态细胞中,冰浴30分钟,42℃热激2min,置冰上5min,加入1mlLB培养液37℃摇床45min,离心5000rpm,1-5min(不要离心太久,以免太实),最后均匀涂布在含有100 ng/ml 抗生素的LB平板上(100-150 ul)。将平板在37℃倒置培养过夜。挑取阳性克隆菌落转划到另一块含有100 ng/ml抗生素的LB平板上,并对之进行编号,37℃倒置培养过夜。 7.菌落原位PCR 挑取转划后长出的阳性克隆菌落,加入3ul细菌DNA提取液破细胞。将 细菌裂解液作为PCR模板,其他PCR组分及PCR条件同上。PCR产物在2% 凝胶上进行电泳分析。 8. QIAGEN试剂盒抽提质粒

重组质粒的构建

重组质粒构建 生物学——屠仁军(新浪) 一、载体与外源片段(PCR产物)的双酶切 为了保证做连接反应时有足够的外源DNA片段,应该加入1ug的DNA进行酶切反应;两种酶分别加1ul,10×buffer 2ul,1ug的DNA,加水至20ul。(因此要跑胶分析DNA以及载体的浓度,取1-2ul,电泳检测其含量。1ul体积太少,可以将其稀释在9ul水中,再加loading buffer。6ul 15000bp的marker,2500bp条带的亮度约是100ng DNA。可对比marker的亮度算出酶切回收的DNA的浓度,以便于确定连接反应时的用量。Image J软件可以做灰度分析。) 双酶切反应结束后,使用PCR cleanup试剂盒回收DNA与载体。回收完之后用同样的方法分析其浓度。(也可以用分光光度计直接测量DNA的浓度,但是,一般酶切反应之后其浓度会比较小,取1ul 稀释100倍之后浓度很低,可能已经低于仪器的测量范围,而电泳灵敏度很高,还可一排除杂带、RNA、蛋白质等对浓度的干扰。) 二、连接反应 载体100ng,DNA片段根据大小,1ul buffer,1ul T4连接酶,加水至10ul;16℃连接12-16h。 载体(约0.03pmol)与外源DNA的摩尔比大约1:3-1:10之间,根据载体与DNA片段的长度,可算出需要的量。因为载体的大小一般在5kb-10kb,因此,严格的算出0.03pmol的载体的质量意义不大,大约100ng即可。如果时间比较紧张,可以25℃连接15min,之后可取5ul进行转化,剩余5ul于16℃继续连接。 三、质粒转化到感受态大肠杆菌中 从-70℃中取出感受态,指尖轻转融化后立即插入冰上,5ul连接产物+100ul感受态大肠杆菌,充分混匀后冰浴30min,然后42°热激90s,热激时不要晃动EP管。然后立即插入冰上,静置2min。(连接产物的量尽量不超过感受态体积的5%,否则会降低转化效率,从而得不偿失。)在超净台中向EP管中加入700ul 无抗性LB培养

PCR扩增的原理和步骤

PCR扩增的原理和步骤 聚合酶链反应(polymerasechain reaction PCR)技术是20世纪80年代中期发展起来的一项基因检测即一种体外核酸扩增技术。它具有许多优点:特异性、易重复、高效性等,可以在几个小时完成过去几天或者更长时间完成的实验,因此这项技术在生物医学领域具有划时代的意义。但是,传统PCR技术有它的缺点,它通过电泳对扩增反应的最终产物进行定性分析而不能对起始模板准确定量,同时也无法对扩增反应实时检测且在实验过程中易污染而出现假阳性。人们为了寻找更为灵敏、快速、简便、高特异性的方法进行了许多探索研究,直到1996年由美国Applied Biosystems公司推出了一种新的定量试验技术—荧光定量PCR(F lurogenic Quantitative Polymerase Chain Reaction,FQ-PCR;real-time quantitati ve PCR,RT-qPCR or qPCR),它是通过荧光染料或荧光标记的特异性探针,标记跟踪PCR产物进行实时监测反应,利用与之相适应的软件对产物进行分析,计算待测样品模板的初始浓度,实现了PCR从定性到定量质的跨越,具有里程碑意义。目前,此项技术已应用于干细胞研究、肿瘤学和遗传疾病研究、病原体检测和传染病研究、药物分析、药物基因组学、植物学研究和农业生物科技等多领域研究中。本文对实时荧光定量PCR的原理、分类和应用进行阐述。 一、实时荧光定量PCR技术的原理 real-time quantitative PCR技术是指在PCR反应体系中加入荧光基团,通过荧光信号不断累积而实现实时监测PCR全程,然后通过标准曲线对未知模板进行定量分析的方法。在荧光定量PCR技术中有2个概念比较重要。(1)荧光域值(t hreshold)的设定:PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3~15个循环的荧光信号标准偏差的10倍。(2)Ct值:C代表Cycle,t代表threshold,Ct值的含义是每个反应管内的荧光信号到达设定的域值时所经历的循环数。在实时荧光定量PCR中,对全程PCR扩增过程进行实时检测,根据反应时间和荧光信号的变化可以绘制成一条曲线。一般来说,整条曲线可以分3个阶段:荧光背景信号阶段、荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号与背景无法区分,无法判断产物量的变化。在平台期,扩增产物已不再呈指数级的增加,所以反应终产物量与起始模板量之间已经不存在线性关系,通过反应终产物也算不出起始DNA拷贝数。只有在荧光产生进入指数期,PCR产物量的对数值与起始模板量之间存在线性关系,所以在P CR反应处于指数期的某一点上来检测PCR产物的量,由此来推断模板最初的含

慢病毒载体包装构建过程

慢病毒载体包装构建过程 原理:慢病毒载体可以将外源基因或外源的shRNA有效地整合到宿主染色体上,从而达到持久性表达目的序列的效果。在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果。对于一些较难转染的细胞,如原代细胞、干细胞、不分化的细胞等,使用慢病毒载体,能大大提高目的基因或目的shRNA的转导效率,且目的基因或目的shRNA整合到宿主细胞基因组的几率大大增加,能够比较方便快捷地实现目的基因或目的shRNA的长期、稳定表达。 概念:慢病毒载体是指以人类免疫缺陷病毒-1 (H IV-1) 来源的一种病毒载体,慢病毒载体包含了包装、转染、稳定整合所需要的遗传信息,是慢病毒载体系统的主要组成部分。携带有外源基因的慢病毒载体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装成为有感染力的病毒颗粒,通过感染细胞或活体组织,实现外源基因在细胞或活体组织中表达。 辅助成分:慢病毒载体辅助成分包括:慢病毒包装质粒和可产生病毒颗粒的细胞系。 慢病毒载体包含了包装、转染、稳定整合所需要的遗传信息。慢病毒包装质粒可提供所有的转录并包装RNA 到重组的假病毒载体所需要的所有辅助蛋白。为产生高滴度的病毒颗粒,需要利用表达载体和包装质粒同时共转染细胞,在细胞中进行病毒的包装,包装好的假病毒颗粒分泌到细胞外的培养基中,离心取得上清液后,可以直接用于宿主细胞的感染,目的基因进入到宿主细胞之后,经过反转录,整合到基因组,从而高水平的表达效应分子。 基本原理:慢病毒载体系统由两部分组成,即包装成分和载体成分。

包装成分:由HIV-1基因组去除了包装、逆转录和整合所需的顺式作用序列而构建,能够反式提供产生病毒颗粒所必需的蛋白。包装成分通常被分开构建到两个质粒上,一个质粒表达Gag和Pol蛋白,另一个质粒表达Env蛋白,其目的也是降低恢复成野生型病毒的可能。将包装成分与载体成分的3个质粒共转染细胞(如人肾293T细胞),即可在细胞上清中收获只有一次性感染能力而无复制能力的、携带目的基因的HIV-1载体颗粒。 载体成分:与包装成分互补,即含有包装、逆转录和整合所需的HIV顺式作用序列,同时具有异源启动子控制下的多克隆位点及在此位点插入的目的基因。 为降低两种成分同源重组恢复成野生型病毒的可能,需尽量减少二者的同源性,如将包装成分上5′LTR换成巨细胞病毒(CMV)立即早期启动子、3′LTR换成SV40 polyA等。 一、实验流程(1和2为并列步骤) 1.慢病毒过表达质粒载体的构建 设计上下游特异性扩增引物,同时引入酶切位点,PCR(采用高保真KOD酶,3K内突变率为0%)从模板中(CDNA质粒或者文库)调取目的基因CDS区(coding sequence)连入T载体。将CDS区从T载体上切下,装入慢病毒过表达质粒载体。 2.慢病毒干扰质粒载体的构建 合成siRNA对应的DNA颈环结构,退火后连入慢病毒干扰质粒载体 3. 慢病毒载体的包装与浓缩纯化 制备慢病毒穿梭质粒及其辅助包装原件载体质粒,三种质粒载体分别进行高纯度无内毒素抽提,共转染293T细胞,转染后6 h 更换为完全培养基,培养24和48h后,分别收集富含

载体构建经验

做酶切要注意的问题 重组质粒构建是常用的分子生物学手段,其实只是最基本的方法,一般一个星期同时构建三二个组质粒是没有问题的。但是其中还是有些基本的技巧需要掌握。在这里将我的心得分享于大家,这也是我本人几年来一线工作时的经验积累,以期能让大家在实验中少走弯路。所涉及内容如下: 1) 克隆基因的酶切位点问题 2) 载体酶切的问题 3) 连接片段浓度比的问题 在阐明上述问题同时,本人尽可能举些实验中的问题案例予以说明。 一、克隆基因的酶切位点问题 1、克隆位点选择的问题。首先要对目标基因进行酶切位点扫描分析,列出其所含酶切位点清单。然后对照质粒多克隆位点,所选择的克隆位点必须是目标基因所不含的酶切位点。这是常识,不赘述。 2、保护碱基数目的问题。在设计PCR引物时,引入酶切位点后,常常要加入保护碱基,这是大家所熟知的。但是保护碱基数量多少,可能被新手所忽视。这种忽视碰可能会大大影响后续的实验进展。 一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DN 段上。如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。 下面是我提供这类酶的列表及其所需最少的保护碱基数,相信下列将有助于大这家的实验设计。 NcoI 4 NdeI 6 NheI 3 NotI 8 PmeI 6 SacI 3 SalI 3

SmaI 3 HindIII 3 BstI 8 SphI 4 XhoI 3 XbaI 3 SmaI 4 案例分析一:本人最初曾选用NdeI克隆位点,未注意到保护碱基数目的问题,设计PCR引物时,引入NdeI酶切位点后,只加上两个保护碱基,一个月内没有进展,始终不能成功构建重组载体。后查文献得知症结所在,在NdeI序列后加上六个保护碱基后,迎刃而解。大家引以为戒啊。 现在普通酶我都引入三个保护碱基。现在碱基合成价格也不贵了,为保证酶切充分,连接顺利,不用节约那点钱,再说若一次不成功,重复实验花费时间与金钱更多,孰利孰弊,不言自明。呵呵。 二、载体酶切的问题 1、质粒的单酶切鉴定。这个问题似乎很简单,但我认为很有着重强调之必要。现在大家手头的质粒都是转来转去的,其中的各酶切位点状况如何,是否能被有效地切开,这些问题都是要核实的。因此,在实验开始之前必须对质粒载体进行单酶切鉴定。现在我每次构建之前,对所选择的克隆位点都要作一一鉴定,例如选择NdeI和HindIII作为克隆位点,就先分别对质粒上这两个酶的酶切位点进行单酶切鉴定。单酶切鉴定能有效地切开后,再发出引物合成定单,进行引物合成;若不能,就按“一”中原则进行调换。 2、连接反应的对照。在实验中,这步骤属于质粒载体与外源DN段的连接反应。成功与否,很大程度上取决于与质粒和DN段的酶切效果。一般情况下,都在通用缓冲液中进行双酶切,但这两种酶在通用缓冲液中酶切效率不一样,这可能导致部分的单缺口的质粒片段存在,这样,在连接反应中,即使在外源DN段存在下,这种单缺口的质粒片段能够进行更快速有效自我连接。最终结果是大量假阳性的菌斑生长。对照连接反应中,在不加入外源片段情况下,实验结果如果有菌斑生长,说明双酶切不充分,质粒DNA必须重新进行双酶切。 实验案例分析2:本人曾用XhoI和HindIII酶切位点构建重组质粒,对质粒进行双酶切后,直接就做连接,未上述两步鉴定,每次结果满板的菌斑。但就是没有阳性。后来对质粒进行单酶要鉴定后,发现XhoI酶切位点损坏。又是一个月没有进展,浪费精力和药品。血的教训啊。因为当时没有注意到:单切质粒是一条带,双切质粒也是一条带,电泳行为上是一样

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒 DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点 Ori 即控制复制起始的位点。原核生物 DNA 分子中只有一个复制起始点。而 真核生物 DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如 Amp+ ,Kan+ (3)多克隆位点 MCS 克隆携带外源基因片段 (4) P/E 启动子/增强子 (5)Terms 终止信号 (6)加 poly(A)信号可以起到稳定 mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建 DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体 MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般 10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位 Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体 DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看 Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使 G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。

重组质粒的构建与转化

实验目的 1.学习在实现DNA体外重组过程中,正确选择合适的载体和限制性内切酶并能用限制性核酸内切酶对 载体和目的DNA进行切割,产生利于连接的合适末端。 2.学习设计构建重组DNA分子的基本方法,掌握载体和外源目的DNA酶切的操作。 3.学习利用T4 DNA连接酶把酶切后的载体片段和外源目的DNA片段连接起来,构建体外DNA分子的 技术,了解并掌握几种常用的连接方式。 4.掌握利用Cacl2制备感受态细胞的方法。 5.学习掌握热击法转化E.coli的原理和方法。 6.学习并掌握使用红白菌落法筛选获得重组子以及α互补筛选法的原理及方法。 7.学习并掌握使用Omaga试剂盒抽提质粒的方法及进一步确定重组质粒中含有外源目的DNA片段。 实验原理: (一)限制性核酸内切酶的酶切反应 体外构建重组DNA分子,首先要了解目的基因的酶切图谱,选用的限制性内切酶不能在目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源供体DNA时不能得到完整的目的基因。其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。常用的酶切方法有双酶切法和单酶切法两种。本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA 片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。 在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。单酶

切法简单易行,但是后期筛选工作比较复杂。各种限制性内切酶都有其最佳反应条件,最主要的因素是反应温度和缓冲液的组成。在双酶切体系中,如果两种酶对盐离子的浓度和温度要求一致,原则上可以将这两种酶同时加入一个反应体系中同步酶切;如果不一致,则酶切反应最好分步进行,常用的酶切顺序是:先低盐后高盐,先低温后高温。 酶切与连接是两个密切相关的步骤,要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。一般的,酶切0.2~1.0μg的DNA分子时,反应体积约为15~20μg,DNA的量越大,反应体积可按比例适当放大。酶的用量参照标准:一个标准单位酶能在指定的缓冲液系统和温度下,1h完全酶解1μg的pBR322 DNA分子。如果酶活力低,可以适当增加酶的用量,但是最高不能超过反应总体积的10%。因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。 (二)载体与外源DNA的连接反应 连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核酸内切酶和DNA连接酶催化完成的。DNA连接酶催化两双链DNA片段相邻的5’-磷酸和3’-OH间形成磷酸二酯键。在分子克隆中最有用的DNA连接酶是来自T4噬菌体的T4 DNA连接酶,它可以连接黏性末端和平末端。连接反应时,载体DNA和外源DNA的摩尔数之比控制在1:(1~3)之间,可以有效地解决DNA多拷贝插入的现象。实际操作中,反应温度介于酶作用速率和末端结合速率之间,一般是16℃,平末端适当提高连接反应温度。反应时间与温度有关,随温度的提高,反应速度增加,所需时间会相应减少,16℃下最常用的连接时间为12-16h。 (三)感受态细胞的制备及质粒转化

PCR各步骤的目的

P C R各步骤的目的 Prepared on 22 November 2020

PCR各步骤的目的 (一)预变性: 破坏DNA中可能存在的较难破坏的二级结构。使DNA充分变性,减少DNA复杂结构对扩增的影响,以利于引物更好的和模板结合,特别是对于基因组来源的DNA模板,最好不要吝啬这个步骤。此外,在一些使用热启动Taq酶的反应中,还可激活Taq酶,从而使PCR反应得以顺利进行。 (二)变性--退火--延伸循环: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。 (三)用PCR仪扩增时,(变性.退火,延伸)循环完成后,继续72度延伸了10分钟的原因: 1.延伸时间取决于待扩增DNA片段的长度。(当然是在反应体系一定的条件下)例如,使用taq DNA聚合酶,72度时的碱基掺入率为35-100bp/s,因此延伸速率为1kb/min。 2.根据延伸速率推得,扩增1kb以内的dna片段1min即可,而3-4kb则需要3-4min,依次照推。通常在最后一轮要适当的将延伸时间延长至4-10min,这样做是使pcr反应完全以提高扩增产量。 3.继续72度延伸了10分钟除了可以使pcr反应完全以提高扩增产量外,还有一个作用是:在用普通taq酶进行PCR扩增时在产物末端加A尾的作用,可以直接用于TA克隆的进行。

重组质粒的构建.

重组质粒的构建实验流程—质粒构建 基因提取—1、2、3 基因提取—1、2、3 PCR反应扩增目的基因—4、3 PCR反应扩增目的基因—4、3 DNA片段回收—5、3 DNA片段回收—5、3 重组质粒检测:(1)PCR (2)双酶切—8、5 重组质粒检测:(1)PCR (2)双酶切—8、5 测序 测序 重组质粒提取—2、 3 重组质粒提取—2、 3 菌种保藏—7 菌种保藏—7 目的片段与载体连接及转化—6 目的片段与载体连接及转化—6

实验操作 1、 LB培养基配置 LB培养基用于一般细菌培养,特别用于分子生物学试验中大肠杆菌的保存和培养。其中蛋白胨、酵母膏粉提供氮源、维生素和生长因子,NaCl维持均衡的渗透压,葡萄糖提供碳源,琼脂是培养基的凝固剂。 【试剂】 胰蛋白胨(Tryptone)、酵母提取物(Yeast Extract)、NaCl、琼脂(Agar) 【实验步骤】 1、 LB固体培养基配方(配置100ml培养基)

胰蛋白胨(Tryptone) 1g 酵母提取物(Yeast Extract) 0.5g NaCl 1g 琼脂(Agar) 1.5g 单蒸水 100ml 蛋白胨很易吸潮,在称取时动作要迅速,另外, 称药品时严防药品混杂,一把药匙用于一种药品、或 在称取一种药品后,洗净、擦干,再称取另一种药 品,瓶盖也不要盖错。 2、液体培养基除不加琼脂外,其余同固体培养基一样。 3、包扎 用报纸封住瓶口,再用皮筋捆扎好,用记号笔注明培养基名称、组别、日期。 4、灭菌 将上述培养基以1.05kg/cm2、121.3℃、20min高压蒸汽灭菌。如因特殊情况不能及时灭菌,则应放入4℃冰箱内暂存。灭菌后,将锥形瓶放入烘箱烘干,烘干后,4℃保存。 5、 LB固体培养基倒板 配置:如上述配方配置100ml的LB固体培养基。 抗生素的加入:将凝固的培养基放入微波炉内加热至完全融化,然后置于55℃的水浴中,待培养基温度降至55℃时(手可触摸)加入抗生素,以免温度过高导致抗生素失效,并充分摇匀。 倒板:一般10ml倒1个板子,培养基倒入培养皿后,打开盖子,在紫外下照10—15min。 保存:将培养皿倒置放于4℃保存,一个月内使用。 二、质粒的提取(protocol)

PCR扩增实验操作步骤

PCR扩增反应 一、实验原理 PCR:是一种选择性扩增DNA或RNA的方法,其基本原理是依据体内细胞分裂中的DNA半保留复制机理,以及在体外dNTP分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链DNA;单链DNA与人工合成的引物退火,以及在dNTP存在下,耐高温的DNA聚合酶使引物沿单链模板延伸成为双链DNA。 PCR反应分3步:①变性:通过加热使DNA 双螺旋的氢键断裂,双链解离形成单链DNA;②退火:当温度突然降低时,由于模板分子结构较引物要复杂得多,而且反应体系中引物DNA量大大多于模板DNA,使引物和其互补的模板在局部形成杂交链,而模板DNA 双链之间互补的机会较少。③延伸:在DNA聚合酶和4 种dNTP底物及Mg2+存在的条件下,5'→3'的聚合酶催化以引物为起始点的DNA链延伸反应,以上3步为一个循环,每一循环的产物可以作为下一个循环的模板,数小时之后,介于两个引物之间的特异性DNA片段得到了大量复制,数量可达2×106~7拷贝。 变性 退火 延伸 图反应历程

二、实验材料 1·模板:细菌DNA 2·TsgDNA聚合酶3·dNTP混合液 4·10倍浓度PCR缓冲液5·2.5mmol/LMgCl2 6·RAPD引物:S14 S15 S18 S66 S74 S88 S97 S103 S110 S115 7·提取细菌DNA的相关试剂 三、操作步骤 1.细菌染色体DNA的提取(见上一组) 3·反应程序: 将RAPD反应试剂加入EP管中 轻混后用100ul石蜡油覆盖于反应混合液之上,防止样品在反复加热-冷却的过程中蒸发,盖好盖子 打开PCR反应仪输入以下反应数据 ●94 摄氏度预变性5min ●94摄氏度变性40s ●40摄氏度退火40s ●72摄氏度延伸1min 将EP管放入仪器开始扩增,循环35次;72摄氏度延伸10min 仪器为Model MyGene 25 Plus 三、注意事项 1、PCR反应体系中DNA样品及各种试剂的用量都极少,必须严格注意吸样量的准确性 及全部放入反应体系中。 2、为避免污染凡是用在PCR反应中的Tip尖、离心管、蒸馏水都要灭菌;吸每种试剂 时都要换新的灭菌Tip尖。 3、加试剂时先加消毒三蒸水,最后加DNA模板和Taq DNA聚合酶。 4、置PCR仪进行PCR反应前,PCR管要盖紧,否则使液体蒸发影响PCR反应。 5.引物条件首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定二聚 体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。

相关文档