文档库 最新最全的文档下载
当前位置:文档库 › 实验八 spss11中的时间序列分析

实验八 spss11中的时间序列分析

实验八 spss11中的时间序列分析
实验八 spss11中的时间序列分析

实验八spss11中的时间序列分析

一、实验目的

了解spss11中时间序列分析的简单方法

二、实验原理介绍

1.SPSS中时间序列分析简要介绍

依时间顺序排列起来的一系列观测值称为时间序列,跟大部分的统计不同,这类资料的先后顺序是不能忽视的,更关键的是观测值之间不独立。因此,这类数据不能用普通的统计方法解决。时间序列分析(Time series)是专门用于分析这种时间序列资料的统计模型。它考虑的不是变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,并为之建立数学模型。

时间序列分析的方法可以分为两大类:Time domain和Frequency domain。前者将时间序列看成是过去一些点的函数,或者认为序列具有时间系统变化的趋势,它可以用不多的参数来加以描述,或者说可以通过差分、周期等还原成随机序列。后者则认为时间序列是由数个正弦波成分叠加而成,当序列的确来自一些周期函数集合时,该方法特别有用。不同的专业领域习惯用不同的方法:经济学习惯用Time domain,而电力工程专家则对Frequency domain更感兴趣。下面讲述的都是Time domain

由于时间序列模型的复杂性,它在spss中横跨了数据整理、统计分析和绘图三大部分,具体来说是:

?预处理模块:包括用于填充序列缺失值的Transform | replace Missing Values过程,

建立时间变量的Data | Define dates过程和将序列平稳化的Transform | Create Time

Series过程。

?图形化观察/分析:时间序列在分析中高度依赖图形。Spss为其提供了特有的观察

工具:序列图(Sequence Chart)、自相关/偏自相关图(Autocorrelation Function,

ACF & Autocorrelation Function,PACF)、交叉相关图(Crosscorrelation Function,

CCF)、周期图(Periodogram)和谱密度图(Spectral Chart)。后三者被统一放置在

Graphs | Time Series菜单中。

?分析模块:它们被统一放置在Analysis | Time Series菜单中,共包括指数平滑法

(Exponential Smoothing过程)、自回归线性模型(Autoregressive model)、ARIMA

模型和季节解构(Seasonal Decomposition)四种方法。

2.时间序列的建立和平稳化

在对数据拟合时间序列模型前需要进行一系列的准备工作,首先,如果数据存在缺失值的话就要进行填补;第二,SPSS是不会自动将数据文件识别为时间序列的,必须要加以定义;第三,原始的时间序列往往要经过初步的计算(平稳化)才能更好的用于进一步分析。

2.1缺失值的填补-Replace Missing Values过程

大多数时间序列模型都要求数据序列完整无缺,但这实际上非常难以做到。当序列中存在缺失值时,显然不可能采用剔除的方法,因为这样会使得缺失值之后数据的周期发生错位。在这种情况下就应当使用Replay Missing Values过程对缺失值采用适当的方法进行填充,并将结果存入一个新变量。

例子:打开数据文件gnp.sav,删除变量gnp在第8、14条记录中的数值,然后选择适当的缺失值填充方法对其进行填充。

缺失值填充方法有好几种,但各有使用范围,现在gnp序列的规律并不清楚,为保险起见,我们只利用缺失值附近的数据进行填充。

方法:Transform | Replace Missing Values

图1

图1中解释如下:

New Variable框:缺失值填充前后的变量对应列表

Name框:存储填补序列的新变量名称

Method下拉列表:可供选择的序列填充方法

?Series mean:全体序列的均数,默认值

?Mean of nearby points:相邻若干点的均数,在下方的Span of nearby points单选框

组中设置使用的相邻点数。

?Median of nearby points:相邻若干点的中位数,在下方的Span of nearby points单选

框中设置使用的相邻点数

?Linear interpolation:线性内插,即缺失值相邻两点的均数,但如果缺失值是在序列

的最前/最后,则无法被填充。

?Linear trend at point:该点的线性趋势,将记录号作为自变量,序列值作为因变量

进行回归,求得该点的估计值。

Span of nearby points单选框组:设置相应填充方法中需要使用的相邻记录数。

Change:将所做得设定应用于相应变量

2.2时间变量的定义-Define dates过程

时间序列数据的一个明显的特点就是记录依时间排列。在SPSS中需要定义时间变量。只有在定义后,SPSS才承认该序列的诸如周期等时间特征。

例:美国1947年第一季度到1970年第四季度的GNP在gnp.sav文件中,其中只有一个变量gnp记录着各季度的GNP值,请根据提供的时间范围为其定义时间变量。

方法:对于这种时间序列数据,在数据输入时仅仅需要输入每个时间点上的具体数值,而时间变量应当用专门的过程来定义。在数据输入时即使直接输入时间变量,包括Season、Year,SPSS也不会自动认为它们是时间变量,从而无法进行时间序列分析。

采用Data | Define dates 过程来完成。

图2

下面对图2简单讲解如下:

Cases Are框:提供了各种时间的组合供用户选择。序列的周期由时间组合的最小时间单位决定,如Years,quarters的周期是4

First Case Is框组:要求输入第一个数据(该数据可以是缺失值)的时间,根据Cases Are 框中的选择不同,相应的内容也会有所变动。右侧会显示相应等级的周期数Current Dates栏:在界面左下角,定义好周期后,如果再次进入该对话框,则会显示当前数据的时间信息。

上述操作后,数据文件中将加入两个新产生的时间变量year_、quarter_,分别代表年、季度,另有一个变量date_,表示大致的日期(由于信息不全,只能是大致的日期,并且是字符串变量)

2.3时间序列的平稳化-Create Time Series过程

在时间变量定义完成后,时间序列就基本建成了。但是,并非随便建立一个序列就算万事大吉,时间序列分析都是建立在序列平稳的条件上的。一个平稳的随机序列过程有以下要求:均数不随时间变化;方差不随时间变化;自相关系数只与时间间隔有关,而与所处的时间无关。

实际上大多数的时间序列都是不平稳的。在做时间序列分析时,首先就是识别序列的平稳性,并且把不平稳的序列转化为平稳序列。

Create Time Series过程是SPSS用来对原始序列进行初步处理,以使序列达到平稳化的模块。它可以从原序列变量中通过差分、移动平均等变换同时计算一个或多个新序列,以帮助用户识别原序列的波动规律。

若时间序列的正态性或平稳性不够好,在需要进行数据变换。常用有差分变换(利用transform | Create Time Series)和对数变换(利用Transform | Compute)进行。

对时间序列进行平稳性检验的图检验方法有时序图检验和自相关图检验。

?时序图检验:根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该

显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界,无明显趋势

及周期特征。

?自相关图检验:平稳序列通常具有短期相关性。该性质用自相关系数来描述,就是

随着延迟期数的增加,平稳序列的自相关系数会很快的衰减向零。(注:时间序列

的自相关是指序列前后期数值之间的相关关系,对这种相关系数程度的测定是自相

关系数)。如果在ACF图中,随着lag的增大,自相关系数不是迅速减少,则要考

虑时间序列是否不平稳,是否有继续差分的必要。

例:前面已经为数据gnp.sav建立了时间变量,现在对该序列进行平稳化。

方法:时间序列分析的第一步一般先做一个观测值和时间的时序图。这对序列的整体印象和后面的分析都非常有帮助。

点击菜单Graph | Sequence,仅仅把gnp变量选择进入variable框中,把Year变量选择入横坐标的标签,别的设置保持默认,绘制时序图如下

从此时序图中可以看到很明显的线性趋势(序列图是稳步上升的)和周期性(每年的图形有相似性,每年的第四季度总是最高)。这是跟序列平稳的要求相悖的。所以,首先要把不平稳的序列转变为平稳的序列。1.方差平稳化:当序列的方差随着时间变化时,模型参数的点估计估计和预测也许不会出错,但是统计推断会有较大的影响。对数转换和平方根转换是使方差稳定的两种常用的方法,可以通过菜单项Transform | Compute进行。2.去除趋势:差分是去除趋势的有效办法,可以通过菜单项Transform | Create Time Series进行。

对序列进行上述处理后,再对新生成的变量做时序图,可以发现虽然序列还存在周期性(季节波动),但是趋势问题和方差不齐已经得到较好的解决。如果还希望去除季节波动,则可以对新生成的序列用季节差分Transform | Create Time Series的方法去除。

差分会带来一个问题,就是序列开始的数据减少。差分次数越多,减少的数据越多。如果过度差分会使还原到原始序列的难度加大,这是需要尽量避免的。

让上述时间序列平稳化的方法如下:

首先,Transform | Compute,对原始数据进行平方根转换。转换结束后在数据文件中新生成一列数据。然后对这新生成的一列数据,用Transform | Create Time Series进行差分。

图3

主要对图3中的function下拉列表进行讲解,这是Create Time Series过程的核心。通过不同的计算方法可以得到相应的新序列。

?Difference:计算变量的一般差分(非季节性)。差分是序列平稳化时的常用手段,

其作用是消除前后数据的依赖性。差分的次数可以在下方Order的框中指定。差分

会损失数据,差分n次,则数据损失n个。

?Seasonal Difference:季节性差分。差分的间距由数据的周期决定。没有定义周期的

数据不能做季节性差分。差分n次,数据损失季节的n倍。

?Centered moving average:中心移动平均,以当前值为中心,计算指定范围的均值。

取移动平均的效果是把序列的噪声部分抵消,而把平滑部分保留。

?Prior moving average:前移动平均,计算当前值以前指定范围的数的均值。

?Running medians:移动中位数,计算当前值为中心,一定范围的中位数。

?Cumulative sum:累计和,以原序列的累积和为新序列

?Lag:滞后值,所谓滞后就是让原序列往后滞留指定的Order

?Lead:提前值,和滞后相反,让原序列提前指定的Order。

?Smoothing:计算原序列的T4253H平滑序列。

3.时间序列的图形化观察

时间序列有特有的图形观察工具,分别是:

?Sequence Chart:序列图,实际上是一种特殊的线图,但比一般的线图有更多适合

时间序列特点的功能

?Autocorrelation Chart:做单个序列,任意滞后(包括负的滞后,也就是超前)的自

相关和偏自相关图。ACF和PACF是描述单个时间序列的重要工具。

?Cross-Correlations Chart:交叉相关图,做两个或两个以上的时间序列,任意滞后的

交叉相关图。互相关函数(Cross-correlation Function, CCF)是分析两个序列关系

的有力工具。无论何时使用互相关函数来了解两个序列之关系时,必须确信两个序

列是平稳的(即,每个序列的均值和方差在整个序列中大概一样)。原因是如果序

列值随时间上升或下降,总可以把二者串起来,以至于即使两个序列毫不相关,但

也显得高度相关。

?Spectral Chart:周期图和谱密度图,在谱分析时给出一个或多个序列的周期图和谱

密度图。谱图和自相关图实质上是相同的,包含的是相同的信息,只不过表现形式

不同。

后面的三种是专用的时间序列图,被统一放在了Graph | Time Series菜单中,它们对选择某些时间序列分析的统计模型的参数,以及对模型的残差评估尤其重要。

序列图在Graph | Sequence菜单项。

这些图形的一般界面中,有V ariables框,用于选入要作图的序列变量,可以是多个序列。Time Axis Labels框:选入作为横轴标签的时间变量,如果缺失则用序号作为横轴单位。Transform框组:提供了一些时间序列分析中常用的变量变换方法,有自然对数变换、差分、季节差分三种,如果效果不好则需要用Create Time Series模块中的内容。下方的Current periodicity栏会显示当前序列的周期数。

自相关系数是序列和自身的提前或滞后序列间的相关系数。如果滞后为1,则是1阶自相关系数,滞后为2则为2阶自相关系数。自相关系数回答几个相邻数据的相关性。如果一阶自相关系数大,可以知道相邻时垫支存在较强相关性。二阶自相关系数大则说明相隔两个时点的值也密切相关。但是高阶的自相关是否真的非常重要呢?是它的确有意义,还是因为低阶自相关系数较大才引起高阶自相关系数也大呢?如果建立一个由以前值预测现在值的回归模型,需要包括多少个以前值?偏自相关函数(PACF)就是用于回答这个问题的。PACF 是从高阶开始,逐个检验每阶的偏相关系数是否有意义,直到第一个有意义的为止。这时的阶数就是模型中应该包含的最大阶数。

Maximum Number of lags:指定需要计算自相关和偏相关的最大的滞后数lag。根据经验lag=20就够了,或者比该序列的最大周期大一些。

4.时间序列分析

4.1季节解构-Seasonal Decomposition过程

季节解构模块是用于分析有季节变化的时间序列的工具。它的基本思想是一个时间序列的信息可以来自四个方面:线性趋势、季节变化、循环变化和误差。而这四种信息可以通过乘法模型组合,也可以通过加法模型组合。根据模型结构的不同,季节解构分解信息的方法也不同。

季节解构模块要求序列无缺失值,或者已经用适当的方法弥补。

例:用美国1947年1月到1969年12月住宅建筑的数据nrc.sav为例,对序列nrc2进行季节解构分析

方法:选择菜单Analyze | Time Series | Seasonal Decomposition,如下图进行设置

图4

下面对图4中的设置做简单的介绍。

Variable框:选入需要分析的变量

Model单选框组:用于选择模型的种类,有两个选择:相乘模型(Multiplicative)和相加模型(Additive)。

Moving Average Weight单选框组:决定计算移动平均数的方法

?All point equal:以季节因素的长度为长度计算均数,所有的记录权重一样。当周期

长度为奇数时多选。

?Endpoint weighted by 0.5:以周期长度+1作为长度计算移动均数。两端的数的权

重取0.5,中间的权重都是1。当周期长度为偶数时多选。

Display casewise listing:要求输出计算的完整结果,包括计算的全部过程。

Output窗口中的部分输出结果如下:

原序列经过以周期为长度的移动平均后得到的值已经去除了季节因素和误差,仅仅包含线性趋势、循环变化。所以上图的Ratios就是包含季节和误差的。(注意此模型为乘法模型)。求整个序列相同月份的Ratios的平均数并扣除误差成分就得到相应月份的季节因子(Seasonal factors)。其中误差是通过求各个月份Ratios的均数的均数得到的。然后原序列扣除季节因子就得到季节调整后的序列(Seasonal adjusted series)。最后还给出了平滑了循环因素的序列和不规则成分的大小。分析结果以新变量的形式加在数据文件后面,可以用于进一步的分析,比如做时序图。

4.2Exponential Smoothing过程

指数平滑法用序列过去值的加权均数来预测将来的值,并且给序列中近期的数据以较大的权重,远期的数据给以较小的权重。理由是随着时间的流逝,过去值的影响逐渐减小。指数平滑发只适合于影响随时间的消逝呈指数下降的数据。指数平滑法适用于呈水平发展的序列。对于上升的数据,预测总是偏低;下降的数据,预测总偏高。对于有上升或下降趋势的序列可以通过差分使序列平稳化,对于有季节变化的数据可以用季节差分处理。使用菜单Analyze | Time Series | Exponential Smoothing。最后SPSS会根据我们的操作,按照最优的原则将预测值和预测误差值存为新变量。据此就可以做出原始值和预测值的线图,进行比较。

例:数据文件sales.sav中存储的是某公司1992年1季度到2000年4季度的销售资料,请用指数平滑法分析预测将来4个季度,即2001年4个季度的销售额。

4.3ARIMA过程

ARMA模型-自回归滑动平均模型-是一族时间序列模型。是二十世纪70年代后应用最广泛的时间序列模型。两个特殊情况是自回归模型和滑动平均模型。

ARIMA模型建模的基本步骤可以分为4步:

?序列的平稳性:使原序列满足ARMA模型平稳可逆的要求

?模型识别:主要是通过读ACF、PACF和CCF把握模型的大致方向,为目标序列

定阶,提供几个粗模型以便进一步分析完善

?参数估计和模型诊断:参数估计是对识别阶段提供的粗模型参数估计并假设检验,

做模型的诊断。

?预测:这是模型实际应用价值的体现

模型识别和参数估计及模型诊断的过程往往是一个模型逐渐完善的过程,需要不断修正最初的选择。

ACF、PACF和CCF是描述序列特征的必备工具。仔细研究时间序列的相关情况是ARMA模型必经之路。在选择模型时根据就是ACF、PACF和CCF

三、实验任务

1.通读教案,大致了解SPSS11中时间序列分析的基本步骤和其中所能进行的时间序列分析。

2.使用gnp.sav做时间序列分析的前期准备工作。

(1)缺失值的填补:自己去掉几个值,然后使用缺失值填补过程,去掉缺失值

(2)定义时间变量:年、季度

(3)时间序列的平稳化:使用transform | Create Time Series和Transform | Compute (4)时间序列的图形化观察。为gnp.sav中的数据做统计图,观察序列的趋势

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

(整理)8章 时间序列分析练习题参考答案.

第八章 时间数列分析 一、单项选择题 1.时间序列与变量数列( ) A 都是根据时间顺序排列的 B 都是根据变量值大小排列的 C 前者是根据时间顺序排列的,后者是根据变量值大小排列的 D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 C 2.时间序列中,数值大小与时间长短有直接关系的是( ) A 平均数时间序列 B 时期序列 C 时点序列 D 相对数时间序列 B 3.发展速度属于( ) A 比例相对数 B 比较相对数 C 动态相对数 D 强度相对数 C 4.计算发展速度的分母是( ) A 报告期水平 B 基期水平 C 实际水平 D 计划水平 B 5.某车间月初工人人数资料如下: 则该车间上半年的平均人数约为( ) A 296人 B 292人 C 295 人 D 300人 C 6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( ) A 150万人 B 150.2万人 C 150.1万人 D 无法确定 C 7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A 8.采用几何平均法计算平均发展速度的依据是( ) A 各年环比发展速度之积等于总速度 B 各年环比发展速度之和等于总速度 C 各年环比增长速度之积等于总速度 D 各年环比增长速度之和等于总速度 A 9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( ) A 5 %6.58 B 5%6.158 C 6 %6.58 D 6%6.158 B 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 D 11.在测定长期趋势的方法中,可以形成数学模型的是( ) A 时距扩大法 B 移动平均法 C 最小平方法 D 季节指数法

时间序列分析实验报告

时间序列分析实验报告 P185#1、某股票连续若干天的收盘价如表5-4 (行数据)所示。 表5-4 304 303 307 299 296 293301 293 301 295 284286 286 287 284 282278 281 278 277279 278 270 268 272 273 279 279280 275 271 277 278279 283 284 282 283279 280 280 279278 283 278 270 275 273 273 272275 273 273 272 273272 273 271 272 271273 277 274 274272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 选择适当模型拟合该序列的发展,并估计下一天的收盘价。 解: (1)通过SA漱件画出上述序列的时序图如下: 程序: data example5_1; in put x@@; time=_ n_; cards ; 304 303 307 299296 293 301 293 301 295 284286286 287 284 282 278 281 278277 279 278 270 268 272 273279279 280 275 271 277 278 279283 284 282 283 279 280 280279278 283 278 270 275 273 273272 275 273 273 272 273 272273271 272 271 273 277 274 274272 280 282 292 295 295 294290291 288 288 290 293 288 289291 293 293 290 288 287 289292288 288 285 282 286 286 287284 283 286 282 287 286 287292292 294 291 288 289 proc gplot data =example5_1; plot x*time= 1; symbol1 c=black v=star i =join; run ; 上述程序所得时序图如下: 上述时序图显示,该序列具有长期趋势又含有一定的周期性,为典型的非平稳序列。又因为该序列呈现曲线形式,所以选择2阶差分。

时间序列分析及VAR模型

Lecture 6 6. Time series analysis: Multivariate models 6.1Learning outcomes ?Vector autoregression (VAR) ?Cointegration ?Vector error correction model (VECM) ?Application: pairs trading 6.2Vector autoregression (VAR)向量自回归 The classical linear regression model assumes strict exogeneity; hence, there is no serial correlation between error terms and any realisation of any independent variable (lead or lag). As we discovered, serial correlation (or autocorrelation) is very common in financial time series and panel data. Furthermore, we assumed a pre-defined relation of causality: explanatory variable affect the dependent variable? 传统的线性回归模型假设严格的外主性,误差项与可实现的独立变量之间没有序列相关性。金融时间序列及面板数据往往都有很强的自相关性,假定解释变量影响因变量。 We now relax bo什]assumptions using a VAR model. VAR models can be regarded as a generalisation of AR(p) processes by adding additional time series. Hence, we enter the field of multivariate time series analysis. VAR模型可以'"l作是在一般的自回归过程中加入时间序列。 Lefs look at a standard AR(p) process for hvo variables (y( and xj? (1)%= Ql + 琅]仇『一 +仏 (2)x t = a2 + - + £2t The next step is to allow that lagged values of xt can affect y( and vice versa. This means that we obtain a system of equations for two dependent variables(y(and xj?Both dependent variables are influenced by past realisations of y(and x t. By doing that, we violate strict exogeneity (see Lecture 2); however, we can use a more relaxed concept, namely weak exogeneity?As we use lagged values of bodi dependent variables, we can argue that these lagged values are known to us, as we observed them in the previous period? We call these variables predetermined? Predetermined (lagged) variables fulfil weak exogeneity in the sense that they have to be uncorrelated with the contemporaneoiis error term in t? We can still use OLS to estimate the following system of equations, which is called a VAR in reduced form. (3)+y 仇1化_丫+sr=i ^12 +£it (4)X t = a2+2X1021”—, + _i + f2t

时间序列分析实验报告汇总.doc

《时间序列分析》课程实验报告

一、上机练习(P124) 1.拟合线性趋势 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 程序: data xiti1; input x@@; t=_n_; cards; 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ; proc gplot data=xiti1; plot x*t; symbol c=red v=star i=join; run; proc autoreg data=xiti1; model x=t; output predicted=xhat out=out; run; proc gplot data=out; plot x*t=1 xhat*t=2/overlay; symbol2c=green v=star i=join; run; 运行结果:

分析:上图为该序列的时序图,可以看出其具有明显的线性递增趋势,故使用线性模型进行拟合:x t=a+bt+I t,t=1,2,3,…,12 分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于 0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。从而所拟合模型为: x t=9.7086+1.9829t.

分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。 2.拟合非线性趋势 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 程序: data xiti2; input x@@; t=_n_; cards; 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 ; proc gplot data=xiti2; plot x*t; symbol c=red v=star i=none; run; proc nlin method=gauss; model x=a*b**t; parameters a=0.1 b=1.1; der.a=b**t; der.b=a*t*b**(t-1); output predicted=xh out=out; run; proc gplot data=out; plot x*t=1 xh*t=2/overlay;

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

spss时间序列模型

《统计软件实验报告》SPSS软件的上机实践应用 时间序列分析

数学与统计学学院 一、实验内容: 时间序列是指一个依时间顺序做成的观察资料的集合。时间序列分析过程中最常用的方法是:指数平滑、自回归、综合移动平均及季节分解。 本次实验研究就业理论中的就业人口总量问题。但人口经济的理论和实践表明,就业总量往往受到许多因素的制约,这些因素之间有着错综复杂的联系,因此,运用结构性的因果模型分析和预测就业总量往往是比较困难的。时间序列分析中的自回归求积分移动平均法(ARIMA)则是一个较好的选择。对于时间序列的短期预测来说,随机时序ARIMA是一种精度较高的模型。 我们已辽宁省历年(1969-2005)从业人员人数为数据基础建立一个就业总量的预测时间序列模型,通过spss建立模型并用此模型来预测就业总量的未来发展趋势。 二、实验目的: 1.准确理解时间序列分析的方法原理 2.学会实用SPSS建立时间序列变量 3.学会使用SPSS绘制时间序列图以反应时间序列的直观特征。

4.掌握时间序列模型的平稳化方法。 5.掌握时间序列模型的定阶方法。 6.学会使用SPSS建立时间序列模型与短期预测。 7.培养运用时间序列分析方法解决身边实际问题的能力。 三、实验分析: 总体分析: 先对数据进行必要的预处理和观察,直到它变成稳态后再用SPSS对数据进行分析。 数据的预处理阶段,将它分为三个步骤:首先,对有缺失值的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平稳性进行计算观察。 数据分析和建模阶段:根据时间序列的特征和分析的要求,选择恰当的模型进行数据建模和分析。 四、实验步骤: SPSS的数据准备包括数据文件的建立、时间定义和数据期间的指定。 SPSS的时间定义功能用来将数据编辑窗口中的一个或多个变量指定为时间序列变量,并给它们赋予相应的时间标志,具体操作步骤是: 1.选择菜单:Date→Define Dates,出现窗口:

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

现代时间序列分析模型

现代时间序列分析模型§1 时间序列平稳性和单位根检验§2 协整与误差修正模型经典时间序列分析模型: MA、AR、ARMA 平稳时间序列模型分析时间序列自身的变化规律现代时间序列分析模型:分析时间序列之间的关系单位根检验、协整检验现代宏观计量经济学§1 时间序列平稳性和单位根检验一、时间序列的平稳性二、单整序列三、单位根检验一、时间序列的平稳性 Stationary Time Series ⒈问题的提出经典计量经济模型常用到的数据有:时间序列数据(time-series data ;截面数据cross-sectional data 平行/面板数据(panel data/time-series cross-section data 时间序列数据是最常见,也是最常用到的数据。经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础――“一致性”要求――被破怀。数据非平稳,往往导致出现“虚假回归”(Spurious Regression)问题。表现为两个本来没有任何因果关系的变量,却有很高的相关性。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。 2、平稳性的定义假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列 Xt (t 1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:均值E Xt ?是与时间t 无关的常数;方差Var Xt ?2是与时间t 无关的常数;协方差Cov Xt,Xt+k ?k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary ,

时间序列分析实验报告

时间序列分析SAS软件实验报告: 以我国2002第一季度到2012年第一季度国内生产总值数据(季节效应模型)分析 班级:统计系统计0姓名: 学号: 指导老师: 20 年月日

时间序列分析报告 一、前言 【摘要】2012年3月5日温家宝代表国务院向大会作政府工作报告。温家宝在报告中提出,2012年国内生产总值增长7.5%。这是我国国内生产总值(GDP)预期增长目标八年来首次低于8%。 温家宝说,今年经济社会发展的主要预期目标是:国内生产总值增长7.5%;城镇新增就业900万人以上,城镇登记失业率控制在4.6%以内;居民消费价格涨幅控制在4%左右;进出口总额增长10%左右,国际收支状况继续改善。同时,要在产业结构调整、自主创新、节能减排等方面取得新进展,城乡居民收入实际增长和经济增长保持同步。 他指出,这里要着重说明,国内生产总值增长目标略微调低,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。提出居民消费价格涨幅控制在4%左右,综合考虑了输入性通胀因素、要素成本上升影响以及居民承受能力,也为价格改革预留一定空间。 对于这一预期目标的调整,温家宝解释说,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。 央行货币政策委员会委员李稻葵表示,未来若干年中国经济增长速度会有所放缓,这个放缓是必要的,是经济发展方式转变的一个必然要求。 【关键词】“十二五”规划目标国内生产总值增长率增速放缓提高发展质量附表:国内生产总值(2012年1季度) 绝对额(亿元)比去年同期增长(%) 国内生产总值107995.0 8.1 第一产业6922.0 3.8 第二产业51450.5 9.1 第三产业49622.5 7.5 注1:绝对额按现价计算,增长速度按不变价计算。注2:该表为初步核算数据。 GDP环比增长速度 环比增长速度(%) 2011年1季度 2.2 2季度 2.3 3季度 2.4 4季度 1.9 2012年1季度 1.8 注:环比增长速度为经季节调整与上一季度对比的增长速度。 此表是我国2012年第一季度国内生产总值及与2011年同期比较来源:前瞻网

第八章 时间序列分析 思考题及练习题

第八章思考题及练习题 (一) 填空题 1、时间数列又称数列,一般由和两个基本要素构成。 2、动态数列按统计指标的表现形式可分为、和三 大类,其中最基本的时间数列是。 3、编制动态数列最基本的原则是。 4、时间数列中的四种变动(构成因素)分别是:、、、和 5、时间数列中的各项指标数值,就叫,通常用a表示。 6、平均发展水平是对时间数列的各指标求平均,反映经济现象在不同时间的平均水平或代表性水平,又称:平均数,或平均数。 7、增长量由于采用的基期不同,分为增长量和增长量,各增长量之和等于相应的增长量。 8、把报告期的发展水平除以基期的发展水平得到的相对数叫,亦称动态系数。根据采用的基期不同,它又可分为发展速度和发展速度两种。 9、平均发展速度的计算方法有法和法两种。 10、某企业2000年的粮食产量比90年增长了2倍,比95年增长了0.8倍,则95年粮食产量比90年增长了倍。 11、把增长速度和增长量结合起来而计算出来的相对指标是:。 12、由一个时期数列各逐期增长量构成的动态数列,仍属时期数列;由一个时点数列各逐期增长量构成的动态数列,属数列。 13、在时间数列的变动影响因素中,最基本、最常见的因素是,举出三种常用的测定方法、、。 14、若原动态数列为月份资料,而且现象有季节变动,使用移动平均法对之修匀时,时距宜确定为项,但所得各项移动平均数,尚需,以扶正其位置。 15、使用最小平方法配合趋势直线时,求解 a、b参数值的那两个标准方程式为。16、通常情况下,当时间数列的一级增长量大致相等时,可拟合趋势方程,而当时间数列中各二级增长量大致相等时,宜配合趋势方程。 17、用半数平均法求解直线趋势方程的参数时,先将时间数列分成的两部分,再分别计算出各部分指标平均数和的平均数,代入相应的联立方程求解即得。 18、分析和测定季节变动最常用、最简便的方法是。这种方法是通过对若干年资料的数据,求出与全数列总平均水平,然后对比得出各月份的。 19、如果时间数列中既有长期趋势又有季节变动,则应用法来计算季节比率。 20、商业周期往往经历了从萧条、复苏、繁荣再萧条、复苏、繁荣……的过程,这种变动称为变动。 (二) 单项选择题 1、组成动态数列的两个基本要素是( )。 A、时间和指标数值 B、变量和次数(频数)

应用时间序列实验报告

河南工程学院课程设计《时间序列分析课程设计》学生姓名学号: 学院:理学院 专业班级: 专业课程:时间序列分析课程设计 指导教师: 2017年6月2日

目录 1. 实验一澳大利亚常住人口变动分析 (1) 1.1 实验目的 (1) 1.2 实验原理 (1) 1.3 实验内容 (2) 1.4 实验过程 (3) 2. 实验二我国铁路货运量分析 (8) 2.1 实验目的 (8) 2.2 实验原理 (8) 2.3 实验内容 (9) 2.4 实验过程 (10) 3. 实验三美国月度事故死亡数据分析 (14) 3.1 实验目的 (14) 3.2 实验原理 (15) 3.3 实验内容 (15) 3.4 实验过程 (16) 课程设计体会 (19)

1.实验一澳大利亚常住人口变动分析 1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。 表1-1 (1)判断该序列的平稳性与纯随机性。 (2)选择适当模型拟合该序列的发展。 (3)绘制该序列拟合及未来5年预测序列图。 1.1 实验目的 掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。 1.2 实验原理 (1)平稳性检验与纯随机性检验 对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。

(2)模型识别 先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。 (3)模型预测 模型拟合好之后,利用该模型对序列进行短期预测。 1.3 实验内容 (1)判断该序列的平稳性与纯随机性 时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。 对自相关图进行检验时,可以用SAS 系统ARIMA 过程中的IDENTIFY 语句来做自相关图。 而单位根检验我们用到的是DF 检验。以1阶自回归序列为例: 11t t t x x φε-=+ 该序列的特征方程为: 0λφ-= 特征根为: λφ= 当特征根在单位圆内时: 11φ< 该序列平稳。 当特征根在单位圆上或单位圆外时: 11φ≥ 该序列非平稳。 对于纯随机性检验,既白噪声检验,可以用SAS 系统中的IDENTIFY 语句来输出白噪声检验的结果。 (2)选择适当模型拟合该序列的发展

时间序列分析论文

关于居民消费价格指数的时间序列分析 摘要 本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。 关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测 引言 一、理论准备 时间序列分析是按照时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。 时间序列分析是定量预测方法之一。 基本原理: 1.承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。 2.考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。 时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。 二、基本思想 1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。 2.若为非平稳序列,则利用差分变换成平稳序列。 3.对平稳序列,计算相关系数和偏相关系数,确定模型。 4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。 6.根据过去行为对将来的发展做出预测。 三、背景知识 CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。一般来说,当CPI>3%的增幅时我们称为通货膨胀。 国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。经济学家用消费价格指数进行经济分析和利用时间序列构建经济模型。 总所周知,居民消费价格指数是反映一个国家或地区宏观经济运行状况好坏的必不可少的统计指标之一,是世界各国判断通货膨胀(紧缩)的主要标尺,是反映市场经济景气状态必不可少的经济晴雨表。因此,我国也采用国际惯例,用消费价格指数作为判断通货膨胀的主要标尺。 由于CPI是反映社会经济现象的综合指标,对其定量分析必须建立在定性分析的基础上,因此CPI的预测趋势还要与国家宏观经济政策及我国市场的供求关系相结合。如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。因此,该指数过高的升幅往往不被市场欢迎。 基于以上种种,CPI指数的预测对我国各方面显得尤为重要。 本文针对烟酒及用品类居民消费价格指数,分析其时间序列,并进行了相关预测。 模型的建立 一、数据的选择: 选取2007年4月—2014年4月的各个月份的烟酒及用品类居民消费价格指数,如表1所示: 表1 烟酒及用品类居民消费价格指数 时间指数时间指数时间指数时间指数2007.4 99.4 2009.2 103.2 2010.12 101.5 2012.1 103.4 2007.5 99.3 2009.3 103.3 2011.1 101.6 2012.11 103.4 2007.6 99.3 2009.4 103.4 2011.2 101.7 2012.12 103.3 2007.7 99.3 2009.5 103.6 2011.3 101.7 2013.1 103.1

相关文档