文档库 最新最全的文档下载
当前位置:文档库 › 生物基因型计算

生物基因型计算

生物基因型计算
生物基因型计算

杂交后代基因型的概率计算的通用数学解法

想发表的文章,请大家给看看

杂交后代基因型的概率计算的通用数学解法

长春七中:刘大柱

杂交后代的基因型(或表现型)的概率计算具有重大的实际意义,因此也是常见的考试题型。但学生普遍感到此类题不好理解,尤其遇到较复杂的杂交组合,更

是一头雾水,不知从何下手。

笔者根据多年的教学经验,总结出两种通用的求此类题的数学解法,希望对广大

学生有所帮助。

例一:一正常女子(其父母正常,但其弟是白化病和红绿色盲患者)与一名正常男子(其母是白化病患者)结婚。求其后代情况?

解:根据已知推出(过程从略)

女子的肤色基因型是1/3AA+2/3Aa;色觉基因型是1/2XBXB+1/2XBXb 男子的肤色基因型是Aa;色觉基因型是XBY

1,求后代肤色情况

女╳ 男

(1/3AA+2/3Aa)╳ Aa

=1/3(AA╳Aa)+2/3(Aa╳Aa)

=1/3(1/2AA+1/2Aa)+2/3(1/4AA+1/2Aa+1/4aa)

=1/3AA+1/2Aa+1/6aa

2,求后代色觉情况

女╳男

(1/2XBXB+1/2XBXb)╳ XBY

=1/2(XBXB╳XBY)+1/2(XBXb╳Y)

=3/8XBXB+1/8XBXb+3/8XBY+1/8XbY

3, 求后代的总情况

(1/3AA+1/2Aa+1/6aa)╳(3/8XBXB+1/8XBXb+3/8XBY+1/8XbY)

=1/8AA XBXB +1/24AA XBXb +1/8AA XBY +1/24AA XbY

+3/16Aa XBXB +1/16Aa XBXb +3/16Aa XBY +1/16Aa XbY

+1/16aa XBXB +1/48aa XBXb +1/16aa XBY +1/48aa XbY

(可根据具体的要求,求出所需项即可,不必所有项均求出) 例二:果蝇正常翅对残翅是显性,由一对常染色体等位基因控制。杂合体果蝇的后代F1中正常翅个体自由交配,求其后代F2情况?

(此题可用例一的解法求解,从略。此处用另一种解法)

解:F1中正常翅个体中的雌果蝇的基因型是(1/3AA+2/3Aa),其产生的配子的

基因型为1/3A+2/3(1/2A+1/2a)=2/3A+1/3a;F1中正常翅个体中的雄果蝇的情况和F1中正常翅个体中的雌果蝇的相同。

其后代情况:

F1

配子 2/3A 1/3a

2/3A 4/9AA 2/9Aa

1/3a 2/9Aa 1/9aa

也可表述为(2/3A+1/3a)╳(2/3A+1/3a)=4/9 AA +4/9 Aa +1/9 aa

高中生物遗传概率计算方法

高中生物遗传概率的几种计算方法 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法 例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法 例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法 例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。 解析:第一代 Aa 第二代 1AA 2Aa 1aa 杂合体几率为 1/2 第三代纯 1AA 2Aa 1aa 纯杂合体几率为(1/2)2 第n代杂合体几率为(1/2)n-1正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法 例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是() A.1/2、1/8、5/8 B.3/4、1/4、5/8 C.1/4、1/4、1/2 D.1/4,1/8,1/2 配子TA Ta tA ta ta TtAa Ttaa ttAa ttaa tA TtAA TtAa ttAA ttAa 正确答案:A 五、利用加法原理和乘法原理的概率计算法 例题5(同上例题4):解析:(1)据题意分析,先推导出双亲的基因型为TtAa(父亲),ttAa(母亲)。据单基因分析法(每对基因单独分析),若他们再生育后代,则Tt×tt→1/2Tt,即多指的概率是1/2;Aa×Aa→1/4aa,即白化病的概率是1/4。(2)生下一个孩子同时患两种病的概率:P多指(1/2Tt)又白化(1/4aa)=1/2×1/4=1/8(乘法原理)。(3)生下一个孩子只患一种病的概率=1/2 +1/4—1/8×2=1/2或1/2×3/4+1/4× 1/2=1/2(加法原理和乘法原理)。⑷生下一个孩子患病的概率=1/2 +1/4—1/8×1=5/8(加法原理和乘法原理)。正确答案:A 六、数学中集合的方法 例题6:一对夫妇的子代患遗传病甲的概率是a,不患遗传病甲的概率是b;患遗传病乙的概率是c,不患遗传病乙的概率是d。那么下列表示这对夫妇生出只患甲、乙两种病之一的概率的表达式正确的是: A、ad+bc B、1-ac-bd C、a+c-2ac D、b+d -2bd 解析:该题若用遗传病系谱图来解比较困难,若从数学的集合角度入手,用 作图法分析则会化难为易。下面我们先做出图1来验证A表达式,其中大圆 表示整个后代,左小圆表示患甲病,右小圆表示患乙病,则两小圆的交集部 分表示患甲、乙两种病(ac)两小圆除去交集部分表示只患甲病(ad)或乙 病(bc),则只患一种病的概率为ad+bc。依次类推,可以用此方法依次验 证余下三个表达式的正确性。正确答案:ABCD

高中生物蛋白质部分计算题

(一)有关蛋白质和核酸计算: [注:肽链数(m);氨基酸总数(n);氨基酸平均分子量(a);氨基酸平均分子量(b);核苷酸总数(c);核苷酸平均分子量(d)]。 1.蛋白质(和多肽):氨基酸经脱水缩合形成多肽,各种元素的质量守恒,其中H、O参与脱水。每个氨基酸至少1个氨基和1个羧基,多余的氨基和羧基来自R基。 ①氨基酸各原子数计算:C原子数=R基上C原子数+2;H原子数=R基上H原子数+4;O原子数=R 基上O原子数+2;N原子数=R基上N原子数+1。 ②每条肽链游离氨基和羧基至少:各1个;m条肽链蛋白质游离氨基和羧基至少:各m个; ③肽键数=脱水数(得失水数)=氨基酸数-肽链数=n—m ; ④蛋白质由m条多肽链组成:N原子总数=肽键总数+m个氨基数(端)+R基上氨基数; =肽键总数+氨基总数≥肽键总数+m个氨基数(端); O原子总数=肽键总数+2(m个羧基数(端)+R基上羧基数); =肽键总数+2×羧基总数≥肽键总数+2m个羧基数(端); ⑤蛋白质分子量=氨基酸总分子量—脱水总分子量(—脱氢总原子量)=na—18(n—m); 2.蛋白质中氨基酸数目与双链DNA(基因)、mRNA碱基数的计算: ①DNA基因的碱基数(至少):mRNA的碱基数(至少):蛋白质中氨基酸的数目=6:3:1; ②肽键数(得失水数)+肽链数=氨基酸数=mRNA碱基数/3=(DNA)基因碱基数/6; ③DNA脱水数=核苷酸总数—DNA双链数=c—2; mRNA脱水数=核苷酸总数—mRNA单链数=c—1; ④DNA分子量=核苷酸总分子量—DNA脱水总分子量=(6n)d—18(c—2)。 mRNA分子量=核苷酸总分子量—mRNA脱水总分子量=(3n)d—18(c—1)。 ⑤真核细胞基因:外显子碱基对占整个基因中比例=编码的氨基酸数×3÷该基因总碱基数×100%;编码的氨基酸数×6≤真核细胞基因中外显子碱基数≤(编码的氨基酸数+1)×6。 3.有关双链DNA(1、2链)与mRNA(3链)的碱基计算: ①DNA单、双链配对碱基关系:A1=T2,T1=A2;A=T=A1+A2=T1+T2,C=G=C1+C2=G1+G2。A+C=G+T=A+G=C+T=1/2(A+G+C+T);(A+G)%=(C+T)%=(A+C)%=(G+T)%=50%;(双链DNA两个特征:嘌呤碱基总数=嘧啶碱基总数) DNA单、双链碱基含量计算:(A+T)%+(C+G)%=1;(C+G)%=1―(A+T)%=2C%=2G%=1―2A%=1―2T%;(A1+T1)%=1―(C1+G1)%;(A2+T2)% =1―(C2+G2)%。 ②DNA单链之间碱基数目关系:A1+T1+C1+G1=T2+A2+G2+C2=1/2(A+G+C+T); A1+T1=A2+T2=A3+U3=1/2(A+T);C1+G1=C2+G2=C3+G3=1/2(G+C);

2019年北京林业大学计算生物学与生物信息学(0710Z2)研究方向、考试科目、参考书目、考研经验、复习指导

2019年北京林业大学生科院计算生物学与生物信息学(0710Z2)研究方向、考试科目、参考书目、考研经验、复习指导 一.研究方向 01系统生物学 二.初试考试科目 ①101思想政治理论 ②201英语一 ③714生物化学与分子生物学 ④847遗传学 三.复试笔试科目 专业综合考试(包括分子生物学,遗传学) 四.参考书目 1.初试参考书目 714生物化学与分子生物学: 【1】《生物化学》王镜岩高等教育出版社; 【2】《生物化学》沈同等高等教育出版社 【3】《分子生物学》瞿礼嘉高等教育出版社 847遗传学:

【1】《普通遗传学》杨业华高等教育出版社; 【2】《林木遗传学基础》朱之悌中国林业出版社 2.复试参考书目 分子生物学与遗传学相关的基本概念、基础理论、研究方法与技术;系统生物学相关前沿领域发展概 五、北林生物化学与分子生物学复习备考建议 1、零基础复习阶段(6月前) 本阶段根据考研科目,选择适当的参考教材,有目的地把教材过一遍,全面熟悉教材,适当扩展知识面,熟悉专业课各科的经典教材。这个期间非常痛苦,要尽量避免钻牛角尖,遇到实在不容易理解的内容,先跳过去,要把握全局。系统掌握本专业理论知识。对各门课程有个系统性的了解,弄清每本书的章节分布情况,内在逻辑结构,重点章节所在等,但不要求记住,最终基本达到北林本科水平。 2、基础复习阶段(6-8月) 本阶段要求考生熟读教材,攻克重难点,全面掌握每本教材的知识点,结合真题找出重点内容进行总结,并有相配套的专业课知识点笔记,进行深入复习,加强知识点的前后联系,建立整体框架结构,分清重难点,对重难点基本掌握。同时多练习相关参考书目课后习题、习题册,提高自己快速解答能力,熟悉历年真题,弄清考试形式、题型设置和难易程度等内容。要求吃透参考书内容,做到准确定位,事无巨细地对涉及到的各类知识点进行地毯式的复习,夯实基础,训练思维,掌握一些基本概念和基本模型。 3、强化提高阶段(9月-11月)

高中生物必修二有关遗传的计算公式总结.doc

高中生物必修二有关遗传的计算公式总结 新教材生物必修2《遗传与进化》主要介绍了遗传的知识,是高中学生要学习好相关计算公式。下面我给高中学生带来生物必修二有关遗传的计算公式,希望对你有帮助。 高中生物有关遗传的计算公式 遗传题分为因果题和系谱题两大类。因果题分为以因求果和由果推因两种类型。以因求果题解题思路:亲代基因型双亲配子型及其概率子代基因型及其概率子代表现型及其概率。由果推因题解题思路:子代表现型比例双亲交配方式双亲基因型。系谱题要明确:系谱符号的含义,根据系谱判断显隐性遗传病主要依据和推知亲代基因型与预测未来后代表现型及其概率方法。 1.基因待定法:由子代表现型推导亲代基因型。解题四步曲:a。判定显隐性或显隐遗传病和基因位置;b。写出表型根:aa、A_、XbXb、XBX_、XbY、XBY;IA_、IB_、ii、IAIB。 c。视不同情形选择待定法:①性状突破法;②性别突破法;③显隐比例法;④配子比例法。d。综合写出:完整的基因型。 2.单独相乘法(集合交并法):求①亲代产生配子种类及概率;②子代基因型和表现型种类;③某种基因型或表现型在后代出现概率。解法:①先判定:必须符合基因的自由组合规律。②再分解:逐对单独用分离定律(伴性遗传)研究。③再相乘:按需采集进行组合相乘。注意:多组亲本杂交(无论何种遗传病),务必抢先找出能产生aa和XbXb+XbY的亲本杂交组来计

算aa和XbXb+XbY概率,再求出全部A_,XBX_+XBY概率。注意辨别(两组概念):求患病男孩概率与求患病男孩概率的子代孩子(男孩、女孩和全部)范围界定;求基因型概率与求表现型概率的子代显隐(正常、患病和和全部)范围界定。 3.有关遗传定律计算:Aa连续逐代自交育种纯化:杂合子(1/2)n;纯合子各1―(1/2)n。每对均为杂合的F1配子种类和结合方式:2 n ;4 n ;F2基因型和表现型:3n;2 n;F2纯合子和杂合子:(1/2)n1—(1/2)n。 4.基因频率计算:①定义法(基因型)计算:(常染色体遗传)基因频率(A 或a)%=某种(A或a)基因总数/种群等位基因(A和a)总数=(纯合子个体数×2+杂合子个体数)÷总人数×2。(伴性遗传)X染色体上显性基因频率= 雌性个体显性纯合子的基因型频率+雄性个体显性个体的基因型频率 +1/2×雌性个体杂合子的基因型频率=(雌性个体显性纯合子个体数×2+ 雄性个体显性个体个体数+雌性个体杂合子个体数)÷雌性个体个体数 ×2+雄性个体个体数)。注:伴性遗传不算Y,Y上没有等位基因。②基因型频率(基因型频率=特定基因型的个体数/总个体数)公式: A%=AA%+1/2Aa%;a%=aa%+1/2Aa%;③哈迪-温伯格定律:A%=p, a%=q;p+q=1;(p+q)2=p2+2pq+q2=1;AA%=p2,Aa% =2pq,aa%=q2。(复等位基因)可调整公式为:(p+q+r)2=p2+q2+r2+2pq+2pr+2qr=1,p+q+r=1。p、q、r各复等位基因的基因频率。例如:在一个大种群中,基因型aa的比例为1/10000,则a基因的频率为1/100,Aa的频率约为1/50。 4.有关染色体变异计算: ①m倍体生物(2n=mX):体细胞染色体数(2n)=染色体组基数(X)×染色体

高一生物蛋白质计算总结

人体细胞中的核酸有两种:DNA和RNA DNA碱基:A、T、C、G,五碳糖:脱氧核糖 RNA碱基:A、U、C、G,五碳糖:核糖 所以碱基有5种:A、T、C、G、U 五碳糖有两种:核糖、脱氧核糖 核苷酸有8种:腺嘌呤核糖核苷酸(A)、鸟嘌呤核糖核苷酸(G)、胞嘧啶核糖核苷酸(C)、尿嘧啶核糖核苷酸(U)、腺嘌呤脱氧核糖核苷酸(A)、鸟嘌呤脱氧核糖核苷酸(G)、胞嘧啶脱氧核糖核苷酸(C)、胸腺嘧啶脱氧核糖核苷酸(T) 在R基上无N元素存在的情况下,N原子的数目与氨基酸的数目相等。 .肽链中氨基酸数目、肽键数目和肽链数目之间的关系:若有n个氨基酸分子缩合成m 条肽链,则可形成(n-m)个肽键,脱去(n-m)个水分子,至少有-NH2和-COOH各m个。游离氨基或羧基数=肽链条数+R基中含有的氨基或羧基数 例1.谷胱甘肽(分子式C10H17O6N3S)是存在于动植物和微生物细胞中的一种重要的三肽,它是由谷氨酸(C5H9NO4)、甘氨酸(C2H5O2)和半胱氨酸缩合而成,则半胱氨酸可能的分子式为( ) A.C3H3NS B. C3H5NS C. C3H7O2NS D. C3H3O2NS 解析: 谷胱甘肽是由3个氨基酸通过脱去2分子水缩合而成的三肽。因此,这3个氨基酸分子式之和应等于谷胱甘肽分子式再加上2个水分子,即C10H17O6N3S+2H2O=C10H21O8N3S 。故C10H21O8N3S - C5H9NO4 -C2H5NO2 =C3H7O2NS(半胱氨酸)。 参考答案:C 点拨:掌握氨基酸分子的结构通式以及脱水缩合反应的过程是解决此类计算题的关键。 二、有关蛋白质中肽键数及脱下水分子数的计算例2. 人体内的抗体IgG是一种重要的免疫球蛋白,由4条肽链构成,共有m个氨基酸,则该蛋白质分子有肽键数( ) A.m 个B. (m+1)个 C.(m-2)个 D.(m-4)个 参考答案:D 点拨:m个氨基酸分子脱水缩合成n条多肽链时,要脱下(m-n)个水分子,同时形成(m-n)

计算生物学讲解

第一讲:学科间的关联 ? 首先锁定研究对象:分子 + 环境,或者更大的体系 – 分子:单个或几个分子 ,千万个分子 – 环境:多个分子,连续介质 ? 计算途径:原理 + 算法 – 原理:物理学,化学,生物学 – 算法:数学、统计学 同样的几个问题 1. 包含什么? tRNA, mRNA, protein, water 2. 有何关联? tRNA-mRNA; mRNA-protein 3. 可否调控? tRNA 的移动过程; protein 的形成 4. 计算模型? 水分子;离子;药物小分子等 不同体系,不同方法 Multiple proteins 蛋白质内部,buried molecule, loop flipping 蛋白质之间:binding sites Rotation H-bonding Electrostatic interaction Van der Waals interaction 精确的计算方法,快速的近似方法 数学、统计学 ? 数字拟合,分类与回归,贝叶斯推断,蒙特 卡罗方法,马尔可夫链 ? 微分方程解析解与数值解,矩阵与数值计算 ? 集合,拓扑学,图论,群伦,排列组合 物理学 经典力学 量子力学 相对论处理 热力学 统计力学 电动力学 凝聚态理论 计算机科学 ? Linux 操作系统: – Serial computing, – Distributed or parallel computing (并行计算), MPI – Linux scripts, sed, awk – Perl, Python, Fortran, C++, Java ? MySQL, PHP, Apache ? Windows 视窗:MATLAB, R, Java,

高中生物论文:用《哈代-温伯格定律》计算基因频率

用遗传平衡理论计算基因频率 哈代-温伯格定律 Hardy-Weinberg Law 1908年提出,数学家哈迪(G.H. Hardy)和德国医生温伯格(W. Weinberg)分别提出关于基因频率稳定性的见解。在一个有性生殖的自然种群中,在符合以下5个条件的情况下,各等位基因的频率和等位基因的基因型频率在一代一代的遗传中是稳定不变的:1,种群大;2,种群中个体间的交配是随机的;3,没有突变发生;4,没有新基因加入;5,没有自然选择。用数学方程式表达就是(p+q)2=p2+2pq+q2其中p、q分别是等位基因P、Q的频率,p平方是指纯合子PP 的频率,2pq是指杂合子PQ的频率,q平方是指纯合子QQ的频率。注,2表示平方 事实上,这5个条件是永远不能满足的,因为基因频率总要变化。 在去年的高考生物试题中和今年的模拟体中,有一些试题要用到该知识,现举几例,供大家参考。 1.(09广东卷)某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是A.10/19 B.9/19 C.1/19 D.1/2 解析:假设该病的基因A,则正常的基因为a,正常人的基因型则为aa,患病者基因型为AA和Aa,由题干中知道:正常人占81%,由遗传平衡理论可知,a2=81%,则a的基因频率为90%,进一步知道A的基因频率为10%,AA的频率为1%,Aa的基因频率为18%,所以在19%的患病者中,AA占1∕19,Aa占18∕19。因此可得如

下遗传图: AA 1∕19 ⅹ aa Aa 18∕19 ⅹ aa ♀患者↓♂正常♀患者↓♂正常Aa 1∕19 Aa 9∕19aa 9∕19 所以患病者的概率为10∕19. 2.(10成都七中)小鼠的黑身和灰身分别由常染色体上的一对等位基因(E.e)控制,某小鼠种群中黑身占51%,取一只黑身小鼠与灰身小鼠交配,则其后代为黑身的概率是(30 ∕51 )。 解析:该题与上题考查的是同一知识点,由题干知:黑身为显性,EE和Ee共占51%,则ee占49%。E的基因频率=70%,e的基因频率=30%。EE的频率=9%,Ee的频率=42%。则黑身群体中,EE占9∕51,Ee占42∕51,故可得如下遗传图: EE 9∕51 ⅹ ee Ee 42∕51 ⅹ ee ↓↓ Ee 9∕51 Ee 21∕51 ee 21∕51 所以黑身在后代中占:9∕51+ 21∕51 = 30∕51 3.(09四川卷)大豆是两性花植物。下面是大豆某些性状的遗传实验: (1)大豆子叶颜色(BB表现深绿;Bb表现浅绿;bb呈黄色,幼苗阶段死亡)和花叶病的抗性(由R、r基因控制)遗传的实验结果如下表:

高中生物遗传知识点总结(精选.)

高中生物伴性遗传知识点总结: 伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。 3.常见遗传病的遗传方式: (1) 单基因遗传: 常染色体显性遗传:并指、多指; 常染色体隐性遗传:白化病、失天性聋哑 X连锁隐性遗传:血友病、红绿色盲; X连锁显性遗传:抗维生素D佝偻病; Y连锁遗传:外耳道多毛症; (2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿; (3 )染色体病:染色体数目异常:先天性愚型病; 染色体结构畸变:猫叫综合症。 单基因遗传病

单基因遗传病是指受一对等位基因控制的遗传病, 较常见的有红绿 色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类: 一、常染色体显性遗传病 致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。 常见常染色体显性遗传病的病因和临床表现 1、多指(趾)、并指(趾)。临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。 2、珠蛋白生成障碍性贫血。病因:珠蛋白肽链合成不足或缺失。临床表现:贫血。

高中生物蛋白质相关计算专题

“蛋白质计算”专题讲练 在高中生物学中,涉及蛋白质各种因素之间的数量关系比较复杂,是学生学习中的重点和难点,也是高考的考点与热点。因此,在复习时牢牢掌握氨基酸分子的结构通式以及脱水缩合反应的过程,恰当的运用相关公式是解决问题的关键。现将与蛋白质相关的计算公式及典型例题归析如下,以便复习参考。 一、有关蛋白质计算的公式汇总 ★★规律1:有关氨基数和羧基数的计算 ⑴蛋白质中氨基数=肽链数+R基上的氨基数=各氨基酸中氨基的总数-肽键数; ⑵蛋白质中羧基数=肽链数+R基上的羧基数=各氨基酸中羧基的总数-肽键数; ⑶在不考虑R基上的氨基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的氨基数为1,蛋白质分子由多条肽链构成,则至少含有的氨基数等于肽链数; ⑷在不考虑R基上的羧基数时,氨基酸脱水缩合形成的一条多肽链中,至少含有的羧基数为1,蛋白质分子由多条肽链构成,则至少含有的羧基数等于肽链数。 ★★规律2:蛋白质中肽键数及相对分子质量的计算 ⑴蛋白质中的肽键数=脱去的水分子数=水解消耗水分子数=氨基酸分子个数-肽链数; ⑵蛋白质的相对分子质量=氨基酸总质量(氨基酸分子个数×氨基酸平均相对分子质量)-失水量(18×脱去的水分子数)。 注意:有时还要考虑其他化学变化过程,如:二硫键(—S—S—)的形成等,在肽链上出现二硫键时,与二硫键结合的部位要脱去两个H,谨防疏漏。 ★★规律3:有关蛋白质中各原子数的计算 ⑴C原子数=(肽链数+肽键数)×2+R基上的C原子数; ⑵H原子数=(氨基酸分子个数+肽链数)×2+R基上的H原子数=各氨基酸中H原子的总数-脱去的水分子数×2; ⑶O原子数=肽链数×2+肽键数+R基上的O原子数=各氨基酸中O原子的总数-脱去的水分子数; ⑷N原子数=肽链数+肽键数+R基上的N原子数=各氨基酸中N原子的总数。

剂量均衡研究(Dose Proportionality Study)_计算生物学_科研数据集

剂量均衡研究(Dose Proportionality Study) 数据摘要: Twelve healthy male (M) and 12 healthy female (F) human subjects (Sub) completed a four period (Per) crossover study. Each subject followed one of four randomly allocated sequences (Seq) of four oral doses (2.5 mg, 5 mg, 10 mg, 15 mg) of Drug A. A seven day washout period separated each of the single dose administrations. On each of the single dosing days, blood samples were taken from each of the subjects prior to dosing and at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, and 12 hours postdose. From these measurements, the area under the plasma concentration vs. time curve (AUC) from time 0 hours to infinity (ng議r/mL) and the maximum plasma concentration (Cmax) (ng/mL), were estimated for each of the four doses for each subject. The pharmacokinetic data, to the degree of accuracy as reported by the pharmacokineticist, are shown in Table 4. 中文关键词: 剂量,均衡,健康人,性别,随机的,

生物遗传概率的六种计算方法

生物遗传概率的六种计算方法 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为 1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。解析:第一代Aa第二代1AA 2Aa 1aa 杂合体几率为1/2第三代纯1AA 2Aa 1aa 纯杂合体几率为(1/2)2第n代杂合体几率为(1/2)n-1 正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是()A.1/2、1/8、

高三高考生物重难点专题复习:蛋白质、核酸的计算

蛋白质、核酸的计算 题型精讲 题型1、蛋白质的相关计算 1.某直链多肽的分子式为C22H34O13N6,其彻底水解后共产生了以下3种氨基酸,相关叙述正确的是 A.该直链多肽含一个游离氨基和一个游离羧基 B.该多肽没有经过折叠加工,所以不能与双缩脲试剂反应 C.合成1分子该物质将产生6个水分子 D.每个该多肽分子水解后可以产生3个谷氨酸 【答案】D 2.现有氨基酸800个,其中氨基总数为810个,羧基总数为808个,则由这些氨基酸合成的含有2条肽链的蛋白质共有肽键、氨基和羧基的数目依次为 A.798、2和2 B.799、11和9 C.799、1和1 D.798、12和10 【答案】D 题型2、核酸的相关计算 1.某双链DNA分子中,鸟嘌呤与胞嘧啶之和占全部碱基的比例为a,其中一条链上鸟嘌呤占该链全部碱基的比例为b,则互补链中鸟嘌呤占整个DNA分子碱基的比例为 A.(a/2)—(b/2) B.a—b C.(a—b)/(1—a) D.b—(a/2) 【答案】A 2.已知1个DNA分子中有4000个碱基对,其中胞嘧啶有2200个,这个DNA分子中应含有的脱氧核苷酸的数目和腺嘌呤的数目分别是 A.4 000和900个

B.4 000和1 800个 C.8 000和1800个 D.8 000和3 600个 【答案】C 同步练习 1.一条肽链的分子式为C22H34O13N6,其水解产物中只含有下列3种氨基酸。下列叙述错误的是 A.合成1个C22H34O13N6分子将产生5个水分子 B.在细胞中合成1个C22H34O13N6分子要形成5个肽键 C.1个C22H34O13N6分子完全水解后可以产生3个谷氨酸 D.1个C22H34O13N6分子中存在1个游离的氨基和3个游离的羧基 【答案】D 2.N个氨基酸组成了M个肽,其中有Z个是环状肽,据此分析下列表述错误的是A.M个肽一定含有的元素是C、H、O、N,还可能含有S B.M个至少含有的游离氨基数和游离羧基数均为M-Z C.将这M个肽完全水解为氨基酸,至少需要N-M+Z个水分子 D.这M个肽至少含有N-M+Z个O原子 【答案】D 3.有一种“十五肽”的化学式为C x H y N z O d S e(z>15,d>16)。已知其彻底水解后得到下列几种氨基酸:下列有关说法中不正确的是 A.水解可得e个半胱氨酸 B.水解可得(d-16)/2个天门冬氨酸 C.水解可得z-15个赖氨酸 D.水解时消耗15个水分子 【答案】D 4.某一DNA分子含有800个碱基对,其中含A为600个。该DNA分子含G的脱氧核苷酸的个数是 A.600 B.800

从计算化学到生物学_计算生物学的起源

从计算化学到生物学 杨金才 1501110432 尽管我是生物背景,但我所用的分子模拟方法却多是由计算化学家所建立的,然 后被应用于生物学领域。在计算化学领域主要荣获两次诺贝尓化学奖,第一次是1998年,用于表彰WalterKohn发展了密度泛函理论和John Pople发展了量子化学(QM)计算方法;第二次是2013年,授予Martin Karplus, Michael Levitt 和AriehWarshel,获奖理由 是“为复杂化学系统创立了多尺度模型”。如果说1998年获奖的量子化学计算方法使计算小分子化学体系成为可能,那2013年获奖的分子动力学计算方法则为计算生物大分子的行为提供了有力的工具,并且真正应用于揭示生物大分子功能和药物设计等实际应用 中来,理论化学终于走向了应用。 毫无疑问,量子力学计算方法的发展是极其重要的,但由于其计算量巨大,难以 应用于生物学大分子。因为如果采用量子力学计算方法算蛋白的运动轨迹,或许算100 年也不一定能算出来,对于生物大分子的计算,我们需要的是能在可以接受的时间内获 得有意义的结果。这就要求对体系作一定的近似以减少计算量,同时又最大可能地揭示 其生物学特性。而Martin Karplus在这方面做出了重要的工作,并开辟了用分子模拟解 决生物问题这一全新领域。 时间回到1950年,20岁的Martin Karplus,刚从哈佛大学毕业,当时他有两个选择,学化学或者学生物。经过美国理论物理学家、美国“原子弹之父” Robert Oppenheimer的推荐,他最终选择了生物学。于是Karplus到了西海岸的加州大学攻读生 物博士学位,师从Linus Carl Pauling。Pauling是著名美国化学奖,是量子化学和结构生 物学的先驱之一。他是唯一的一位两次独自获得诺贝尔奖的人。一次是1954年的诺贝尔化学奖,表彰其将量子力学应用于化学键的研究,深刻改变了我们对化学键的认识。于1935年出版了《量子力学导论——及其在化学中的应用》,这是历史上第一本以化学家 为读者的量子力学教科书。另一次则因参与反战反核获得1964年诺贝尔和平奖。Pauling还根据晶体衍射图,于1951年最早提出了蛋白质α螺旋结构模型。有科学史学 者认为沃森和克里克提出的DNA双螺旋结构模型就是受到了鲍林的影响。Pauling在量 子化学和结构生物学上的成就深刻影响了Karplus,“我的导师鲍林对我的科学研究产生了非常大的影响。”他说。正是在这样的学术背景下,Karplus开创了自己的领域。

高中生物基因频率与基因型频率的计算

高中生物基因频率与基因型频率的计算 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

基因频率与基因型频率的计算 一、 已知基因型频率计算基因频率 1 利用常染色体上一对等位基因的基因型频率(个数)求基因频率 设定A%、a%分别表示基因A 和a 的频率,AA 、Aa 、aa 分别表示AA 、Aa 、aa 三种基因型频率(个数)。根据遗传平衡定律,则: A% =)(22aa Aa AA Aa AA ++?+??100% a% =) (22aa Aa AA Aa aa ++?+??100% 例:已知人的褐色(A)对蓝色(a)是显性。在一个有30000人的群体中,蓝眼的有3600人,褐眼的有26400人,其中纯合体12000人。那么,在这个人群中A 、a 基因频率是多少 解析 因为等位基因成对存在,30000个人中共有基因30000×2=60000个,蓝眼3600含a 基因7200个,褐眼26400人,纯合体12000人含A 基因24000个,杂合体14400人含(26400-12000)×2=28800个基因,其中A 基因14400个,a 基因14400个。则:A 的基因频率=(24000+14400)/60000=,a 的基因频率=(7200+14400)/60000=。 又例:在一个种群中随机抽取一定数量的个体,其中基因型AA 的个体占18%,基因型Aa 的个体占78%,基因型aa 的个体占4%,那么基因A 和a 频率分别是多少 解析 A% =%) 4%78%18(2%78%182++?+??100% = 57% a% =%) 4%78%18(2%78%42++?+??100% = 43% 2 利用常染色体上复等位基因的基因型频率(个数)求基因频率 以人的ABO 血型系统决定于3 个等位基因I A 、I B 、i 为例。设基因IA 的频率为p ,基因IB 的频率为q ,基因i 的频率为r ,且人群中p+q+r=1。根据基因的随机结合,用

最全的遗传概率计算方法(高中生物)

全:遗传概率的计算方法(高中生物) 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法 例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法 例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法 例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。 解析:第一代Aa 第二代1AA 2Aa 1aa 杂合体几率为1/2 第三代纯1AA 2Aa 1aa 纯杂合体几率为(1/2)2 第n代杂合体几率为(1/2)n-1正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法 例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是() A.1/2、1/8、5/8 B.3/4、1/4、5/8 C.1/4、1/4、1/2 D.1/4,1/8,1/2 解析:据题意分析,先推导出双亲的基因型为TtAa(父),ttAa(母)。然后画棋盘如下:

生物必修一蛋白质计算公式总结

生物必修一蛋白质计算公式总结 导读:我根据大家的需要整理了一份关于《生物必修一蛋白质计算公式总结》的内容,具体内容:纵观近几年高考试题,与生物必修一蛋白质计算有关的内容进行了不同程度的考查,下面是我给大家带来的,希望对你有帮助。生物必修一蛋白质计算公式[注:肽链数(m);氨基酸总数(... 纵观近几年高考试题,与生物必修一蛋白质计算有关的内容进行了不同程度的考查,下面是我给大家带来的,希望对你有帮助。 生物必修一蛋白质计算公式 [注:肽链数(m);氨基酸总数(n);氨基酸平均分子量(a);氨基酸平均分子量(b);核苷酸总数(c);核苷酸平均分子量(d)]。 1.蛋白质(和多肽):氨基酸经脱水缩合形成多肽,各种元素的质量守恒,其中H、O参与脱水。每个氨基酸至少1个氨基和1个羧基,多余的氨基和羧基来自R基。①氨基酸各原子数计算:C原子数=R基上C原子数+2;H 原子数=R基上H原子数+4;O原子数=R基上O原子数+2;N原子数=R基上N 原子数+1。②每条肽链游离氨基和羧基至少:各1个;m条肽链蛋白质游离氨基和羧基至少:各m个; ③肽键数=脱水数(得失水数)=氨基酸数-肽链数=n—m ;④蛋白质由m条多肽链组成:N原子总数=肽键总数+m个氨基数(端)+R基上氨基数; =肽键总数+氨基总数肽键总数+m个氨基数(端); O原子总数=肽键总数+2(m个羧基数(端)+R基上羧基数); =肽键总数+2×羧基总数肽键总数+2m个羧基数(端);

⑤蛋白质分子量=氨基酸总分子量—脱水总分子量(—脱氢总原子 量)=na—18(n—m); 2.蛋白质中氨基酸数目与双链DNA(基因)、mRNA碱基数的计算: ①DNA基因的碱基数(至少):mRNA的碱基数(至少):蛋白质中氨基酸的数目=6:3:1; ②肽键数(得失水数)+肽链数=氨基酸数=mRNA碱基数/3=(DNA)基因碱基数/6; ③DNA脱水数=核苷酸总数—DNA双链数=c—2; mRNA脱水数=核苷酸总数—mRNA单链数=c—1; ④DNA分子量=核苷酸总分子量—DNA脱水总分子量=(6n)d—18(c—2)。 mRNA分子量=核苷酸总分子量—mRNA脱水总分子量=(3n)d—18(c—1)。 ⑤真核细胞基因:外显子碱基对占整个基因中比例=编码的氨基酸数 ×3÷该基因总碱基数×100%;编码的氨基酸数×6真核细胞基因中外显子碱基数(编码的氨基酸数+1)×6。 3.有关双链DNA(1、2链)与mRNA(3链)的碱基计算: ①DNA单、双链配对碱基关系:A1=T2,T1=A2;A=T=A1+A2=T1+T2, C=G=C1+C2=G1+G2。 A+C=G+T=A+G=C+T=1/2(A+G+C+T);(A+G)%=(C+T)%=(A+C)%=(G+T)%=50%;(双链DNA两个特征:嘌呤碱基总数=嘧啶碱基总数) DNA单、双链碱基含量计算: (A+T)%+(C+G)%=1;(C+G)%=1―(A+T)%=2C%=2G%=1―2A%=1―2T%;(A1+T1)% =1―(C1+G1)%;(A2+T2)%

高中生物基因频率与基因型频率的计算

基因频率与基因型频率的计算 一、 已知基因型频率计算基因频率 1 利用常染色体上一对等位基因的基因型频率(个数)求基因频率 设定A%、a%分别表示基因A 和a 的频率,AA 、Aa 、aa 分别表示AA 、Aa 、aa 三种基因型频率(个数)。根据遗传平衡定律,则: A% =)(22aa Aa AA Aa AA ++?+??100% a% =) (22aa Aa AA Aa aa ++?+??100% 例:已知人的褐色(A)对蓝色(a)是显性。在一个有30000人的群体中,蓝眼的有3600人,褐眼的有26400人,其中纯合体12000人。那么,在这个人群中A 、a 基因频率是多少? 解析 因为等位基因成对存在,30000个人中共有基因30000×2=60000个,蓝眼3600含a 基因7200个,褐眼26400人,纯合体12000人含A 基因24000个,杂合体14400人含(26400-12000)×2=28800个基因,其中A 基因14400个,a 基因14400个。则:A 的基因频率=(24000+14400)/60000=0.64,a 的基因频率=(7200+14400)/60000=0.36。 又例:在一个种群中随机抽取一定数量的个体,其中基因型AA 的个体占18%,基因型Aa 的个体占78%,基因型aa 的个体占4%,那么基因A 和a 频率分别是多少? 解析 A% =%) 4%78%18(2%78%182++?+??100% = 57% a% = %)4%78%18(2%78%42++?+??100% = 43% 2 利用常染色体上复等位基因的基因型频率(个数)求基因频率 以人的ABO 血型系统决定于3 个等位基因I A 、I B 、i 为例。设基因IA 的频率为p ,基因 IB 的频率为q ,基因i 的频率为r ,且人群中p+q+r=1。根据基因的随机结合,用下列二项式 可求出子代的基因型及频率:♂(pI A +qI B +ri)×♀(pI A +qi B +ri) = p 2(I A I A )+q 2(I B I B ) +r 2(ii)+2pq(I A I B )+2pr(I A i)+2qr(I B i)=1,A 型血(I A I A ,I A i)的基因型频率为p 2+2pr ;B 型血(I B I B ,I B i )的基因型频率为q 2+2qr ;O 型血(ii )的基因型频率为r 2,AB 型血(I A I B )的基因型频率为2pq 。可罗列出方程组,并解方程组。 例:通过抽样调查发现血型频率(基因型频率):A 型血(I A I A ,I A i )的频率=0.45;B 型 血(I B I B ,I B i )的频率=0.13;AB 型血(I A I B )的频率=0.06;O 型血(ii )=0.36。试计算I A 、I B 、I 的基因频率。 解析 设I A 的频率为p,I B 的频率q,i 的频率为r.根据以上公式可知:O 型血的基因型频率 =r 2=0.36;A 型血的基因型频率=p 2+2pr=0.45;B 型血的基因频率=q 2+2qr=0.13;AB 型血的基因型 频率=2pq=0.06。解方程即可得出I A 的基因频率为0.3;I B 的基因频率为0.1;i 的基因频率为 0.6。 3 利用性染色体上一对等位基因的基因型频率(个数)求基因频率 以人类的色盲基因遗传为例。女性的性染色体组成为XX ,男性的性染色体组成为XY ,Y 染色体上无该等位基因,设定X B %、X b %分别表示基因X B 和X b 的频率, X B X B 、X B X b 、X b X b 、X B Y 、 X b Y 分别表示X B X B 、X B X b 、X b X b 、X B Y 、X b Y 五种基因型频率(个数)。则:

相关文档
相关文档 最新文档