文档库 最新最全的文档下载
当前位置:文档库 › 湍动能计算

湍动能计算

湍动能计算
湍动能计算

1、湍流强度

定义:速度波动的均方根与平均速度的比值

小于1%为低湍流强度,高于10%为高湍流强度。

计算公式:

I=0.16*(re)^(-1/8)

式中:I—湍流强度,re—雷诺数

2、湍流尺度及水力直径

湍流尺度(turbulence length):a physical quantity related to the size of the large eddies that contain the energy in turbulent flows。

通常计算方式:

l=0.07L

L为特征尺度,可认为是水力直径,因数0.07是基于充分发展的湍流管流中的混合长度的最大值。

湍流参数的选取:

(1)充分发展的内部流动,选取湍流强度(intensity)和水力直径(hydraulic diameter)

(2)导流叶片流动、穿孔板等流动,选取强度(intensity)和长度尺度(length scale)。

(3)四周为壁面引起湍流边界层的流动,选取强度(intensity)和长度尺度(length scale),使用边界层厚度,特征长度等于0.4倍边界层,输入此值到turbulence length scale中。

3、湍动能(Kinetic energy)

湍流模型中最常见的物理量(k)。利用湍流强度估算湍动能:

k=3/2*(u*I)^2

其中:u—平均速度,I—湍流强度

4、湍流耗散率(turbulent disspipation rate)

湍流耗散率即传说中的ε。通常利用k和湍流尺度l估算ε

计算公式为:

cu通常取0.09,k为湍动能,l为湍流尺度

5、比耗散率ω

计算公式为:

ω=k^0.5/(l*c^0.25)

式中:k为湍动能,l为湍流尺度,c为经验常数,常取0.09

VOF模型通过求解单独的动量方程和处理穿过区域的每一流体的体积分数来模拟两种或三种不能混合的流体。典型的应用包括预测射流破碎、流体中大泡的运动、决堤后水流动和气液界面的稳态和瞬态处理。

FLUENT中VOF存在以下限制:

1)必须使用离散求解器,VOF模型不能用于耦合求解器

2)所有的控制体积必须充满单一流体相或相的联合,VOF模型不允许在那些空的区域没有任何流体的存在。

3)只有一相是可压缩的

4)周期流动(比质量流率或比压降)问题不能和VOF模型同时计算

5)组分混合和反应流动问题不能和VOF模型同时计算

6)大涡模拟湍流模型不能用于VOF模型

7)二阶隐式的time-stepping不能用于VOF模型

8)VOF模型不能用于无粘流

9)壁面壳传到模型不能和VOF模型同时计算

圆形直管中的雷诺数计算公式:雷诺数=管径*流速*流体密度/流体粘度

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

动能和动能定理复习_专题训练

动能定理专题 题型1:弄清求变力做功的几种方法 等值法 1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

微元法(不推荐,但希望同学们知道这种方法) 2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( ) A、 0J B、20πJ C 、10J D、20J. 平均力法 3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少? 动能定理求变力做功法 4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长 L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

机械能守恒定律求变力做功法 5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。 题型2:弄清滑轮系统拉力做功的计算方法 图8 F1 F2 6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( ) A.100J B.150J C.200J D.条件不足,无法确定 V0 S0 α P 图11 题型3:应用动能定理简解多过程题型。 7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块

动能定理练习题

动能定理练习题 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:22 01122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2 W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中 重力所做的功为负. 2 也可以简写成:“ m :A B →:k W E ∑=?Q ”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为 0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.

动能定理计算

动能定理计算 1.如图所示,在竖直平面内,由倾斜轨道AB 、水平轨道BC 和半圆形轨道CD 连接而成的光滑轨道,AB 与BC 的连接处是半径很小的圆弧,BC 与CD 相 切,圆形轨道CD 的半径为R 。质量为m 的小物块从倾斜轨 道上距水平面高为h =2.5R 处由静止开始下滑。求: (1)小物块通过B 点时速度v B 的大小; (2)小物块通过圆形轨道最低点C 时圆形轨道对物块的支 持力F 的大小; (3)试通过计算说明,小物块能否通过圆形轨道的最高点D 。 2.如图所示,一光滑的半径为R 的半圆形轨道放在水平面上, 一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口 飞出时,轨道的压力恰好为零, (1)则小球落地点C 距A 处多远? (2)小球冲上轨道前的速度是多大? 3.如图所示,质量kg 60=m 的高山滑雪运动员,从A 点由静止开始沿滑道自由滑下,到B 点时沿与水平方向成?30角斜向上飞出,最后落在斜坡上的C 点。 已知AB 两点间的高度差为m 25=AB h ,B 、C 两点间的高度差 为m 60=BC h ,运动员从B 点飞出时的速度为20m/s (g 取10m/s 2) 求(1)运动员从A 到B 克服摩擦阻力做的功;(2)运动员落到C 点时的速度大小。 4.如图甲是2012年我国运动员在伦敦奥运会上蹦床比赛中的一个情景。设这位蹦床运动员仅在竖直方向上运动,运动员的脚在接触蹦床过程中,蹦床对运动员的弹力F 随时间t 的变化规律通过传感器用计算机绘制出来,如图乙所示。取g= 10m/s 2,根据F-t 图象分析求解: (1)运动员的质量;(2)运动员在运动过程中的最大加速度; (3)在不计空气阻力情况下,运动员重心离开蹦床上升的最大高度。 甲 0 t/s 3.6 4.2 4.8 5.4 6.0 6.6 6.8 8.4 9.4 11 12 乙

《结构力学习题集》(上)超静定结构计算――力法1(精)

超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1、 (2、 (a (b (3、 (4、 (5、 (6、 (7、 (a(b 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a(bX 1

c 6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中?12122t a t t l h =--(/(。 t 2 1 t l A h (a(bX 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为。 (a(bP k P X 1 二、计算题: 8、用力法作图示结构的M 图。 B EI 3m 4kN A 283 kN 3m EI

/m C 9、用力法作图示排架的M 图。已知 A = 0.2m 2,I = 0.05m 4 ,弹性模量为E 0。 q 8m =2kN/m 6m I I A 10、用力法计算并作图示结构M 图。EI =常数。 M a a a a 11、用力法计算并作图示结构的M图。 q l l ql/2 2 EI EI EI 12、用力法计算并作图示结构的M图。

q= 2 kN/m 3 m 4 m 4 m A EI C EI B 13、用力法计算图示结构并作出M图。E I 常数。(采用右图基本结构。P l2/3l/3l/3 l2/3 P l/3 X 1 X 2 14、用力法计算图示结构并作M图。EI =常数。 3m 6m

动能定理习题(附答案)

A 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:2201122 mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出, 在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4 : 2 01050J 2 W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →: k W E ∑=?”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. v m v 'O A → A B →

学考最后一题计算题功能关系动能定理

动能及动能定理功能关系 1、物体在做某种运动过程中,重力对物体做功200J ,则( ) A .物体的动能一定增加200J B .物体的动能一定减少200J C .物体的重力势能一定增加200J D .物体的重力势能一定减少200J 2.如图所示,桌面高度为h ,质量为m 的小球从离桌面高H 处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为 ( ) A .mgh B .mgH C .mg(H+h) D .mg(H -h) 3.a 、b 、c 三球自同一高度以相同速率抛出,a 球竖直上抛,b 球水平抛出,c 球竖直下抛。设三球落地时的速率分别为v a 、v b 、v c ,则 ( ) A .v a >v b >v c B .v a =v b >v c C .v a

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

动能定理计算题

动能定理计算题 例题1、一架喷气式飞机,质量m=5×103 kg,起飞过程中从静止开始滑跑的路程为s=×102m时,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 《 例题2、如图所示,倾角θ=37°的斜面底端B平滑连接着半径r=0.40m的竖直光滑圆轨道。质量m=0.50kg的小物块,从距地面h=2.7m处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g=10m/s2)(1)物块滑到斜面底端B时的速度大小。 (2)物块运动到圆轨道的最高点A时,对圆轨道的压力大小。 ¥ 例题3、如图6-35所示,一小球从距地面4m高处自由下落到地面,恰沿着半径为R=0.5m的半圆形槽运动,到最低点时速度v B=8m/s,而后继续沿圆弧运动,到脱离槽后又竖直上升,求小球离槽后,竖直上升可达的高度h。(g=10m/s2) | # h H R B 35 6 图

v 0=800m/s 的质量m=10g 的子弹沿水平方向打入m 2,并留在其中,当m 2滑过3m 时,速度为2m/s 。求在这过程中m 2克服地面摩擦力做的功。 — 例题5、如图6-42示,把一根内壁光滑的细管弯成 4 3 圆弧形状,且竖直放置。一个小球从管口A 的正上方h 1高处自由下落,小球恰能到达最高点管口C 处。若小球从h 2处自由下落,则它能人管口A 运动到管口C 又落回管口A ,则h 1:h 2是多大 \ ` 例题6、如图4所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。 : 1 m 0 v m 2 m 36 6-图C 1 h A O R 42 6-图

高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k =),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) | — 例3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv=12m/s C. W=0 D. W= 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 22 0- 《 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 2-7-3 θ F O & Q l h H 2-7-2

《动能、动能定理》教案正式版

动能、动能定理 教学目标: 1、 记住动能的计算公式:212 k E mv ,知道他是标量 2、 (1)理解动能定理的内涵(功是能量转化的量度,正功使物体动能增大,负功使物体动能 减少;物体动能的改变取决于总功) (2)能在水平面和竖直平面利用动能定理求总功、某个力做的功,物体的速度。 知道动能定理在以下方面的应用: a 、 通过动能变化判断(或求)总功 b 、通过总功判断(或求)动能变化 引入 居里夫人和她的丈夫以研究放射性元素镭而著名,有一次她的丈夫皮埃尔·居里把一小块雷元素放在胸口的衣袋里,过了一段时间,他把上衣脱掉,发现胸口有处红色的小伤疤。大家知道是什么原因吗? 原来镭是一种放射性元素,它发生衰变的时候会放出高速运动的粒子(眼睛看不见),是这些粒子把他的胸口打伤的。 有人计算过,一只小鸟撞击速度为960千米/时的飞机时,就会产生21 .6万牛的力。一只1 .8千克的鸟撞在速度为900千来/时的飞机上时,产生的冲击力比炮弹的冲击力还要大。所以在飞机场你会看到总会有人专门赶鸟。 可见运动着的物体都具有一种能量,这种能量能对其它物体有杀伤力。这种能量是由于物体运动而产生的,所以我们叫动能。 板书:一、动能 1、定义:物体由于运动而具有的能量 飞过来一个足球,用头一顶就飞出去了,如果飞过来一个铅球,你还敢用头顶吗?运动的物体能量有大有小,大小跟什么有关呢? Powerpoint 展示,学生思考 动能的大小跟什么有关?请看下列两个例子,思考影响动能的因素。 例1:汶川大地震 印度洋板块和亚洲板块运动的速度非常慢,大概每年两厘米的速度推进,但当他们相碰撞,产生的动能可以毁掉整个汶川,影响整个四川。 例2:台风 台风是空气的高速运动,空气质量其实很小,但空气在气压梯度力的作用下能不断加速,当风力达到12级以上,我们叫台风。一个中等能量的台风,它所蕴含的动能,相当于50万颗1945年在日本广岛爆炸的原子弹释放出来的能量。 师:动能跟什么有关?(引导提示:m 、v ) 师:那动能到底跟m 和v 有什么关系呢?下面来看一个例子 Powerpoint 展示,学生思考

动能定理计算题

例题1、一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 例题2、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 例题3、如图6-35所示,一小球从距地面4m 高处自由下落到地面,恰沿着半径为R=0.5m 的半圆形槽运动,到最低点 时速度v B =8m/s ,而后继续沿圆弧运动,到脱离槽后又竖直上升,求小球离槽后,竖直上升可达的高度h 。(g=10m/s 2 ) 例题4、如图6-36所示,离地面4m 处的定滑轮上,用细绳悬挂两物体,质量分别为m 1=1kg ,m 2=1.99kg 。今有一速度 h H R B 356 图

v 0=800m/s 的质量m=10g 的子弹沿水平方向打入m 2,并留在其中,当m 2滑过3m 时,速度为2m/s 。求在这过程中m 2克服地面摩擦力做的功。 例题5、如图6-42示,把一根内壁光滑的细管弯成 4 3 圆弧形状,且竖直放置。一个小球从管口A 的正上方h 1高处自由下落,小球恰能到达最高点管口C 处。若小球从h 2处自由下落,则它能人管口A 运动到管口C 又落回管口A ,则h 1:h 2是多大 例题6、如图4所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。求物体在轨道AB 段所受的阻力对物体做的功。 1m 0 v m 2m C 1 h A O R 426-图

动能定理练习题(附标准答案)

动能定理练习题(附答案)

————————————————————————————————作者:————————————————————————————————日期: 2

- 3 - h v m B A N mg h 0v m B A mg v 动能定理练习题 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向 上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:22 01122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负. 2 也可以简写成:“m :A B →:k W E ∑=?Q ”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 0v m B 0 0v '=0 v =A O O A →mg N F A B →mg N f

高一物理(物理必修2动能定理计算题训练)

物理必修2动能定理计算题专项训练 1如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并 陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2 ) 2一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s.人和雪橇的总质 量为60kg ,下滑过程中克服阻力做的功等于多少(g 取10m /s 2 ). 3质量m=10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为多大? 4质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。求:(1)物体的初速度多大?(2)物体和平面间的摩擦系数为多大? (3) 拉力F 的大小?(g 取102 m s /) h H

5一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度 m ax v.设汽车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间. 6一辆汽车的质量为5×103㎏,该汽车从静止开始以恒定的功率在平直公路上行驶,经过40S,前进400m 速度达到最大值,如果汽车受的阻力始终为车重的0.05倍,问车的最大速度是多少?(取g=10m/s2) 7一质量M=0.5kg的物体,以v m s 4 =/的初速度沿水平桌面上滑过S=0.7m的路程后落到地面,已知 桌面高h=0.8m,着地点距桌沿的水平距离S m 1 12 =.,求物体与桌面间的摩擦系数是多少?(g取102 m s/)

结构力学计算题及解答

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a a a q A B C D 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71.用力法作下图所示刚架的弯矩图。 l B D P A C l l EI=常数 72.用力法求作下图所示刚架的 M图。 73.利用力法计算图示结构,作弯矩图。 74.用力法求作下图所示结构的M图,EI=常数。 75.用力法计算下图所示刚架,作M图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 q A B C D F xB F yB F yA F xA 2qa3 2/ 2qa3 2/ q2a ()2/8 2qa3 2/ =/ qa2 2 取整体为研究对象,由0 A M=,得 2 220 yB xB aF aF qa +-=(1)(2分) 取BC部分为研究对象,由0 C M= ∑,得 yB xB aF aF =,即 yB xB F F =(2)(2分) 由(1)、(2)联立解得 2 3 xB yB F F qa ==(2分) 由0 x F= ∑有20 xA xB F qa F +-=解得 4 3 xA F qa =-(1分) 由0 y F= ∑有0 yA yB F F +=解得 2 3 yA yB F F qa =-=-(1分) 则222 422 2 333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62.解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分)63.解:

动能定理 计算大全

专题(二)补充 动能定理分析计算 1如图所示,将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 2一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于多少(g 取10m /s 2 ). 3质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为多大? 4质量M =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。求:(1)物体的初速度多大?(2)物体和平面间的摩擦系数为多大? (3) 拉力F 的大小?(g 取102 m s /) 5一辆汽车质量为m ,从静止开始起动,沿水平面前进了距离s 后,就达到了最大行驶速度max v .设汽车的牵引力功率保持不变,所受阻力为车重的k 倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间. 6一辆汽车的质量为5×103 ㎏,该汽车从静止开始以恒定的功率在平直公路上行驶,经过40S ,前进400m 速度达到最大值,如果汽车受的阻力始终为车重的0.05倍,问车的最大速度是多少?(取g=10m/s 2)

7一质量M=0.5kg的物体,以v m s 4 =/的初速度沿水平桌面上滑过S=0.7m的路程后落到地面,已知 桌面高h=0.8m,着地点距桌沿的水平距离S m 1 12 =.,求物体与桌面间的摩擦系数是多少?(g取102 m s/) 8如图所示,半径R=1m的1/4圆弧导轨与水平面相接,从圆弧导轨顶端A,静止释放一个质量为m=20g 的小木块,测得其滑至底端B时速度V B=3m/s,以后沿水平导轨滑行BC=3m而停止.求:(1)在圆弧轨道上克服摩擦力做的功? (2)BC段轨道的动摩擦因数为多少? 9如图所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对 物体的动摩擦因数相同,求动摩擦因数μ. 10如图所示,物体自倾角为θ、长为L的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s,则物体与斜面间的动摩擦因数为多少。 11如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s.

动能定理题型分类及综合练习(可直接用、好题)精编版

1 应用一:利用动能定理求功 1.如图所示,质量为m 的物体被线牵引着在光滑的水平面 上做匀速圆周运动,拉力为F 时,转动半径为r 。当拉 力增至8F 时,物体仍做匀速圆周运动,其转动半径为r 2, 求拉力对物体做的功? 2.如图所示,质量为m 的物体静止于光滑圆弧轨道的最低 点A ,现以始终沿切线方向、大小不变的外力F 作用于 物体上使其沿圆周转过π 2到达B 点,随即撤去外力F ,要 使物体能在竖直圆轨道内维持圆周运动,外力F 至少为多大? 3. 如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑 行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( ) A .mgh -12mv 2 B .1 2 mv 2-mgh C .-mgh D .-(mgh +1 2mv 2) 物理重点考查之 应用动能定理求解动力学中的多过程问题 4. 如图所示,在一次国际城市运动会中,要求运动员从高 为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10m/s 2).求: (1)运动员到达B 点的速度与高度h 的关系. (2)运动员要达到最大水平运动距离,B 点的高度h 应调 为多大?对应的最大水平距离 s max 为多少? (3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水 平运动距离要达到7 m ,h 值应为多少? 4.将小球以初速度v 0竖直上抛,在不计空气阻力的理想状 况下,小球将上升到某一最大高度.由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%.设空气阻力大小恒定,求小球落回抛出点时的速度大小v . 5.如图所示,一半径为R 的半圆形轨道BC 与一水平面相 连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求: (1)小球平抛后落回水平面D 点的位置距B 点的距离. (2)小球由B 点沿着半圆轨道到达C 点的过程中,克服 轨道摩擦阻力做的功.

知识讲解动能、动能定理(基础)

物理总复习:动能、动能定理 编稿:xx 审稿:xx 考纲要求】 1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系; 2、会用动能定理分析相关物理过程; 3、熟悉动能定理的运用技巧; 4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。 知识网络】 【考点梳理】考点一、动能 12 动能是物体由于运动所具有的能,其计算公式为E k mv2。动能是标量,其单位与 2 功的单位相同。国际单位是焦耳(J)。 考点二、动能定理 1、动能定理合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。 2、动能定理的表达式 W E k2 E k1 。式中W 为合外力对物体所做的功,E k 2为物体末状态的动能,E k1为物体初状态的动能。动能定理的计算式为标量式,v 为相对同一参考系的速度,中学物理中一般取地球为参考系。 要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。 2、应用动能定理解题的基本步骤(1)选取研究对象,明确它的运动过程。 (2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。 (3)明确物体在始、末状态的动能E k1和E k 2。 (4)列出动能定理的方程W E k 2 E k1及其他必要的辅助方程,进行求解。动能定理中的W总是物体所受各力对物体做的总功,它等于各力做功的代数和,即W总=W1 W2 W3若物体所受的各力为恒力时,可先求出F合,再求W总F合l cos 3、一个物体动能的变化E k 与合外力做的功W总具有等量代换的关系。因为动能定理实质 上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。 E k 0,表示物体动能增加,其增加量就等于合外力做的功; E k 0 ,表示物体动能减少,其减少量就等于合外力做负功的绝对值; E k 0 ,表示物体动能不变,合外力对物体不做功。 这种等量代换关系提供了一种计算变力做功的简便方法。考点三、实验:探究动能定理 实验步骤 1.按图组装好实验器材,由于小车在运动中会受到阻力,把木板略微倾斜,作为补偿。2.先用一条橡皮筋进行实验,把橡皮筋拉伸一定长度,理清纸带,接通电源,放开小车。3.换用纸带,改用2 条、3 条??同样的橡皮筋进行第2 次、第3 次??实验,每次实验中橡皮筋拉伸的长度都相同。

1选出图示结构的力法基本结构

1.选出图示结构的力法基本结构,并绘出相应的多余约束力。 l l 2 A 2.用力法计算图示桁架的内力。EA =常数,各杆长为l 。 3.用力法计算,并绘图示结构的M 图。EI =常数。 l 4.已知荷载作用下桁架各杆的内力如图所示,试求结点D 的水平位移。EA =常数。 6 m -()N P ? 5.用力法计算图示桁架内力。各杆EA =?8103kN 。

6.选取图示对称结构的较简便的力法基本结构。EI =常数。 7.图示力法基本体系,求力法方程中的系数δ11和自由项?1P。EI是常数。 1 l/4/2 /4l l 8.用力法作图示结构的M图。 3m m 9.图示结构,杆BC承受向下的均布荷载q=2kN m,图中已画出其M图,各杆EI相同。试求D截面转角θD。 2m 3m2m 5.7 3.6 5.8 A B D C M图· (kN m) 10.用力法计算图示结构,并绘出M图。EI =常数。 3m =10kN/m q

11.图a 所示结构,取图b 为力法基本体系。已知:δ111283=/()EI ,δ226403=/()EI , δ122723=/()EI ,?1163P q EI =-/(),?2323P q EI =-/(),求作M 图。 4m 4m m q q 2 (b) 12.用力法计算图示结构,并作M 图。EI =常数。 l /3 l 13.图a 结构,取图b 为力法基本体系,EI =常数,EA EI l =/2,计算δ12。 (b) l (a)l 14.求图示单跨梁截面C 的竖向位移?C V 。 l l /2 /2 15.用力法计算,并作图示对称结构M 图。EI =常数。 l l

动能定理练习题(附答案)

动能定理练习题(附答案) 2012年3月 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解: (1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2 : 21 02J 2W mv ∑=-= (3) m 由A 到B : G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解: (1) m 由A 到B :根据动能定理: 22 1122mgh mv mv =- 20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →:k W E ∑=? ”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. A

3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4 : 2 01050J 2 W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5 : 2211 022 W mv mv =-= 4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥 土中的深度为h 求: (1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解: (1) m 由A 到B :根据动能定理: 22 1122 mgH mv mv =- v ∴(2)变力6. (3) m 由B 到C ,根据动能定理: 2f 1 02 mgh W mv +=- ()2 f 012W mv m g H h ∴=--+ (3) m 由B 到C : f cos180W f h =?? () 2022mv mg H h f h ++∴= 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力. v m 0v 'O A → A B → v t v

相关文档
相关文档 最新文档