文档库 最新最全的文档下载
当前位置:文档库 › 高压电机及调速方式原理介绍

高压电机及调速方式原理介绍

高压电机及调速方式原理介绍
高压电机及调速方式原理介绍

高压电机

高压电机是指额定电压在1000V以上电动机.常使用用的是6000V和10000V电压,由于国外的电网不同,也有3300V和6600V的电压等级。高压电机产生是由于电机功率与电压和电流的乘积成正比,因此低压电机功率增大到一定程度(如300KW/ 380V)电流受到导线的允许承受能力的限制就难以做大,或成本过高.需要通过提高电压实现大功率输出. 高压电机优点是功率大,承受冲击能力强;缺点是惯性大,启动和制动都困难.

高压电机的用途:高压电动机可用于驱动各种不同机械之用。如压缩机、水泵、破碎机、切削机床、运输机械及其它设备,供矿山、机械工业、石油化工工业、发电机等各种工业中作原动机用。用以传动鼓风机、磨煤机、轧钢机、卷扬机的电动机应在订货时注明用途及技术要求,采用特殊的设计以保障可靠运行。

高压电机控制装置根据实际而定方式:电机容量大大小于电源容量且1000KW以下的可直接启动,这时的冲击电流是额定值的3-6倍.为了防止冲击电流过大,对于大电机必须考虑减少启动电流的启动方式:有串电抗启动,变频启动,液力偶合器启动等多

种方式.有复杂有简单,价钱差异很大. 由于电压高,电流冲击大,电机制造必须满足过

电压的要求,绝缘等级要求较高。

高压电机维修工艺流程

一.绕线

高压电机按电压等级需要选用双亚胺,单亚胺,单薄双丝等各种规格的丝包扁线,材料齐备后,可在绕线机上绕制制成梭型成圈,一般电机最短线圈直线部分25厘米,最大线圈直线部分1.2米,绕制可单平绕,单立绕,也可双平换位绕,也可双平换位立绕,根据具体要求确定。利用圆盘中的万能调节也可绕制圆漆包线线圈。绕线机内置一台调速电机与一台涡轮涡杆减速机,带动绕线机实现0-120转/分的可顺逆可制动的旋转,并可正反计数,一般可绕制1600KW以内的各种电机线圈,另配有简易涨紧器一套,可控制绕制线圈的松紧度,一般的修理厂家选用如上产品即可,如遇到特殊大型规格时,可选择特异型绕制设备。

二.成型前包扎

高压电机梭型线圈绕制后,用收缩带,黄蜡绸带等绝缘材料包扎,目的是:保护线圈外绝缘、层间绝缘、匝间绝缘不至于损坏。在拉型机时免受模具夹具、鼻端销钉等摩擦,防止松动变形。

包扎线圈一般用女工,由于女工心细手巧且干活速度快,一般3-5人包扎供拉型。也可使用电动包带机.

三.成型

成型机、涨型机、拉型机其实是一种机器,它主要目的是把绕线机绕制的立绕梭型线圈或平绕梭型线圈拉成框行线圈,框型线圈以电机定子铁心的内外圆为标准,组成向心式的有角度的线圈,绕制梭型线圈需技工2人即可完成,而拉(涨)型一般需3人。过去在没有成型机以前,我处有几位老练的师傅可手拉成型,可在15分钟将72只线圈手工拉制成型,但对于较大型线圈拉型显现的有些吃力。而利用拉型机一般一

个小时内3人可规范的拉出72只线圈来,每只成型线圈直线部分最长可调整到1.5米,高度可调整在80公分以内,角度调整范围为0-60度,四只夹具可实现万能锁定。一般的厂家,如哈尔滨一家电机厂,湘潭电机厂一下属厂等十余家购买到这一手动拉型机以后,总的评价是制作看似简单,但操作灵活、方便,上模块,退模迅速,拉型便利,定位精准,调角调位准确,不失为一种实用产品。拉型前使用计算机将线圈的形状按照所修电机的实际情况绘制成图并制作成模板用来调整拉型机,不会绘图者一般以旧线圈为模板调整拉型机,拉型机四只夹具有上下左右调整机构,调整夹紧机构锁扣锁定线圈进入拉型程序。我公司生产的电动拉型机和上海产的几乎相同,他们在9万左右,我处以实用为目的,电动拉型机售价2.5万元,液压形式的拉型机售价2. 6万元。成型机在国内.上海与沈阳厂家做的好,他们做的大型机主要兼顾大型发电机,但操作起来显得笨重些,主要表现在调角、移动、调距、调高、夹线等方面不灵活,价格较昂贵。

四.整形

高压电机由于加上层数不等的云母绝缘材料后,厚度增加了很多,线圈端部距离被绝缘层挤占,稍不注意,嵌线时拥挤嵌放不下去,造成嵌线困难,这就需要冷整型。冷整型模具(或叫正型模具),传统以木制为多,每种型号的电机就需要制作一套模具,而我公司所使用的正型模具具备调距、调角度、调端高等方面的灵活性。正型期间敲打时必须注意,不可破坏层间绝缘。

低压电机拉型后,一般不再冷整型,直接进入嵌线工序。

五.包扎云母带及热压

定子线圈冷正形后,即进入包扎工序,目前线圈绝缘等级高的材料基本国产化,但云母材料的质量、价格很悬殊。我公司多年制作线圈与绕制高压电机,熟知十几家产品的质量和价格,学员结业后告知厂家详情。电压高与低、季节不同各种等级云母等材料认购标准不同。一个女工包扎线圈一天10个小时,框形线圈周长在2米的万伏线圈有望包扎三只。各种电机等级线圈包扎多少层数、先包直线还是后包端部要看何时嵌线而定。云母带,高阻带,收缩带至于在线圈中起什么作用,哪家的质量好、价位低,怎样包扎,包扎在什么位置,包多少层等等,最好在跟班学习中掌握并熟记要领。我公司生产万能云母包带机,包带机一般情况下一台可代替3-5人工作,批量生产线圈的厂家可选购,初修大电机的客户初期还是以手工包扎为好。一台高压电机修理时下列几步一般要同时展开进行:绕线、拉型、冷正型、包云母带、包高低阻带,这些工序均需2-3人操作。同时下道热压线圈的工作程序也应开始。热压的主要目的有:

1. 定形后可嵌线方便。

2. 线圈固化可防潮,防水浸。

3. 电晕放电到槽口以外。

4. 完成对外界的封闭,免高压击穿。

我公司生产热压成型机长度1.2米,上下、左右、角度可调整。客户拥有一台全自动电脑控制的热压机后,1600KW以内的YR,JR,JS,TDK,电机的定子线圈均可加工。并可按照客户的要求定做特型机。

热压机可附加自动控制装置,比如H级温度在多少度恒温工作,F级在多少度恒温工作,热压时间多厂,何时开机,何时待机保温均可实现智能化,热压时要自备到

指定的厂家购一些脱模剂,清除剂,清残留物等工具。

六.测试耐压

热压线圈退模后要放置一段时间再测试耐压,这是检验产品的一道工序,按照30 00V、6000V、10000V等不同的工作电压有不同的要求打耐压标准。

直线部分或弯曲部分怎样去防止打穿,送些均须在热压时掌握,我公司掌握着小修高压电机线圈的若干技巧,掌握着打耐压后打穿后去复制该线圈的技巧,这需要亲自参加学习一段才会知晓。

打耐压的仪器,一般选购武汉区域的产品较多。

自绕制线圈至嵌线完毕,一般要多做一只线圈,目的有:

1. 留下该型号电机技术数据(线规,匝数,绝缘厚度,直线长,弯度,端部长,抬高度与

节距角度等数据)。

2. 以备哪一只线圈不合格时替换。

高压电机一般以200KW—2000KW居多,重量最一般在3吨以上,根据自身条

件可设计合适的行吊,以便于维修电机之用。

七.嵌线(定子、转子)

电机定子、转子在经去尘(一般经高压水枪冲洗)后进入烘箱内烘烤,降温后确定

是小修还是大修电机。高压电机小修时有一套小修提出线圈工具,转子导条线之弯弧工具,定子线圈机芯内的热压工具,类似小工具很多,需自制,关键是技术与经验要结合。怎样不损坏原线圈是关键。取出线圈重新加工费时费力,能否对旧线圈改造是节省时间的关键(一般高压电机所用的丝包线采购周期为1~2周,这就贻误了修理时间,这些重要问题需要在跟班学习中掌握)。

小修转子时,转子中的铜导条(铝条)怎样取出,取出来如何换条,如何包扎制作

标准线圈,以及如何焊接试验等一系列工序,这里不一一论述。大修电机转子时,必须取出全部线圈,怎样取,怎样保持完好线圈是关键技术。比如是高电压的电机,要尽量完整的取出来。如保持线规不损坏,重新包扎时,可省钱、省时。需重新制作线圈时,须算出线规,浪费时间。定子嵌线时一般每三只线圈打一次耐压,以防止线圈对两端槽口放电或对两端端环放电以及因下线有失误造成的线圈损坏放电。整台线圈全部嵌下后的接线,、分距、分组、连线、包扎、接星点、出电机引线等操作均按照

各等级电机的操作规程进行。一般的电机在封星点前打一次耐压后即封在一起,外引三根引接线即可。也有特殊引接6根引线外封三角或外接星线。一般引接线需从指定的高压电缆生产厂家购买。一切嵌线接线完毕,整台电机再打耐压一次即完工。

八.浸漆

电机生产厂家批量生产电机时,要购真空浸漆设备,该设备由专业厂家提供。一般修理厂家利用电加热棒加热定子至一定温度后翻转,定子口朝上进行双面灌漆。灌漆时底部有盛漆装置。灌完漆需待两小时以上再放入烘箱,先低温烘三个小时,再高温烘18小时。累计24小时后出炉。目的是固化线棒绝缘与槽内外导线绝缘,以防震动破坏绝缘结构。请除定子内腔中的残漆即可装配。

九.试验

整机参数试验:利用专利技术--磁控开关变压器起动试验设备来起动380V、6 60V、1140V、3000V、6000V、10000V等各种电机,高低压可起动试验容量在100 0KW以内。凡鼠笼、滑环电机均可作空载起动,空载运行试验,试验项目分测电流、测电压、测速、测温、量噪声等十几个项目。

国内湘潭电机厂、上海电机厂,哈尔滨电机厂等等都是国内高压电机的名牌

[编辑本段]

高压电机调速技术现状

从现在市场情况看,高压电机调速技术可分为如下几种:

液力耦合器

在电机轴和负载轴之间加入叶轮,调节叶轮之间液体(一般为油)的压力,达到调节负载转速的目的。这种调速方法实质上是转差功率消耗型的做法,其主要缺点是随着转速下降效率越来越低、需要断开电机与负载进行安装、维护工作量大,过一段时间就需要对轴封、轴承等部件进行更换,现场一般较脏,显得设备档次低,属淘汰技术。

早期对调速技术比较感兴趣的厂家,或者是因为当初没有高压调速技术可以选择,或者是考虑到成本的因素,对液力耦合器有一些应用。如自来水公司的水泵、电厂的锅炉给水泵和引风机、炼钢厂的除尘风机等。现在,一些老的设备在改造中已经逐渐被高压变频替换掉。

高低高型变频器

变频器为低压变频器,采用输入降压变压器和输出升压变压器实现与高压电网和电机的接口,这是当时高压变频技术未成熟时的一种过渡技术。

由于低压变频器电压低,电流却不可能无限制的上升,限制了这种变频器的容量。由于输出变压器的存在,使系统的效率降低,占地面积增大;另外,输出变压器在低频时磁耦合能力减弱,使变频器在启动时带载能力减弱。对电网的谐波大,如果采用12脉冲整流可以减少谐波,但是满足不了对谐波的严格要求;输出变压器在升压的

同时,对变频器产生dv/dt也同等放大,必须加装滤波器才能适用于普通电机,否则会产生电晕放电、绝缘损坏的情况。如果采用特殊的变频电机可以避免这种情况,但是就不如采用高低型的变频器了。

高低型变频器

变频器为低压变频器,输入侧采用变压器将高压变为低压,将高压电机换掉,采用特殊的低压电机,电机的电压水平多种多样,没有统一标准。

这种做法由于采用低压变频器,容量也比较小,对电网侧的谐波较大,可以采用12脉冲整流减少谐波,但是满足不了对谐波的严格要求。在变频器出现故障时,电机不能投入到工频电网运行,在有些不能停机的场合应用会有问题。另外,电机和电缆都要更换,工程量比较大。

串级调速变频器

将异步电机部分转子能量回馈至电网,从而改变转子滑差实现调速,这种调速方式采用可控硅技术,需要使用绕线式异步电动机,而现在工业现场几乎都采用鼠笼式异步电动机,更换电机非常麻烦。这种调速方式的调速范围一般在70%-95%左右,调速范围窄。可控硅技术容易造成对电网的谐波污染;随着转速的降低,电网侧功率因数也变低,需要采取措施补偿。其优点是变频部分容量较小,比其他高压交流变频调速技术成本稍低。

这种调速方式有一种变化形式,即内反馈调速系统,省却了逆变部分的变压器,将反馈绕组直接做在定子绕组里,这种做法要更换电机,其他方面的性能与串级调速接近。

串级调速电机受转子滑环的影响,不能做到很大功率,滑环维护工作量也大,属于七八十年代的落后技术,工业应用已经越来越少。

电流源型直接高压变频器

这种变频器,输入侧采用可控硅进行整流,采用电感储能,逆变侧用SGCT作为开关元件,为传统的两电平结构。由于器件的耐压水平有限,必须采用多个器件串联。器件串联是一种非常复杂的工程应用技术,理论上说可靠性很低,但有的公司可以做到产品化的地步。由于输出侧只有两个电平,电机承受的dv/dt较大,必须采用输出滤波器。电网侧的多脉冲整流器为可选件,用户需要针对自己的工厂情况提出要求。这种变频器的主要优点是不需要外加电路就可以将负载的惯性能量回馈到电网。

电流源型变频器的主要缺点是电网侧功率因数低,谐波大,而且随着工况的变化而变,不好补偿。

电压源型三电平变频器

这种变频器采用二极管整流,电容储能,IGBT或IGCT逆变。三电平的逆变形式,采用二极管钳位的方式,解决了两个器件串联的难题,技术上比两个器件简单直接串联容易,同时,增加了一个输出电平,使输出波形比两电平好。

这种变频器的主要问题是:由于采用高压器件,输出侧的dv/dt仍旧比较严重,需要采用输出滤波器。由于受到器件耐压水平的限制,最高电压只能做到4160V,要适应6KV和10KV电网的需要,更换电机是一种做法,但是造成故障时向电网旁路较麻烦。对于6KV电机有一种变通做法,就是将电机由星型接法改为角型接法,这样电机的电压就变为3KV;这种做法使电机的环流损耗上升,国内已经有烧毁电机的事例,有可能与此有关。还有的公司用这种变频器实现高低高方式,使容量比原来采用低压变频器实现高低高方式时大,但是高低高方式所存在的问题依然存在。

三电平变频器一般采用12脉冲整流方式。

功率模块串联多电平变频器

这种变频器采用低压变频器串联的方式实现高压,是电压源型变频器。它的输入侧采用移相降压型变压器,实现18脉冲以上的整流方式,满足国际上对电网谐波的最严格的要求。在带负载时,电网侧功率因数可达到95%以上。在输出侧采用多级P WM技术,dv/dt小,谐波少,满足普通异步电机的需要。可根据负载的需要设计变频器的输出电压,是解决6KV、10KV电机调速的较好办法。功率电路采用标准模块化设计,更换简单,所用器件在国内采购也比较容易。

这种变频器采用低压IGBT作为逆变元件,与采用高压IGBT的三电平变频器相比,功率元件数目较多,但技术上较成熟。与采用高压IGCT的三电平变频器相比,功率元件数目较多,但总元件数目却较少,因为IGCT需要非常复杂的辅助关断电路。

由于整流变压器与功率模块的连线较多,因此变压器不能与变频器分开放置,在空间有限的场合不是很灵活。

斩波内馈与变频调速的对比

电力资源和水力资源供求矛盾日益突出,节电、节水已经成为我国经济发展的一项战略国策。节电、节水的关键是风机、泵类的调速经济运行。我国的风机、泵类耗电量占全国总动力耗电的 43%以上,且绝大部分为恒速运行,只能靠调节风门、阀门或开、停数量来调节工况变化,效率只有30%,造成大量的能源浪费。

我公司董事长高级工程师屈维谦先生,经过18年的呕心沥血、刻苦研究发明了斩波内馈调速系统,并荣获国家专利,该系统最适合高压大中容量交流电机调速高效节能的风机和泵类。它填补了我国在这一领域的技术空白, 各项技术指标达到国际先进水平,是当今世界新展现出来的一项新技术。特别是调速理论的创新,以"P"功率控制理论,替代了"M"转矩控制理论,为调速事业做出了巨大的贡献。斩波内馈调速不但适合国情,也同样适应国际市场。在全国各地已拥有20几家用户,运行可靠,节电显著,深受用户钟爱。

一、内馈的特点、原理

所谓内馈调速是一种将调速电机的部分转子功率(即电转差功率)移出来,以电能的形式反馈给电机内部的调节绕组的特殊调速方式,转子反馈给调节绕组的功率越多,轴功率输出就越少,转速就越低,反之,转子反馈给调节绕组的功率越少,轴功率输出的就越多,转速就越高,可见,从转子被移出的电转差功率是在转子-调节绕组间循环往复传输的,循环效率为99.8%, 不需要经过电源供给,这是内馈调速的最大奥妙之处。

主要特点:

1.理论新颖,技术先进,创立了功率控制理论(即P理论)。

2.效率高,可达99.87%。

3.结构简,占地面积小。

4.电流波形谐波小,小于5%。

5.价格廉,控制系统平均1000元/KW左右。

二、斩波控制的特点

1.斩波控制实质上是以数字控制取代了传统的移相控制。

2.采用斩波──有源逆变器的变流主电路,使系统具有最高的功率因数和最小的电流畸变率。

3.固定相位的有源逆变器,加上独创的特殊触发,同步电路,使逆变可靠性得到解决,无需相序调整及同步配相,无论何种相序都正确,而且逆变角自动恒定。

4.采用继电器逻辑操作和控制,微机使运行更加可靠性。

5.具有完善的各种保护功能,如过流、欠压、过压、失波、缺相、相序、瞬时停电、频敏等各种保护。

6.具有自动软加速的转全速功能,使接触器寿命大大延长。

7.具有调速软起动功能,进入调速电流无冲击。

8.可提供抗干扰的远方给定和自动恒压闭环控制装置。

9.具有无机械传感的速度显示。

10.应用全数字锁相环控制的脉冲电路, 具有极强的抗干扰能力和高可靠性。

11.斩波主电路增加了"DCL"吸收电路,解决了关断电压过充的难题,使斩波技术臻于成熟。

三、变频调速的功率控制原理

从功率控制角度观察,变频调速是典型的定子电磁功率控制调速。定子控制是间接控制转子的调速,由于定、转子电磁功率相等,而定子电磁功率

Pem=P1 -ΔP1(1)

P1=m1U1l1cosφ1(2)

因此可以通过U1调节来改变定子电磁功率,而受转矩平衡方程式约束不能作为控制量。调速原理如图所示

但单纯调压并不能实现定子电磁功率控制,原因是U1不但影响电磁功率,而且还作用于磁场,根据电机学,主磁通

(3)

如果单纯调压,U1降低Φm减小,而U1增大Φm受磁饱和限制不能增大,U1的减小将引起损耗功率急剧增大。

设负载转矩不变,则电磁转矩亦不变

(4)

Φm减小将引起定、转子电流同比增大,其损耗

P1=m1I12r1(5)

P1=m2I22r2(6)

按电流平方律增大,结果形成增大转速降的调速。

为了解决上述问题,应根据式(14)对U1进行解耦,即在调压的同时,正比地改变频率f1,使Φm=C保持不变。从而实现高效率的电磁功率控制调速。变频调速时,理想空载转速按n0随U1改变,此时同步转速n1随f1而变,且有n0=n1,但决定电动机转速的是n0而不是n1,下面将会看到,即使n1不变,n0也可随电磁功率改变。

根据上述分析,恒转矩变频调速时,其充分条件是调压,必要条件是变频,调速的实质在于电磁功率控制。

四、斩波内馈调速技术指标与变频调速的比较。

1.价格低廉,只是变频调速的1/2~1/3;

2.运行可靠,连续无故障运行10000小时以上;

3.效率高,η=99.87%变频调速η=94%;

4.功率因数高COSΦ=0.92

5.谐波污染小,电流畸变率小于5%,而且由于转子的隔离作用不会反馈至电网,无污染,是绿色环保产品。变频调速的谐波高达30-40%, 且直接污染电网,需加装滤波装置,电力部门才允许运行。

6.控制功率小,由于是在转子侧实施调速控制,而转子电压较低,其控制功率只为电机功率的40-50%。变频调速是在电机网侧控制,直接承受电源电压,控制功率要大于电机功率,一般为(1.2-1.3 )倍的电机功率。

7.体积小,结构简单,变频调速系统庞大,高压变频调速一般为:高~低或高~低~高系统,需配置1-2 台变压器及相应的高压开关柜,占地面积大,价格昂贵,效率低。而且均需进口,用国家外汇,维修也不方便。

8.调速平均节能高达50%,变频调速平均节能只有40%。

五、斩波内馈调速的可靠性与变频的比较

1.性能优秀的交流调速要求电机本身尽量充实调速的内因,而且要具有适应调速控制的功能。调速的内因不充分,如果全部依靠外部控制装置来补救,不仅困难重重、代价昂贵,而且有些问题无法实现。就是变频调速,也要求调速异步机有较大的改进,诸如绝缘、谐波、轴电流等问题,在高压电机调速上显得尤为突出,如不采取有效措施,将严重影响电机的工作和寿命。

2.电机控制原理的可靠性

斩波内馈调速系统是基于异步电动机转子的电磁功率控制调速,由于转子和内馈绕组都是低压的,因此控制装置回避了变频调速定子控制的电源高压问题。通常,调速控制装置的实际工作电压在200-400V之间,克服了电力电子器件耐压条件对高压异步电动机调速发展的限制,提高了电力电子器件在应用中的可靠性。

3.障兼容能力

任何控制设备都不可能百分之百的可靠工作,提高系统可靠性的关键在于提高系统的故障兼容能力。

斩波内馈调速装置与调速电机恒速运行装置成为并联关系,当调速控制装置意外故障时,自动保护装置可以自动将电动机切换成恒速运行,不至于造成电动机停运。此时电动机只是不能调速而已,可将故障影响缩小到最小限度。

4.斩波技术对可靠性的改善

斩波技术除了提高调速系统的功率因数、降低谐波分量之外,对系统的可靠性改善还起到至关重要的作用。

首先,采用斩波技术使有源逆变器的控制脉冲不再移动,而是锁定在最小逆变角,因此,可以采取诸如锁相环等抗强干扰电路,使有源逆变器的触发脉冲非常可靠,基本解决了有源逆变器可靠性的一大技术难题。

斩波技术同时还使有源逆变器的容量大为减小,对于风机泵类负载,容量可由移项控制的60%Pe减小到15%Pe,仅为前者的1/4,有源逆变器容量的减小,使逆变电流减小,从而减小换向重叠角,进一步提高了有源逆变器可靠性。

斩波式内馈的突出技术创新是电机和控制。电机是调速的主体,内馈即是加强充实了电机调速的内因,斩波控制实质是以数字控制取代了传统的移相控制,可靠性大为增强。如下图:

屈氏调速(斩波内馈)原理

功率控制新理论--电机调速的功率控制原理(简称P理论),该原理是屈维谦先生率先提出的一项电机调速新理论,也是内馈调速的理论基础,其内容为:电机调速其实质是通过改变电机的机械功率来实现调速。当电机机械功率增大时,转速升高;反之转速下降。内馈调速的能量原理可以用本图得以说明。

电机调速时,转子的部分功率通过电传导馈入反馈绕组,如果忽略损耗,反馈绕组所获得的功率与转子被移出的功率相等,表现在图中,为转子功率圆部分面积与反馈绕组功率圆面积相等。由于转子的部分功率被移出,故转化为机械功率减小,因此电机转速下降。这样,转子被移出的功率越大,反馈绕组的功率就越大,而机械功率就越小,转速就低,反之则机反,当反馈绕组功率为零时,机械功率几乎和转子功率相等,电机转速最高。

斩波内馈新技术--

根据电机调速的P理论,内馈调速的实质在于将转子的部分电磁功

率移出,使佘下的转子功率转化为机械功率,因此移出的功率越多,转化的机械功率越少,电机转速则越低。因此,改变移出功率的多少,即可控制机械功率大小,电机转速便得以调节。

附图中转子斜线阴影部分面积表示移出功率,为了使移出的转子功率不被消耗,以提高效率。内馈电机特殊设置了反馈绕组,目的接收从转子移出的功率。反馈绕组在接收移出功率的同时,又将这部分功率送还给定子。

定子绕组功率P1=Pem-P3=PM,即定子绕组共出的只是机械功率。因此在调速时,机械功率圆面积减小,定子功率圆面积也减小,电机实现高效率的

斩波内馈与串级调速的对比

我公司是内馈调速的发源地、专利发明人单位,内馈产品已由80年代未第一代内反馈串级调速升级至97年研发的斩波内馈调速。

内反馈串级调速的缺点

移相控制是传统串级调速普遍采用的控制方法。控制目的是调节从转子抽出来的功率多少,从而实现无级调速。移相控制的优点是技术简单,成本低,但缺点却十分明显。主要有如下几个方面问题:

1、人为地制造感性无功功率,使内馈电机激磁电流增大,运行恶化。

移相控制的实质是通过改变逆变电流滞后电压的角度来调节功率,根据公式

功率因数角φ3(即逆变角β)在0°-90°之间变化,有功功率则相应改变。但φ3变化却必然产生无功功率,它是由人为地改变φ3而产生的。特别在调速告诉运行区,φ3角接近90°,无功功率非常大,这样就给电动机运行造成危害,它将使激磁电流剧增几倍至几十倍,如不采取措施,电动机将因过流而烧毁。

为了解决这个问题,无奈只有采取内补偿,也就是用容性无功功率补偿逆变器产生的感性无功功率。

不过内补偿的作用也是有限的,同时带来一些新的问题

(1)无法做到合理补偿。因为逆变器产生的无功功率是随调速而变化的,而内补偿的容量是固定不变的,所以两者不可能完全抵消,于是出现了过补偿或欠补偿。在补偿功率大于逆变器无功功率时出现过补偿,很容易产生振荡,发生过电压,这对电动机运行十分危险。当补偿功率小于逆变器无功功率时,出现欠补偿,没有完全抵消感性无功的负面影响,电动机功率因数仍然很低。

(2)补偿电容极易损坏。由于内馈绕组电压会有丰富的谐波,对补偿电容危害极大,为此需加设串联电抗器来抑制谐波电流。但电抗器和补偿电容串联又容易形成谐振,即使工作正常,电容器的工作电压也明显高于电源电压,电容器容易损坏,造成逆变器不能工作,降低了系统可靠性。

2、谐波分量大

移相控制的逆变电流也就是转子电流,强度很大,其波形为方波状,但含有丰富的谐波成分,由于电流大,谐波也高,对电动机和电网影响较大。

3、可靠性差

有源逆变器的可靠性是至关重要的,稍有不慎即可引起严重短路。其中主要是触发脉冲故障。由于电子线路产生出发脉冲,又要可移动(移相触发就是指脉冲的移动),所以可靠性差。原因是移动要求快速响应,干扰就容易侵入,可以说串级调速之所以可靠性差,大部分的故障都出现于此。

4、逆变器容量大

转子电流等于逆变电流是移相控制电路的特点,转子电流随负载增大而增大,其强度很大,因此内馈绕组的功率也很大。功率大不仅浪费材料,而且降低可靠性,功率越大,可靠性越低,控制难度越大。

逆变器和内馈绕组功率虽然很大,但有功功率却很小,原因是无功功率占了很大部分,因此解决办法是从根本上降低无功功率。

斩波内馈新技术

斩波实际是变流主电路的数字控制。变流控制是交流调速的关键,关系到调速效率、功率因数、可靠性及其它技术性能,是近代交流调速研究开发的重点方向。斩波控制的目的是克服移相控制存在的缺点。实践表明,斩波控制不仅有效地解决了移相控制的功率因数低、谐波畸变大等问题,同时,有源逆变器的最大容量可减小到电机额定容量的14.8%,而且触发脉冲被固定在最小逆变角处,不再移动,这样,就从根本上解决了最

为头疼的有源逆变器可靠性问题。这种斩波电路巧妙地解决了晶闸管的关断问题,可靠性高,效率高,使内馈调速摆脱了移相控制的束缚,形成斩波+内馈的优化组合。

ZNT-2000型斩波内馈调速产品与串级调速的性能对比:

1、无逆变变压器,结构简单,体积小。

2、效率约高5%,节电效果更显著。

3、可靠性高,极少有逆变频覆故障。

4、功率因数高,逆变器功率因数恒为0.9。

5、谐波分量小,电流波形畸变小于5%,对电网污染小。

除此之外,ZNT-2000型产品还在控制性能上做了重大改进,主要有:(1)、具有自动软加速的转全速功能,使接触器寿命大大延长。

(2)、具有调速软加速起动性能,进入调速电流无冲击。

(3)、完善的各种保护,特别是电源瞬时停电也不会损坏晶闸管,这是目前国内外其它调速产品均未能解决的难题。

(4)、可提供抗干扰的远方给定和自动恒压控制装置。

(5)具有无机械传感的速度显示。

(6)全数字、锁相环控制的脉冲电路,具有极强的抗干扰能力,可靠性高。

电磁滑差离合器的功控调速原理与效率

电磁滑差离合器是一种电磁的机械传动耦合器,通常由主动和从动两个部分构成,主动部分是由铁磁材料制成的圆筒,称为电枢。从动部分也由同样材料制成,称为磁极,在磁极

上嵌放有励磁绕组,绕组的引线接于集电环上,通过电刷与直流电源联接,调节励磁电流的大小,即可改变磁极的磁场强度,于是改变从动部分的转速。

电磁滑差离合器除了内部作用机理与液力耦合器有所区别以外,调速的原理完全相同,同样是损耗功率控制调速。调速所产生的损耗功率以热能形式消耗在滑差离合器内部,效率特性与液力耦合器一致。

斩波内馈调速与其它交流调速的技术性能对比

总的来说,高电压大功率交流电机调速方式主要可以分为以下几种:

1、斩波内馈调速系统

是一种将调速电机的部分转子功率(即电转差功率)移出来,以电能的形式,反馈给电机内部的调节绕组的特殊调速方式。

2、变频调速

通过改变加到电机的电源频率和电压来进行的调速,是定子侧的电磁功率控制,最大优点是适合于鼠笼型电动机。调速效率较高,但高压控制时技术复杂、成本较高。

3、串级调速

是一种外馈式的转子电磁功率控制,与内馈式相比,基本原理相同,但系统结构存在逆变变压器转差功率无谓循环传输问题,调速效率较高但功率因数很低。

4、滑差电机

是在电机的输出环节加入一个电磁转差离合器,也就是说电机本身的转速不调而通过调节电磁转差离合器的励磁电流来调节离合器的输出转速:

1)需加入专用的电磁转差离合器;

2)当电机或电磁转差离合器出现故障时不能运行,只能停机维修;

3)电磁转差离合器的故障率高。

4)电磁转差离合器及整机的效率低,因调速造成的损耗大。

5)调速范围小,一般只能在接近额定转速的固定范围内调速。

5、液力耦合器

将电机输出的机械轴断开,加入一个机械的液力耦合的调速装置,同样是电机本身不调速,而通过液力耦合器来调节负载的转速:

1)需加入专用的液力耦合器。

2)当电机或液力耦合器出现故障时只能停机维修。

3)液力耦合器的故障率高。

4)液力耦合器及整机的效率低,因调速造成的损耗大。

6、变极调速

通过调整电机的极对数来调节电机的输出转速。这种方式的外部接线复杂,电机可靠性、体积、运行环境要求较高,且调速范围小,是一种有级的调速方式,现应用很少。

其中最为理想的调速方案应为斩波内馈和变频调速。

斩波内馈调速是融斩波控制和内反馈电机两项专利技术于一体的新型交流调速。理论和实践证明,这种调速在高压中大容量的风机泵类节能调速应用上,较其它的调速方式具有较明显的技术经济优势。

除此之外,YQT-2型产品还在控制性能上做了重大改进,主要有:

(1)具有自动软加速的转全速功能,使接触器寿命大大延长。

(2)具有调速软加速起动性能,进入调速电流无冲击。

(3)完善的各种保护,特别是电源瞬时停电也不会损坏晶闸管,这是目前国内外其它调速产品均未能解决的难题。

(4)可提供抗干扰的远方给定和自动恒压控制装置。

(5)具有无机械传感的速度显示。

(6)全数字、锁相环控制的脉冲电路,具有极强的抗干扰能力,可靠性高。

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

变频调速的基本原理

变频器多段速度控制 1.变频调速的原理 异步电机的转速n可以表示为 式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。 频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 2.电机调速的分类 按变换的环节分类 (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器 按直流电源性质分类 (1)电压型变频器 电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。 (2)电流型变频器 电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。 按主电路工作方法 电压型变频器、电流型变频器 按照工作原理分类 可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等 按照开关方式分类 可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器 按照用途分类 可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。 按变频器调压方法 PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。 PWM变频器方式是在变频器输出波形的一个周期产生个脉冲波个脉冲,其等值电压为正弦波,波形较平滑。

第一节 交流异步电动机变频调速原理

第一节 交流异步电动机变频调速原理 根据电机学原理,交流异步电动机的转速可表示为: )1(**60s p f n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ; p 一 电动机磁极对数; f 一 电源频率,单位:Hz ; s 一 转差率,10<

I 一 定子绕组的相电流; r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。 交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其 有效值计算如下: E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数; f 一 电源频率; Φ 一 磁通量 。 由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部 分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。其中定 子绕组的相电流 I 由两部分构成: 21I I I += (2-1-4) 电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负 载的电磁力。 由式 (2-1-1)知,调整电源频率f 时,可以调节速度n 。 当电源频率f 下降时,由 式 (2-1-3)知,感应电动势随之比例减小;在相电压U 保持不变的情况下,由式(2-1-2) 知,定子绕组的相电流I 相应增大。在很多情况下,电机的负载是基本恒定的,因此用于产 生电磁力的电流2I 是基本不变的,于是1I 将增大;1I 的增大将直接导致主磁通的增大。由 式 (2-1-3),主磁通的增大,将引起感应电动势E比例增大;由式(2-1-2),感应电动势 E的增大将使定子电流I 减小。不难理解,通过这样的负反馈,电机将最终稳定在一个新的 工作点。 这样的控制方法看起来似乎没有问题。但实际情况是主磁通容量上限与电机的铁芯有 关。电机的铁芯受制于重量、体积、成本等因素的考虑,不可能做的很大。对于电机设计来 说,设计目标之一就是:当电机处于额定工作状态下时,主磁通接近容量上限。上述的变频 调速方法工作在额定频率以下时,将会导致铁心磁饱和,引起电流波形畸变,有效力矩下降; 严重时,将导致电机发热过快,振动和噪音加大;工作在额定频率以上时,铁心处于弱磁状 态,电磁力矩不足,电机的机械特性变软(转差率s 变大),带载能力下降。 结论:通过只调节电源频率来调节速度的方法不可取。

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从而改变电机转速,这种方法称为变频 调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数; m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为 ()()2 22 2 11 1 111 2 12222111211222p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ?? ?? ??? ??? ?? ??? ''??= = ?''????'+++'+++ ? ? ? [1][8]

交流异步电动机变频调速系统

摘要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。 关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....

目录 摘要................................ 错误!未定义书签。第一章前言.......................... 错误!未定义书签。 1.1 设计的目的和意义................. 错误!未定义书签。 1.2变频器调速运行的节能原理......... 错误!未定义书签。第二章交流异步电动机............... 错误!未定义书签。 2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。 2.2变频变压(VVVF)调速时电动机的机械特性 (6) 2.3变压变频运行时机械特性分折 (7) 第三章变频技术简介和控制方法 (11) 3.1 变频调速技术简介 (11) 3.2变频器工作原理及分类 (12) 3.3 交流调速的基本控制方法 (18) 3.4脉冲宽度调制(PWM)技术 (21) 第四章异步电动机变频调速系统设计的仿真和实现 (24) 4.1 MATLAB的编程环境 (24) 4.2仿真结果 (29) 结论 (30) 致谢.............................. 错误!未定义书签。参考文献............................ 错误!未定义书签。

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

7、交流电动机调速及变频原理

交流电动机调速及变频原理 一、交流异步电动机调速的基本类型 交流调速系统的主要类型 交流电机主要分为异步电机(即感应电机)和同步电机两大类,每类电机又 有不同类型的调速系统。现有文献中介绍的异步电机调速系统种类繁多,可按照不同的角度进行分类。 1、交流异步电动机调速的基本类型 由异步电动机的转速公式:min)/)(1(60r s p f n -= 可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数p 调速。 (2)改变电源频率1f 调速。 (3)改变转差率s 调速。 异步电动机的调速方式: 1.1 变频调速 交流变频调速技术的原理是把工频50Hz 的交流电转换成频率和电压可调的交流电,通过改变交流异步电动机定子绕组的供电频率,在改变频率的同时也改变电压,从而达到调节电动机转速的目的。

它与直流调速系统相比具有以下显著优点: (1)变频调速装置的大容量化。 (2)变频调速系统调速范围宽,能平滑调速,其调速静态精度及动态品质好。 (3)变频调速系统可以直接在线起动,起动转矩大,起动电流小,减小了对电网和设备的冲击,并具有转矩提升功能,节省软起动装置。 (4)变频器内置功能多,可满足不同工艺要求;保护功能完善,能自诊断显示故障所在,维护简便;具有通用的外部接口端子,可同计算机、PLC 联机,便于实现自动控制。 (5)变频调速系统在节约能源方面有着很大的优势,是目前世界公认的交流电动机的最理想、最有前途的调速技术。其中以风机、泵类负载的节能效果最为显著,节电率可达到20%~60%。 1.2变极调速 磁极对数 p 的改变,取决于电动机定子绕组的结构和接线。通过改变定子绕组的接线,就可以改变电动机的磁极对数。 1.3 变转差率调速 1.3.1、改变定子电压调速 ??交流调压调速 异步电动机的机械特性方程式: ])()/[(/32'21212' 211' 221l l e L L s R R s R pU T +++=ωω

交流变频调速电机原理

交流变频调速基本原理 一.异步电动机概述 1.异步电动机旋转原理 异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。 ⑴磁场以n0转速顺时针旋转,转子绕组切割磁力线,产生转子 电流 ⑵通电的转子绕组相对磁场运动,产生电磁力 ⑶电磁力使转子绕组以转速n旋转,方向与磁场旋转方向相同 2.旋转磁场的产生 旋转磁场实际上是三个交变磁场合成的结果。这三个交变磁场应满足: ⑴在空间位置上互差2π/3 rad电度角。这一点,由定子三相绕 组的布置来保证

⑵在时间上互差2π/3 rad相位角(或1/3周期)。这一点,由通 入的三相交变电流来保证 3.电动机转速 产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子的转速n必须低于定子磁场的转速n0,两者之差称为转差: Δn=n0-n 转差与定子磁场转速(常称为同步转速)之比,称为转差率:s=Δn / n0 同步转速n0由下式决定: n0=60 f / p 式中,f为输入电流的频率,p为旋转磁场的极对数。 由此可得转子的转速 n=60 f(1-s)/ p 二.异步电动机调速 由转速n=60 f(1-s)/ p可知异步电动机调速有以下几方法: 1.改变磁极对数p (变极调速) 定子磁场的极对数取决于定子绕组的结构。所以,要改变p,必须将定子绕组制为可以换接成两种磁极对数的特殊形式。 通常一套绕组只能换接成两种磁极对数。 变极调速的主要优点是设备简单、操作方便、机械特性较硬、

效率高、既适用于恒转矩调速,又适用于恒功率调速;其缺点是有极调速,且极数有限,因而只适用于不需平滑调速的场合。2.改变转差率s (变转差率调速) 以改变转差率为目的调速方法有:定子调压调速、转子变电阻调速、电磁转差离合器调速、串极调速等。 ⑴定子调压调速 当负载转矩一定时,随着电机定子电压的降低,主磁通减少,转子感应电动势减少,转子电流减少,转子受到的电磁力减少,转差率s增大,转速减小,从而达到速度调节的目;同理,定子电压升高,转速增加。 调压调速的优点是调速平滑,采用闭环系统时,机械特性较硬,调速范围较宽,缺点是低速时,转差功率损耗较大,功率因素低,电流大,效率低。调压调速既非恒转矩调速,也非恒功率调速,比较适合于风机泵类特性的负载。 分体机上的室内风机就是利用定子电压调速的方法进行调速的,其调速电路如下图。 根据风机速度的反馈信号,控制晶闸管SCR导通的相角,从而控制风机定子的输入电压,以控制风机的风速。 前面讲在空间位置上互差2π/3 rad电度角的三相绕组通以在时间上互差2π/3 rad相位角(或1/3周期)三相交变电流可产生旋转磁场,同样,在空间位置上互差π/2 rad电度角的两相绕组通以在时间上互差π/2 rad相位角(或1/2周期)两相交变电

变频器调速工作原理

变频器调速工作原理 目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。 现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。 1变频器的发展 近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能

从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。其发展情况可粗略地由以下几方面来说明。 1.容量不断扩大80年代采用BJT的PWM变频器实现了 通用化。到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。 2.结构的小型化变频器主电路中功率电路的模块化、控 制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。 3.多功能化和高性能化电力电子器件和控制技术的不断 进步,使变频器向多功能化和高性能化方向发展。特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。 4.应用领域不断扩大通用变频器经历了模拟控制、数模 混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。目前其应用领域得到了相当的扩展。如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停

交流电动机变频调速

第一变频调速技术的发展及应用 近十年来,随着电力电子技术、微电子学、计算机技术、自动控制技术的迅速发展,电力传动领域正发生着交流调速取代直流调速和计算机数字控制技术取代模拟控制技术的革命。交流变频调速以其优异的调速和起、制动性能,高效率、高功率因数和节电效果,被国内外公认为最有发展前途的调速方式,成为当今节电、改善工艺流程以及提高产品质量和改善环境、推动技术进步的一种主要手段。 一、我国变频调速技术的发展概况 在电气传动领域,人们关心的是如何合理地使用电动机以节约电能和有目的地控制机械的运转状态(位置、速度、解速度等),在实现电能-机械能之间的转换过程中达到优质、高产、低能的目的。近几年来交流调速中最活跃、发展最快的就是变频调速技术,是交流调速的基础和主干内容,其根本原因在于变频调速在节能和调速特性等方面优良的特性优于其他调速方式,当然,电力电子器件发展、计算机技术、自动控制技术的迅速发展也为它的实现提供了基础。 我国关于变频器的研究开始于20世纪60年代初期,当时典型的技术是交-交变频器供电的交流变频调速传动;继此之后80年代主体技术为电压或电流型六脉冲逆变器供电的交流变频调速传动;从90年代中期至今,随着电力电子器件、调速技术以及控制技术的发展,BJT(IGBT)PWM逆变器供电的交流变频调速传动空前发展,并得到广泛的应用。 目前国内变频调速方面主要的产品状况如下。 (1)在中、小功率变频调速中主要是IGBT的PWM逆变器供电的交流变频调速设备。产品应用的范围从单机到全生产线;控制方式从简单的U/f控制到高调速性能的矢量控制,但目前U/f控制占主体,矢量控制数量还较少。 (2)电流源型晶闸管逆变器供电的交流变频调速设备。 (3)交-交变频器供电的交流变频调速设备。 二、国外变频调速技术的现状 当前国外交流变频调速技术高速发展,主要有以下几个特点: (1)近几年来不断涌现出SCR,GTO,IGBT,IGCT等高电压、大电流的大功率电力电子器件以及大功率器件的并联、串联技术的发展应用,使得高电压、大功率变频器产品的生产及应用得到很大的发展。 (2)矢量控制、磁链控制、直接转矩控制、模糊控制等新的控制理论为高性能的变频器提供了理论基础;16位、32位高速处理微处理器,数字信号处理器(DSP),精简指令集计算机(RISC)和高级专用集成电路(ASIC)技术的快速发展,使得变频器朝高精度、多功能化方向发展。国外产品已实现控制全数字化、产品系列化、功能多样化,产品已进入很成熟的阶段。 (3)由于相关的基础工业和各种制造业的高速发展,已经使变频调速装置相关配套件的生产社会化、专业化,产品可靠性更高。 二、变频调速技术未来发展趋势 交流变频调速技术是强、弱电混合,机电一体化的综合性技术。它分为功率级和控制级两大部分。功率级部分是要解决高电压、大电流方面的技术问题和新型电力电子器件的应用技术问题;控制级部分是要解决数字化控制的硬、软件开发问题。鉴于这两方面,未来变频调速技术的发展方向主要有以下几点: (1)各种控制方法的深入研究与实现,进一步提高变频调速性能。 (2)进一步提高变频器的功率因数,降低网侧和负载侧的谐波,以减少对电网的污染和电动机的转矩脉冲。

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

交流与直流电机 调速方法 分类 原理 优缺点 应用

交流与直流电机调速方法分类原理优缺点应用 三相交流电机调速有哪些方法 1 变极调速.2变频调速.3变转差率调速... 三相交流电机有很多种。 1.普通三相鼠笼式。这种电机只能通过变频器改变电源频率和电压调速(F/U)。 2.三相绕线式电机,可以通过改变串接在转子线圈上的电阻改变电机的机械特性达到调速的目的。这种方式常用在吊车上。长时间工作大功率的绕线式电机调速不用电阻串接,因为电阻会消耗大量的电能。通常是串可控硅,通过控制可控硅的导通角控制电流。相当于改变回路中的电阻达到同上效果。转子的电能经可控硅组整流后,再逆变送回电网。这种方式称为串级调速。配上好的调速控制柜,据说可以和直流电机调速相比美。 3.多极电机。这种电机有一组或多组绕组。通过改变接在接线合中的绕组引线接法,改变电机极数调速。最常见的4/2极电机用(角/双Y)接。 4.三相整流子电机。这是一种很老式的调速电机,现在很用了。这种电机结构复杂,它的转子和直流电机转子差不多,也有换向器,和电刷。通过机械机构改变电刷相对位置,改变转子组绕组的电动势改变电流而调速。这种电机用的是三相流电,但是,严格上来说,其实它是直流机。原理是有点象串砺直流机。 5.滑差调速器。这种方式其实不是改变电机转速。而是改变和是电机轴相连的滑差离合器的离合度,改变离合器输出轴的转速来调速的。还有如,硅油离合器,磁粉离合器,等等,一此离合机械装置和三相电机配套,用来调速的方式。严格上来说不算是三相电机的调还方式。但是很多教材常常把它们算作调速方式和一种。 直流电机的调速方法 一是调节电枢电压,二是调节励磁电流,

而常见的微型直流电机,其磁场都是固定的,不可调的永磁体, 所以只好调节电枢电压,要说有那几种调节电枢电压方法, 常用的一是可控硅调压法,再就是脉宽调制法(PWM)。 PWM的H型属于调压调速。PWM的H桥只能实现大功率调速。国内的超大功率调速还要依靠可控硅实现可控整流来实现直流电机的调压调速。 还有弱磁调速,通过适当减弱励磁磁场的办法也可以调速。 直流电机与交流电机比较 最大的优点就是直流电机可以实现“平滑而经济的调速”;直流电机的调速不需要其它设备的配合,可通过改变输入的电压/电流,或者励磁电压/电流来调速。 交流永磁同步的调速是靠改变频率来实现的,需要变频器。 直流电机虽不需要其它的设备来帮助调速,但自身的结构复杂,制造成本高;在大功率可控晶闸管大批量使用之前,直流电动机用于大多的调速场合。在大功率可控晶闸管工业生产化后,交流电动机的调速变得更简单了,交流电动机的制造成本低廉,使用寿命长等优点就表现出来。 直流电机的3种调速方法各有什么优缺点? 不同的需要,采用不同的调速方式,应该说各有什么特点。 1.在全磁场状态,调电枢电压,适合应用在0~基速以下范围内调速。不能达到 电机的最高转速。 2.在电枢全电压状态,调激磁电压,适合应用在基速以上,弱磁升速。不能得到电机的较低转速。 3.在全磁场状态,调电枢电压,电枢全电压之后,弱磁升速。适合应用在调速范围大的情况。这是直流电机最完善的调速方式,但设备复杂,造价高。 直流电机调速一般采用脉冲宽度调制。

交流电机变频调速实验

交流电机变频调速实验 一、实验室名称:西门子实验室 二、实验项目名称:交流电机变频调速实验 三、实验原理 交流伺服系统的基本构成 变频调速的要点:电流形成转矩,频率控制转速 实现变频调速的关键是如何获得一个单独向感应电动机供电的经济可靠的变频电源。目前在变频调速系统中广泛采用的是静止变频装置。它是利用大功率半导体器件,先将50Hz的工频电源经整流器整流成直流,然后再经逆变器转换成频率与电压均可调节的变频电压输出给受控感应电动机。这种系统称为交-直-交变频系统。 交流电动机变频调速机械特性

变频调速平滑性好,效率高,机械特性硬调速范围广,只要控制端电压随频率变化的规律,可以适应不同负载特性的要求。是感应电动机尤为笼型感应电动机调速的发展方向。 四、实验目的 1.了解交流电机变频调速系统原理及组成。 2.了解交流电机变频调速系统时的机械特性。 五、实验内容 1.测定交流电机变频调速系统的机械特性。 2.测定交流电机变频调速系统的控制特性。 六、实验器材(设备、元器件) 1.S7-1200PLC 2.交流电动机-直流发电机-测速发电机组 3.主控制屏 4.滑动变阻器 5.变频器 6.手持式转速计 七、实验讲解 (一)实验前准备工作: 1.检查西门子实验室第二排(S7-1200PLC)的PLC是否运行(如正常运行,PLC 的绿灯会亮)。如果没有运行,则实验台面板左下方的空气开关。 2.合上第三排(带变频器的)实验台的空气开关和触摸屏开关。 3.触摸屏初次使用时,先点击“停止”按钮,再点击“启动”。 (二)实验观察 4.负载不调节。先在“开环控制”下观察电机在不同输入转速下的运行特性。进行五组以上不同转速的调速试验,作好数据观测记录。(作好转速、电压、电流等参数记录) 5.在某一给定转速下,调节滑线变阻器滑动触头(建议从轻载侧向负载侧调节)。观察转速、电流、电压参数的变化情况。 6.然后切换到“闭环控制”方式下(点击“开环控制”按钮,切换到“闭环控制”模式。按开环负载调节下相同的调节规律改变负载,观察引入电流闭环反馈控制后的转速变化特性,与开环模式下的转速变化进行对比和分析。 7.闭环情况下,负载从轻载区移向重载区时,根据转速表显示转速,比较设定转速,进而改变触摸屏上“比例系数”值(若转速补偿过多,减小比例系数)。 实验结束后,关闭触摸屏,拉下空气开关,将滑动变阻器滑块移动到右端。 八、实验数据及结果分析: 1.画出控制特性曲线。

电动机调速、交流电动机变频调速

电动机调速、交流电动机变频调速 1.电动机为什么要调速? 电动机需要调速主要是由于电动机所服务的对象不同而提出的要求,因为不同的生产机械要求有不同的运行运度,甚至一台生产机械在不同的生产过程时需要不同的运行速度。例如,轧制不同钢种或不同规格的钢材时,要求以不同的速度进行轧制,这就要求我们根据生产工艺的要求,来改变电机拖动系统的运转速度;例如,中央空调系统根据制冷或制热量的不同,要求调节压缩机的运转速度,等等。这些也就是工程上所讲的调速问题。 联系到我们熟悉的风机和水泵,按生产和工艺要求,希望调节风量与流量,按理讲应该调节电动机的转速,但我们在许多场合中看到的是利用挡板阀门或者放空的办法来调节风量或流量,为什么不能调节电动机的转速,这是牵涉到很复杂的技术问题。 2.电动机调速与节能的关系 以大家熟悉的风机和水泵为例,来说明电动机调速与节能之间的关系。 风机和水泵都是流体机械,流体机械的转速变化与其流量、压力和功率之间的变化有如下的关系:

上述式子中Q1、H1、P1分别代表转运n1时的流量、压力、功率。 Q2、H2、P2、分别代表转速n2时的流量、压力、功率。 即流量与转速的一次方成正比:压力与转速的平方成正比;功率与转速的三次方成正比。 由此可见,当通过降低转速以减少流量来达到节流目的时,所消耗的功率将降低很多。例如:当转速降派到80%时,流量减少到80%,而轴功率却下降到额定功率的(80%)3≈51%:若流量需减少到40%,则转速相应减少到40%,此时轴功率下降到额定功率的(40%)3≈6.4%。 从下图所示调节流量的H-Q特性曲线上也能清楚地看出调速与节能的关系。 风机(水泵)原来工作在A点,风量为Q1、风压为H1、转速为n1。现需将风量由Q1调到Q2。要实现此调节,无外乎两种方法:第一种方法是保持电机转速不变,通过调节风门来调节流量。此时风机的对H-Q诗性曲线不变,仍为H1-Q。而风门发生变化,即管路的阻

相关文档
相关文档 最新文档