文档库 最新最全的文档下载
当前位置:文档库 › fanuc螺距补偿

fanuc螺距补偿

fanuc螺距补偿
fanuc螺距补偿

FANUC 螺距补偿

一、为什么要进行螺距误差补偿

螺距误差补偿是将机床实际移动的距离与指令移动的距离之差,通过调整数控系统的参数增减指令值的脉冲数,实现机床实际移动距离与指令值相接近,以提高机床的定位精度。螺距误差补偿只对机床补偿段起作用,在数控系统允许的范围内补偿将起到补偿作用。

二、螺距误差补偿参数

螺距误差补偿是按轴进行的,与其相关的轴参数有五个:

3620 各轴参考点的螺距误差补偿点号

3621 为设置补偿区间内的最负点补偿点号

3622 为设置补偿区间内的最正点补偿点号

3623 为补偿倍率

3624 为设置测量时候实际的间隔

说明:

1、如果需要更改参数,NC需要从新上点。

2、FANUC系统为增量补偿。

三、螺距误差补偿方法

1、分配补偿点

FANUC系统的补偿点共计为0—1023个点,为X、Z(Y、C)轴所共用,在车床里,我们只为XZ 两个轴设定相应的有效区间即可,我们可设置0-200号码,为X轴使用;201-400为Z轴使用;401以后为其他轴使用。所以对应轴的参考点地址根据需要设置为相应区间的任意点。

2、设置参数

说明:

1、补偿点号是和机械坐标对应的,如果机械坐标改变,需要重新补偿。

2、我厂机床出厂时X轴零点为主轴中心,如果补偿10个点,有效点号为100-110;Z轴零点

为卡盘端面,如果补偿15个点,有效点号为300-315。

X轴 Z轴

3、3623为补偿倍率。FANUC系统相对补偿参数限制为0—±7,所以倍率为1的情况下,如

误差中有很多的+7或者-7的话说明实际补偿误差可能大于这个数值,(例如:误差可能大

于±7,比如误差有8,10,-9那它也只能显示到7,7,-7,)那这个时候我们就要改倍

率为2。这时的实际补偿数值=补偿值*倍率。

3、输入补偿值

通过激光干涉仪。测得机床某个轴实际定位情况。生成补偿值,并填入补偿值如下:

X轴 Z轴

填入后,复位即可生效.整个螺距补偿完毕.

注意:

由于FANUC系统螺距补偿是相对补偿,如果想调整单个或几个点时要从补偿起点方向开始向终止方向调整。

数控车床丝杠螺距误差的补偿

项目数控车床丝杠螺距误差的补偿 一、工作任务及目标 1.本项目的学习任务 (1)学习数控车床丝杠螺距误差的测量和计算方法; (2)学习数控车床螺距误差参数的设置方法。 2.通过此项目的学习要达到以下目标 (1)了解螺距误差补偿的必要性; (2)掌握螺距误差补偿的测量和计算方法; (3)能够正确设置螺距误差参数。 二、相关知识 滚珠丝杠螺母机构 数控机床进给传动装置一般是由电机通过联轴器带动滚珠丝杆旋转,由滚珠丝杆螺母机构将回转运动转换为直线运动。 1、滚珠丝杠螺母机构的结构 滚珠丝杠螺母机构的工作原理见图1;在丝杠1 和螺母 4 上各加工有圆弧形螺旋槽,将它们套装起来变成螺旋形滚道,在滚道内装满滚珠2。当丝杠相对螺母旋转时,丝杠的旋转面经滚珠推动螺母轴向移动,同时滚珠沿螺旋形滚道滚动,使丝杠和螺母之间的滑动摩擦转变为滚珠与丝杠、螺母之间的滚动摩擦。螺母螺旋槽的两端用回珠管 3 连接起来,使滚珠能够从一端重新回到另一端,构成一个闭合的循环回路。

2、进给传动误差 螺距误差:丝杠导程的实际值与理论值的偏差。例如PⅢ级滚珠丝杠副的螺距公差为0.012mm/300mm。 反向间隙:即丝杠和螺母无相对转动时丝杠和螺母之间的最大窜动。由于螺母 结构本身的游隙以及其受轴向载荷后的弹性变形,滚珠丝杠螺母机构存在轴向间隙,该轴向间隙在丝杠反向转动时表现为丝杠转动α角,而螺母未移动,则形成了反向间隙。为了保证丝杠和螺母之间的灵活运动,必须有一定的反向间隙。但反向间隙过大将严重影响机床精度。因此数控机床进给系统所使用的滚珠丝杠副必须有可靠的轴向间隙调节机构。 图2为常用的双螺母螺纹调隙式结构,它 用平键限制了螺母在螺母座内的转动,调整时只要扮动圆螺母就能将滚珠螺母沿轴 向移动一定距离,在将反向间隙减小到规定的范围后,将其锁紧。

立式加工中心机床的螺距误差补偿(精)

立式加工中心机床的螺距误差补偿 随着我国制造业的飞速发展,数控机床制造技术也在不断地发展,同时对数控机床的各项性能提出了越来越高的要求。机床的定位精度便成为了衡量机床性能的一项重要指标。机械结构当中不可避免的摩擦、间隙,以及装配误差成为了制约机床定位精度的主要因素。由此,数控系统的制造商开发出了螺距误差补偿功能,借此以消除或者削弱以上因素对机床定位精度的影响,从而达到更好的加工效果。发那科与西门子两大公司在这个领域表现得尤为出色,以下将对这两种数控系统的螺距误差补偿方法进行详细介绍。 1.发那科数控系统机床的误差补偿(以FANUC 0i-MD为例) 1.1基本概念 1.1.1补偿点的指定 各轴的补偿点的指定,可通过夹着参考点的补偿点编号指定(+)侧、(-)侧来进行。机械的行程超过(+)侧、(-)侧所指定的范围时,有关超出的范围,不进行螺距误差补偿(补偿量全都成为0)。 1.1.2补偿点号 补偿点数,在螺距误差设定画面上提供有共计1024 点,从0 到1023。通过参数将该编号任意分配给各轴。 另外,螺距误差设定画面中,在最靠近负侧的补偿号前,显示该轴的名称。 1.1.3补偿点的间隔 螺距误差补偿的补偿点为等间隔,在参数中为每个轴设定该间隔。 螺距误差补偿点的间隔有最小值限制,通过下式确定。 螺距误差补偿点间隔的最小值=最大进给速度(快速移动速度)÷7500 1.2相关参数 (1)1851 每个轴的反向间隙补偿量。 (2)1852 每个轴的快速移动时的反向间隙补偿量。 (3)3620 每个轴的参考点的螺距误差补偿点号。 (4)3621 每个轴的最靠近负侧的螺距误差补偿点号。 (5)3622 每个轴的最靠近正侧的螺距误差补偿点号。 (6)3623 每个轴的螺距误差补偿倍率。 (7)3624 每个轴的螺距误差补偿点间隔。 注:以上参数中3620,3621,3622,3624修改后需要切断电源并重新上电才生效,其余参数修改后复位即可生效。 1.3操作方法(以X轴行程为850mm的丝杠为例,全长采集20个数据) 1.3.1连接激光干涉仪 1.3.2设置参数

西门子840D系统下的螺距补偿和垂度补偿的综合运用

西门子840D系统下的螺距补偿和垂度补偿 的综合运用 李培志 (武汉华中自控技术发展有限公司,武汉430062) 摘要:结合西门子840D系统介绍了两种为提高机床定位精度的补偿方法------螺距补偿和垂度补偿。以及在机械几何精度不理想情况下的两种方法的综合运用。 关键词:螺距补偿垂度补偿位置精度检测 由于机械电子技术的飞速发展,数控机床作为一种高精度、高效率、稳定性强的自动化加工设备,越来越多的受到大家的关注。数控系统的定位精度是影响其高精度性能的一个重要因素,而利用西门子840D数控系统自带的螺距补偿和垂度补偿功能可以极大的降低机床的定位误差,提高机床的定位精度。本文就此介绍了这两种方法在实际中的具体使用。 补偿一般在机床几何精度调整完成后进行,这样可以尽量减少几何精度对定位精度的影响。一般情况下,螺距补偿可以运用在所有的直线进给轴以及旋转轴中,垂度补偿多运用在镗床的主轴箱滑枕或镗杆与立柱间的交叉补偿。1.螺距补偿 840D数控系统的螺距补偿功能是一种绝对型补偿方法,螺距补偿是按轴进行的。我们设定补偿起始点位置a,补偿终止点位置b,补偿间隔距离c,那么需要插补的中间点的个数n,其中n=1+(b-a)/c。 具体操作步骤如下: 1)设置轴数据MD38000 MM_ENC_COMP_MAX_POINTS[t] =n,修改此参数后会引起 NCK内存的重新分配。所以修改后要在服务菜单下对NC做一次备份。(t=所补偿轴的轴号) 2)对系统做一次NCK复位后会出现“M4400” 报警,提示轴参数丢失,此时将 1)步骤下的NC备份Load进NC系统。 3)在Nc-Active-Data菜单下Copy出“C EC_DATA”到一个新建立的备份文档目 录*.MDN中。 4)在新的目录下找到并打开补偿文件表格,根据测量人员测量的数据把相应的 补偿点直接在表格中更改。保存并关闭编辑器。 5)设定轴参数MD32700 ENC_COMP_ENABLE=0,将修改后的补偿表格 Load进NC

FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC 数控机床螺距误差的检测分析与应用 赵宏立 (沈阳职业技术学院,沈阳110045 )1数控机床螺距误差补偿原理与检测分析 随着精密加工和精益生产的市场需求,数控机床这 种高效高精的自动化设备逐渐在我国普及和使用,由于设备的长期运转和磨损,机床自身的精度需要定期校准,特别是数控机床的重复定位精度和定位精度的检测和补偿,直接影响产品的加工精度和效益。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的检测和补偿方法。Fanuc 数控机床的螺距误差补偿功能有一定的代表性,下面针对Fanuc 数控机床进行螺距误差的检测分析和补偿。1.1 螺距误差补偿与检测原理 在半闭环数控系统当中,重复定位精度和定位精度很大程度上取决于数控机床的滚珠丝杠精度,由于滚珠丝杠存在制造误差和长期加工使用带来的磨损,其精度必然下降,故所有的数控机床都为用户提供了螺距误差补偿功能。螺距误差补偿是将指定的数控机床各轴进给指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控机床各轴全行程上的误差偏移值,再将误差偏移值补偿到数控系统中,则数控机床各轴在运动时控制刀具和工件向误差的逆方向产生相对运动,自动补偿误差偏移值,提高机床的加工精度。1.2 螺距误差补偿应用与分析 我们知道,在大多数数控系统中螺距误差补偿只是 对机床的线性补偿段起作用,只要在数控系统允许的范围内补偿就会起到补偿作用,每轴的螺距误差可以用最小移动单位的倍数进行补偿,一般以机床参考点作为补偿原点,在移动轴设定的各 补偿间隔上,把应补偿的值作为固定参数设定。如图1所示为步距规采用线性补偿方法进行检测。 但一般情况下丝杠的使用是不均匀的,经常使用的地方必然就要磨损得多,用线性补偿只是进行统一均匀线性补偿,不能照顾到特殊的点,而采用点补偿正好能满足这一点,螺距补偿才会没有误 差。为了减少点补偿的误差,应该尽量选取较小的螺距补偿点间距。点补偿的优点是能针对不同点的不同误差值进行补偿,解决了不同点不同螺距误差的补偿问题,补偿的精度高。缺点是测量误差时比较麻烦,需用专业的测量仪器跟踪各点测量。如图2所示,采用定点补偿法进行螺距误差补偿的检测。 摘要: Fanuc 数控机床在我国数控加工领域占据着主导地位,它的精度和性能指标直接取决于数控机床的定位精度和重复定位精度。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的方法。利用激光干涉仪或步距规测得的实际位置与数控机床移动轴的指令位置相比较,计算出全程上的误差分布曲线,在数控系统控制移动轴运动时考虑该误差差值并加以补偿,可以使数控机床的精度达到更高水平。 关键词: 定位精度;螺距误差;检测;补偿中图分类号:T G502.13文献标识码:A 文章编号:1002-2333(2010)05-0038-03 Analysis and Application of Thread Pitch Error Compensation in Fanuc CNC Machine ZHAO Hong-li (Shenyang Polytechnic College,Shenyang 110045,China ) Abstract :Fanuc CNC Machine Tools dominated the field of NC machining in China,its accuracy and performance depends directly on the positioning accuracy and repeat positioning accuracy of CNC Machine Tools.In practical applications,the function of pitch error compensation is the most cost effective and direct method of CNC system.The actual position measured by using laser interferometer or a step gauge is compared with the instructions position of CNC machine moving axis,the position error curve is calculated out on the whole distribution,the error value is compensated in the moving-axis CNC system control movement.So the accuracy of CNC machine tools can be achieved a higher level. Key words :position accuracy;screw pitch error;measure; compensation 图 1 利用步距规进行线性 螺距误差检测 图2利用激光干涉仪进行 定点补偿检测 ACADEMIC COMMUNICATION 学术交流 理论/研发/设计/制造 机械工程师2010年第5期 38

下垂补偿功能的原理

西门子840D数控系统补偿功能bjxtdlhzzj,2008-11-10 19:22:11 一、西门子840D数控系统的补偿功能 西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。这些功能有: 1、温度补偿。 2、反向间隙补偿。 3、插补补偿,分为: (1) 螺距误差和测量系统误差补偿。 (2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。 4、动态前馈控制(又称跟随误差补偿)。包括:速度前馈控制和扭矩前馈控制。 5、象限误差补偿(又称摩擦力补偿)。分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。 6、漂移补偿。 7、电子重量平衡补偿。 在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。 二、840D下垂补偿功能的原理 1、下垂误差产生的原因: 由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。 2、840D下垂补偿功能参数的分析: 西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。描述如下: (1) $AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。 (2) $AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。 (3) $AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。 (4) $AN_CEC_STEP[t]:基准轴两插补点之间的距离。 (5) $AN_CEC_MIN[t]:基准轴补偿起始位置: (6) $AN_CEC_MAX[t]: 基准轴补偿终止位置 (7) $AN_CEC_DIRECTION[t]:定义基准轴补偿方向。其中: ★ $AN_CEC_DIRECTION[t]=0:补偿值在基准轴的两个方向有效。 ★ $AN_CEC_DIRECTION[t]=1:补偿值只在基准轴的正方向有效,基准轴的负方向无补偿值。 ★ $AN_CEC_DIRECTION[t]=-1:补偿值只在基准轴的负方向有效,基准轴的正方向无补偿值。 (8) $AN_CEC_IS_MODULO[t]:基准轴的补偿带模功能。 (9) $AN_CEC_MULT_BY_TABLE[t]:基准轴的补偿表的相乘表。这个功能允许任一补偿表可与另一补偿表或该表自身相乘。 3、下垂补偿功能用于螺距误差或测量系统误差补偿时的定义方法: 根据840D资料的描述,机床的一个轴,在同一补偿表中,既可以定义为基准轴,又可以

西门子840D数控系统螺距误差补偿知识

西门子840D数控系统螺距误差补偿 西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。 关键词:数控系统下垂补偿功能双向螺距误差补偿 由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。 一、西门子840D数控系统的补偿功能 西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。这些功能有: 1、温度补偿。 2、反向间隙补偿。 3、插补补偿,分为: (1) 螺距误差和测量系统误差补偿。 (2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。 4、动态前馈控制(又称跟随误差补偿)。包括:速度前馈控制和扭矩前馈控制。

5、象限误差补偿(又称摩擦力补偿)。分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。 6、漂移补偿。 7、电子重量平衡补偿。 在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。 二、840D下垂补偿功能的原理 1、下垂误差产生的原因: 由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。 2、840D下垂补偿功能参数的分析: 西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。描述如下: (1) $AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。 (2) $AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。 (3) $AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。 (4) $AN_CEC_STEP[t]:基准轴两插补点之间的距离。 (5) $AN_CEC_MIN[t]:基准轴补偿起始位置: (6) $AN_CEC_MAX[t]: 基准轴补偿终止位置 (7) $AN_CEC_DIRECTION[t]:定义基准轴补偿方向。其中:

13、螺距误差补偿及反向间隙补偿

螺距误差补偿及反向间隙补偿 根据下表设置螺距误差补偿相关参数: 参数号参数位设定值设置说明 3620 X Z 100 200 每个轴的参考点的螺 距误差补偿点号 3621 X Z 负方向最远的补偿位置号根据下面的公式进行计算: 参考点的补偿位置号—(负方向的机床行程/补偿位置间隔)+ 1 100-(1000/50)+1=81 所以负方向补偿位置号设置为81 3622 X Z 正方向的最远补偿位置号根据下面的公式进行计算: 参考点的补偿位置号+(正方向的机床行程/补偿位置间隔)+ 1 100+(0/50)+1=101 所以参考点正方向补偿位置号为101. 3624 补偿点间隔输入格式 为无小数点输入格 式,由于X轴为直径 值编程,所以X轴补 偿点间隔应为实际补 偿点间隔的2倍,应 设置为100000,为 100mm. 参数号参数位设定值设置说明 1800 #4(RBK) 是否分别进行切削进 给/快速移动反向间 隙补偿 0: 不进行。 1: 进行。 1851 X Z 每个轴的反向间隙补偿量,设置后,回零

生效 1852 X Z 每个轴的快速移动时的反向间隙补偿量,回零生效 由于FANUC系统螺距误差补偿采用增量式的补偿方式,所以在进行螺距误差补偿时,需根据补偿数据进行补偿数据的设定个。 下表为螺距误差补偿表 由于每个补偿点的最大补偿值只能到7,在上表中可以看到,在-400mm测量位置处出现了一次22的值,此点是所有补偿点误差的最大值,所以补偿倍率按此点进行计算,而且考虑其它点的误差值,将补偿倍率设置为3倍。 补偿倍率设置为3倍,所有的补偿值都放大了三倍,所以在补偿数据处看到的是计算值的1/3,如果测量人员给出的是补偿值,那么补偿数据就按上图中的数据进行输入,如果给出的

840D螺距补偿步骤

1.螺距补偿 →Service →Manage Date →NC-active –date →Meas.-system-error-comp. →选择将要补偿的轴。 →Copy →光标到LIECHTI →Insert →打开补偿表 →输入补偿值 如X轴的补偿: CHANDATA(1) $AA_ENC_COMP[1,0,AX1]=0 $AA_ENC_COMP[1,1,AX1]=-0.00 $AA_ENC_COMP[1,2,AX1]=-0.001 $AA_ENC_COMP[1,3,AX1]=-0.003 $AA_ENC_COMP[1,4,AX1]=-0.004 $AA_ENC_COMP[1,5,AX1]=-0.007 $AA_ENC_COMP[1,6,AX1]=-0.009 $AA_ENC_COMP[1,7,AX1]=-0.011 $AA_ENC_COMP[1,8,AX1]=-0.012 $AA_ENC_COMP[1,9,AX1]=-0.014 $AA_ENC_COMP[1,10,AX1]=-0.017 $AA_ENC_COMP[1,11,AX1]=-0.016 $AA_ENC_COMP[1,12,AX1]=-0.018 $AA_ENC_COMP[1,13,AX1]=-0.019 $AA_ENC_COMP[1,14,AX1]=-0.023 $AA_ENC_COMP[1,15,AX1]=-0.026 $AA_ENC_COMP[1,16,AX1]=-0.028 $AA_ENC_COMP[1,17,AX1]=-0.029 $AA_ENC_COMP[1,18,AX1]=-0.029 $AA_ENC_COMP[1,19,AX1]=-0.032 $AA_ENC_COMP[1,20,AX1]=-0.034 $AA_ENC_COMP[1,21,AX1]=-0.037 $AA_ENC_COMP[1,22,AX1]=-0.037 $AA_ENC_COMP[1,23,AX1]=-0.039 $AA_ENC_COMP[1,24,AX1]=-0.042 $AA_ENC_COMP[1,25,AX1]=-0.046 $AA_ENC_COMP[1,26,AX1]=-0.049 . $AA_ENC_COMP_STEP[1,AX1]=56 $AA_ENC_COMP_MIN[1,AX1]=-171 $AA_ENC_COMP_MAX[1,AX1]=1285

螺距误差补偿

螺距误差补偿 螺补有关的参数: MD32450MA_BACKLASH[ ] (轴反向间隙补偿) MD32700MA_ENC_COMP_ENABLE[ ] = 0 可以写补偿值 = 1 补偿文件写保护MD38000MA_MM_ENC_COMP_MAX_POINTA[ ](轴螺补补偿点数) 螺补的步骤(以X轴为例): 1参数MD38000,按照X轴的全行程以及步长必须小于150mm的规则确定要补偿的点数(最好是一次确定并更改所有需要螺补轴的补偿点数)。更改完此参数后会出现一个报警4000,此时不要做NCK Reset,此时应该做NC备份。备份完后作POWER ON。 2在“Programe”(程序)中“Workpiece Programe(工件程序)”拷入各个轴的螺补程序LBX,LBY,LBZ等。 3在Service(服务)中找寻Data selection,在打开的界面中选择NC_active_data,回到data manage(数据管理)中打开NC_active_data,会出现meas.system_error_comp目录,再打开此目录会出现几个子目录:meas.system_error_comp_axis1(axis2,Axis3,axis4,……),点击axis1,按copy出现一个面板,将axis1复制到LB中,回到“workpiece(工件)”的LB 中,将出现AX1—EEC程序,此程序就是X轴的数据补偿程序。其他轴同理。 4在对机床进行螺补之前,应先走一遍所测轴全程,确定所测轴的全程间隙,如果过大需要调整光栅钢带的长度,使得所测轴全程激光测得的数与显示屏显示的数相差范围在0.02mm以下。 5设置MD32700= 0,将X轴以LBX的程序运行一遍(注意要设置好LBX里的步长,全长等数据),将激光测试出的各个点的误差及反向间隙数据采集下来。把各个点的误差数据以及程序的步长,最大和最小点一次写入AX1—EEC程序(注意不要改变数据的正负号),将反向间隙写入MD32450。 6在auto方式下选择AX1—EEC程序,并执行此程序。将MD32700设置为1,按“MD 参数生效”,作一次复位,使补偿值生效。再执行LBX程序,再检验X轴精度是否合格。 7如果精度检验不合格,可能有以下几种情况: ⑴定位精度不合格。需要分析一下激光曲线,具体看是否有地方出现较大拐点等, 要检查钢带外壳的直线度并调整,最好控制在0.05mm以内,重复E,F步骤, 再次补偿。 ⑵重复精度不合格。这个问题就比较复杂,对于螺补数据几乎不可能,因为它完 全来源于机械的安装,只能寄希望于机械的安装精度合格了。也许唯一能解点

FANUC的进给运动误差补偿方法

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计论文 FANUC的进给运动误差补 偿方法 学生姓名: 指导教师姓名: 所在班级所在专业 论文提交日期论文答辩日期 答辩委员会主任主答辩人 系 年月日

FANUC的进给运动误差补偿方法 目录 毕业设计任务书 (1) 开题报告 (2) 第一章进给运动误差补偿方法 (6) 1.1常见进给运动误差 (7) 1.1.1反向间隙误差补偿 (8) 1.1.2螺距误差补偿 (9) 1.1.3摩擦补偿 (11) 第二章进给误差数据采集与补偿参数的设置 (12) 2.1激光干涉仪 (12) 2.1.1单频激光干涉仪 (12) 3.1 双频激光干涉仪 (13) 3.1.1 雷尼绍激光校准系统 (14) 3.1.2 测量误差分析 (19) 3.2误差补偿参数的设置 (20) 毕业设计总结 (23) 参考文献 (24) 致谢 (25) 外文翻译 (26) 2

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计任务书 课题名称FANUC的进给运动误差补偿方法 指导教师王小平职称高级技师 专业名称数控设备应用与维护班级数控设备10832 学生姓名尹耀强学号1061083237 课题需要完成的任务: 1.根据课题调研查阅资料,了解国内外现状、进展,编写调研报告。 2.收集技术资料、图纸进行设计或分析探讨。 3.对不同类型设计的分析, 进行方案论证,确定总体方案。 4.完成毕业设计的论文。 5. 3000单词量的外文资料的翻译(专业相关科技类)。 课题计划: 2月21日—2月25日;确定毕业设计课题。 2月28日—3月 4日;收集整理英文翻译资料。 3月 7日—3月11日;查阅技术资料,完成课题的前期调研工作,完成英文翻译。3月14日—3月18日;完成课题相关资料收集,进行毕业论文构思。 3月21日—3月25日;完成毕业论文初稿。 3月28日—4月01日;完成毕业论文初稿。 4月04日—4月08日;修改、完善毕业论文,定稿。 4月11日—4月20日;整理打印毕业设计资料,完成答辩 计划答辩时间: 4月20日 数控技术系(部、分院) 2011 年3月 1 日 1

间隙补偿和螺距补偿

丝杠补偿一般指丝杠的螺距误差补偿. 间隙补偿包括所有传动链中的间隙(包括丝杆螺母付)的补偿. 由于丝杆螺距的不均匀性,传动链正,反向运动的间隙,都会直接影响数控精度,有些通改进运动付的结构,例如采用滚珠丝杆,使之正反向间隙得以消除,但螺距误差是避免不了的.所以必须进行补偿,以求较高的精度.同样,齿轮啮合需要间隙才能正常运行,这种累计间隙误差也需要通过补偿,才能提高 控制精度. 丝杆(丝杠)反向间隙又称丝杠背隙、丝杠间隙、丝杠失动量 在数控机床的进给传动链中.齿轮传动、滚珠丝杠:螺母副等均存在反向间隙,这种厦向间隙的存在会造成机床丁作台反向运动时,伺服电动机空转而工作台实际不运动。对于采用半闭环伺服系统的数控机球.反向问隙的存在会影响到机床的定位精度和重复定位精度,从而影响到产品的加工精度这就需要数挫系统提供反向间隙补偿功能,以便在加工过程中自动补偿一些有规律的误差,提高加工零件的精度。并且随着数控机床使用时删的增长,反向间隙还会因磨损造成的运动副间隙的增大而逐渐增加,因此需定期对数控机床各坐标轴的反向问隙进行测定和补偿。 1.反向间隙补偿过程 在数控系统无补偿的条件下,于机床测量行程范围内,在靠近行程的中点及两端的三个位置上分别进行多次测量,用千分表或百分表测量m各日标点位置P的平均反向间隙B.以所得平均值中的最大值为反向隙值B,并输人到数控系统反向间 隙补偿参数中。 CNC系统在控制坐标轴反向运动时,自动先让该标轴反向运动,然后再按指令进行运动.即数控系统会控制伺服电动机多走一段距离,这段距离等等于反向间隙值 B.从而补偿反向间隙。 需要指出的是这种方法只适合于半闭环数控系统.对于全闭环数控系统则不能采 取以上补偿办法。 2.反向间隙补偿方法 可使用激光干涉仪和百分表/千分表 百分表/千分表方法: 用手脉发生器移动相关轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察相关轴的运动情况。在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床该轴运动的实际距离 d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=0.1mm(斜率大于

FANUC数控系统螺距误差补偿功能.

FANUC数控系统螺距误差补偿功能数控机床的直线轴精度表现在轴进给上主要由三项精度:反向间隙、定位精度和重复定位精度,其中反向间隙、重复定位精度可以通过机械装置的调整来实现,而定位精度在很大程度上取决于直线轴传动链中滚珠丝杠的螺距制造精度。在数控机床生产制造及加工应用中,在调整好机床反向间隙、重复定位精度后,要减小定位误差,用数控系统的螺距误差螺距补偿功能是最节约成本且直接有效的方法。 FANUC数控系统已广泛应用在数控机床上,其螺距误差补偿功能有一定的典型性。螺距补偿原理是将机械参考点返回后的位置作为螺距补偿原点,CNC系统以设定在螺距误差补偿参数中的螺距补偿量和CNC移动指令,综合控制伺服轴的移动量,补偿丝杠的螺距误差。 1 螺距误差补偿前的准备工作回参考点后,编程控制需要螺距误差补偿的轴,从参考点或机床机械位置某一点间歇移动若干个等距检测点,用激光干涉仪等检测计量仪器检测出各点的定位误差。检测点数量可根据机床的工作长度自设。 2 设定螺距误差补偿参数 打开参数开关在MDI方式下设置参数PWE=1,系统出现1000报警,同时按CAN和RESET键清除报警。 ⑴参考点的螺距误差补偿点号码参数X轴参数No.1000Z轴参数No.2000 ⑵螺距误差补偿倍率参数参数No.0011的PML1,PML2。.PML2 PML1 倍率( 0 0 31,0 1 32, 1 0 34,1 1 38)设定的螺距补偿值,乘上该倍率,即为输出值. ⑶螺距误差补偿点间隔X轴参数No.756Z轴参数No.757螺距误差补偿点为等间隔,设定范围从0到999999999。一般设定单位是0.001毫米。⑷螺距补偿点数目各轴从0到127共128个螺距补偿点 ⑸螺距补偿量及螺距补偿点的号X轴参数No.(1001+螺距补偿点号)Z轴参数No.(2001+螺距补偿点号)每个螺距补偿点螺距补偿量的范围为(-7)~(+7)乘以螺距补偿倍率。负侧最远补偿点的号=原点补偿点-(负侧的机床长/补偿点间隔)+1正侧最远补偿点的号=原点补偿点+(正侧的机床长/补偿点间隔) 3设定好螺距补偿参数后,在MDI方式下,设置参数PWE=0,关闭参数写状态。机床断电后重新启动,回参考点,螺距补偿生效。再检测定位精度,没达到要求的补偿点可反复修改补偿量,直至达到要求。 4 应用举例 数控车床的参考点一般设在机械正限位不到处,参考点与正限位之间的范围在加工工件时很少用到,下面以一台数控车床的Z轴丝杠精度检测结果,阐述螺距误差补偿如何应用。 编程后运行,检测Z轴移动点,每点来回检测

机床螺距误差补偿知多点

机床螺距误差补偿知多点 1.什么是螺距误差 开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。螺距误差是指由螺距累积误差引起的常值系统性定位误差。 2.螺距误差补偿的原理 螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。这样数控系统在控制该轴的运动时,会自动考虑到误差值,并加以补偿。 3.螺距误差补偿方法 硬件方法 提高机床部件的加工装配精度,此方法不仅受到加工机床精度等级的制约,而且随着加工精度的提高,加工成本呈指数级增加,效益不高; 软件方法 通过SJ6000激光干涉仪采集数控机床的定位精度,再利用数控机床的可编程、智能性,对机床误差进行补偿从而达到提高机床精度的要求。采用这种方法,无需对数控机床的硬件进行改造遍可较大幅度的提高数控机床的加工精度。 4. SJ6000激光干涉仪基本参数

稳频精度:0.05ppm 动态采集频率:50 kHz 预热时间:约8分钟 工作温度范围:(0~40)℃ 存储温度范围:(-20~70)℃ 环境湿度:(0~95)%RH 空气温度传感器:±0.1℃(0~40)℃,分辨力0.01℃材料温度传感器:±0.1℃(0~55)℃,分辨力0.01℃空气湿度传感器:±5%RH (0~95)%RH 大气压力传感器:±0.1kPa (65~115)kPa 测量距离:(0~80)m (无需远距离线性附件) 测量精度:0.5ppm (0~40)℃ 测量分辨力:1nm 测量最大速度:4m/s

FANUC0系统和三菱系统补偿方法和步骤

光动LICS-100激光多普勒激光干涉仪线性补偿方法及其步骤 1.Faunc0系统 测量前将原有反向间隙和螺距补偿都消去. ⑴反向间隙补偿 进入轴规格参数 将反向间隙〈B〉值填入相对应的轴的补偿地址: 进入反向间隙补偿地址backlash:输入对应轴的补偿值即可。(备注两端反向间隙,故补偿的 有两个数值) ⑵螺距误差补偿 通用:螺距补偿需要设置的参数有螺距补偿方式,补偿轴,参考点,补偿区间(即最负点和 最正点),补偿倍率,补偿节距。六大要素。 ① Faunc0系统只支持增量补偿,所以一开始无需要设置补偿方式 ②设置参考点在参数地址的[3620]处(Faunc系统的补偿点共计为0—1124个点,为 XYZ 轴所共用,所以我们可以为XYZ三个轴设定相应的有效区间,正常我们可设置0-100 号码,为X轴使用;100-200为Y轴使用;200以后为Z使用。所以对应轴的参考点地 址根据需要设置为相应区间的任意点)如图A-1所示。 图 A-1 ③设置相对应的补偿区间 地址3621和 3622 3621为设置补偿区间内的最负点 3622为设置补偿区间内的最正点 即例如:测量范围为-450---0则3621设置的补偿地址即为-450的补偿地址;3622则为0的 补偿地址。 附加:3620---3622的区间设置方法 例:测量Z轴由-450测量到0,节距为 25mm

Z轴补偿区间我们假设为200以后,假设参考点为309。 则3620处填 309 3621最负处的地址为参考点-(测量长度/节距)+1=309-18+1=292即3621处填写 292 3621最正处填写参考点地址+1的地址数,即310。 这样参考点和补偿地址都设置好了。如图 A-2 图 A-2 ④3623 为倍率。Faunc 系统相对补偿参数限制为0——±7,所以倍率为 1 的情况下,如误 差中有很多的+7或者-7的话说明实际补偿误差可能大于这个数值,(例如:误差可能大于± 7,比如误差有8,10,-9那它也只能显示到7,7,-7,)那这个时候我们就要改倍率为2。 数值才会比较精确。 ④ 3624为设置测量时候实际的节距 例测量-450——0,每段测量25mm,则3624处设置为25000(大部分数控机床的设置单位基数为0.001mm如图 A-3

840D系统补偿功能汇总

840D系统补偿功能汇总 数控机床的的几何精度,定位精度一方面受到机械加工母机的精度限制,另一方面更受到机床的材料和机械安装工艺的限制,往往不能够达到设计精度要求。而要在以上诸多方面来提高数控机床的几何精度,定位精度需要投入大量的人力物力。在机械很难提高精度的情况下,通过数控电气补偿能够使数控机床达到设计精度。 一、反向间隙补偿 机床反向间隙误差是指由于机床传动链中机械间隙的存在,机床执行件在运动过程中,从正向运动变为反向运动时,执行件的运动量与目标值存在的误差,最后反映为叠加至工件上的加工精度。 机床反向间隙是机床传动链中各传动单元的间隙综合,如电机与联轴器的间隙,齿轮箱中齿轮间隙,齿轮与齿条间隙,滚珠丝杠螺母副与机床运动部件贴合面的间隙等等。 反向间隙直接影响到数控机床的定位精度和重复定位精度。在半闭环下,由伺服电机编码器作为位置环反馈信号。机械间隙无法由编码器检测到,在机械调整到最佳状态下需要进行反向间隙补偿。在全闭环下,直线轴一般采用光栅尺作为位置环反馈信号,旋转轴一般采用外接编码器或圆光栅作为位置环反馈信号。由于是直接检测运动部件的实际位移,理论上讲全闭环下无反向间隙。但是由于光栅尺或圆光栅本身精度的限制和安装工艺的限制等等,使得全闭环下也具有“反向间隙”,这在激光干涉仪下能很明显看出来,一般在0.01mm

左右。 西门子840D数控系统反向间隙补偿的方法如下: 测得反向间隙值后在轴机床数据输入反向差值,单位为mm。 MD32450 BACKLASH [0] MD32450 BACKLASH [1] 其中[0]为半闭环,[1]为全闭环。输入后按下Reset键,回参考点后补偿生效。可以在诊断→服务显示→轴调整→绝对补偿值测量系统中看到补偿效果。 反向间隙补偿能够在较大程度上提高数控机床的定位精度、重复定位精度,但是它的值是固定的,不能适用于机床的整个行程,这就需要另一种电气补偿手段,螺距误差补偿。两者结合能使数控机床达到较高的定位精度和重复定位精度。 二、螺距误差补偿 重型数控机床的传动机构,一般为滚珠丝杠传动或齿轮齿条传动。受到制造精度的影响丝杠上的螺距和齿条齿轮的齿距都有微小的误差,对于半闭环数控机床,这将直接影响其定位精度与重复定位精度。而对于全闭环,由于受到光栅尺自身的精度,光栅尺安装的直线度、挠度的影响也会产生“螺距误差”。 西门子840D数控系统螺距误差补偿原理如下图所示:

840D螺距补偿

840D螺距补偿 1.修改轴参数,设定各轴补偿点数量。 a)设定坐标轴补偿点数量 依次按“Menu Select”—〉“启动”—〉“机床数据”—〉“轴MD”,找到MD38000(用于差补补偿的中间点数量),设置补偿点的数量,本例中为:50。然后按“Input” 键,此时出现4400报警“机床数据修改将导致缓冲存储器的重新组织(数据丢失)”。 请勿NCK重启,作下一步备份NC数据。 b)备份NC数据 依次按“Menu Select”—〉“服务”—〉“”—〉“连续启动”,出现下图。

在文档内容中选择“NC”和“带补偿数据”;输入文件名称,一定要按“Input”键,否则文件名无效。本例中为:NC_COMP01;按“文档”键,开始创建连续启动文档,如下图所示。 c)恢复数据 待连续启动文档创建好后,按“读入调试文档”键。

选择刚才创建的连续启动文档NC_COMP01,按“启动”键,并点击“是”加以确认。此后系统会重启几次。 2.导出补偿数据,生成ARC文件或MPF程序(参见补充说明) 因为补偿文件不能直接修改,只能输出成ARC文件。下面以给轴1添加螺补为例说明。 依次按“Menu Select”—〉“服务”—〉“数据选择”,选择“NC-生效-数据”,按“确认”键。

在数据输出窗口的树形图中选择“NC-生效-数据”—〉“测量系统误差补偿”—〉“测量系统错误补偿—轴1”,按“文档”键。 出现下图。输入文档名,本例中为:AX1_EEC。选择文档格式,必须为:带CR+LF穿孔带,否则无法编辑。按启动键。

3.输入补偿数据,编辑ARC文件。 PCU50可直接编辑ARC文件。PCU20可将ARC文件通过RS232传出,使用文本编辑器编辑。也可制作补偿程序,见第7条的补偿说明。 PCU50操作如下: 在树形图中选择“文档”—〉“AX1_EEC”,按“Input”键打开文件。 补偿文件结构如下: $AA_ENC_COMP[0, 0, AX1]=0.5 对应于最小位置上的误差值 $AA_ENC_COMP[0, 1, AX1]=0.2 对应于最小位置+1个间隔位置上的误差值 $AA_ENC_COMP[0, 2, AX1]=-0.5 对应于最小位置+2个间隔位置上的误差值 … … $AA_ENC_COMP[0, 48, AX1]=0 对应于最小位置+48个间隔位置上的误差值 $AA_ENC_COMP[0, 49, AX1]=0 对应于最小位置+49个间隔位置上的误差值 $AA_ENC_COMP_STEP[0, AX1]=10 测量间隔(毫米) $AA_ENC_COMP_MIN[0, AX1]=0 最小位置(绝对) $AA_ENC_COMP_MAX[0, AX1]=100 最大位置(绝对) $AA_ENC_COMP_IS_MODULO[0, AX1]=0 用于旋转轴 修改文件后,保存并关闭编辑器。 4.补偿数据ARC文件导入NC系统。 设定MD32700=0,并且按“设MD有效”按钮,使参数生效,这样ARC文件才能写入补偿文件。 依次按“Menu Select”—〉“服务”—〉“”—〉“连续启动”—〉“读入调试文档”,选择修改好的AX1_EEC文件,按“启动”按钮。

FANUC数控系统螺距误差补偿功能

FANUC数控系统螺距误差补偿功能 数控机床的直线轴精度表现在轴进给上主要由三项精度:反向间隙、定位精度和重复定位精度,其中反向间隙、重复定位精度可以通过机械装置的调整来实现,而定位精度在很大程度上取决于直线轴传动链中滚珠丝杠的螺距制造精度。在数控机床生产制造及加工应用中,在调整好机床反向间隙、重复定位精度后,要减小定位误差,用数控系统的螺距误差螺距补偿功能是最节约成本且直接有效的方法。 FANUC数控系统已广泛应用在数控机床上,其螺距误差补偿功能有一定的典型性。螺距补偿原理是将机械参考点返回后的位置作为螺距补偿原点,CNC系统以设定在螺距误差补偿参数中的螺距补偿量和CNC移动指令,综合控制伺服轴的移动量,补偿丝杠的螺距误差。 1 螺距误差补偿前的准备工作回参考点后,编程控制需要螺距误差补偿的轴,从参考点或机床机械位置某一点间歇移动若干个等距检测点,用激光干涉仪等检测计量仪器检测出各点的定位误差。检测点数量可根据机床的工作长度自设。 2 设定螺距误差补偿参数 打开参数开关在MDI方式下设置参数PWE=1,系统出现1000报警,同时按CAN和RESET键清除报警。 ⑴参考点的螺距误差补偿点号码参数X轴参数No.1000Z轴参数No.2000 ⑵螺距误差补偿倍率参数参数No.0011的PML1,PML2。.PML2 PML1 倍率(0 0 31,0 1 32, 1 0 34,1 1 38)设定的螺距补偿值,乘上该倍率,即为输出值. ⑶螺距误差补偿点间隔X轴参数No.756Z轴参数No.757螺距误差补偿点为等间隔,设定范围从0到999999999。一般设定单位是0.001毫米。 ⑷螺距补偿点数目各轴从0到127共128个螺距补偿点 ⑸螺距补偿量及螺距补偿点的号X轴参数No.(1001+螺距补偿点号)Z 轴参数No.(2001+螺距补偿点号)每个螺距补偿点螺距补偿量的范围为(-7)~(+7)乘以螺距补偿倍率。负侧最远补偿点的号=原点补偿点-(负侧的机床长/补偿点间隔)+1正侧最远补偿点的号=原点补偿点+(正侧的机床长/补偿点间隔) 3设定好螺距补偿参数后,在MDI方式下,设置参数PWE=0,关闭参数写状态。机床断电后重新启动,回参考点,螺距补偿生效。再检测定位精度,没达到要求的补偿点可反复修改补偿量,直至达到要求。 4 应用举例 数控车床的参考点一般设在机械正限位不到处,参考点与正限位之间的范围在加工工件时很少用到,下面以一台数控车床的Z轴丝杠精度检测结果,阐述螺距误差补偿如何应用。 编程后运行,检测Z轴移动点,每点来回检测 定位精度5次。 检测点参考点 -400-300 -200 -100 0 100(Z轴) -350 -250 -150 -50 50 得到相邻两点间所需螺距误差补偿量点间100~50 50~0 0~-50 -50~-100 -100~-150补偿量-1 +2 -1 0 -1点间-150~-200 -200~-250 -250~-300

相关文档
相关文档 最新文档