文档库 最新最全的文档下载
当前位置:文档库 › PCBN刀具切削GH706磨损特征研究_计伟

PCBN刀具切削GH706磨损特征研究_计伟

PCBN刀具切削GH706磨损特征研究_计伟
PCBN刀具切削GH706磨损特征研究_计伟

第四章 切削力 思考题

第四章切削力 4.1 必备知识和考试要点 4.1.1 切削力的来源,切削合力及其分解,切削功率 1.了解切削力的来源。 2.掌握切削力的合成与分解方法,明确切削力各分力的作用。 3.掌握根据已知条件计算切削功率并确定机床电动机功率的方法。 4.1.2 切削力的测量及切削力的计算机辅助测试 1.了解测量切削力的主要方法。 2.了解电阻应变片式测力仪的工作原理。 3.了解切削力的计算机辅助测试方法。 4.1.3 切削力的指数公式和切削力的预报及估算 1.熟悉切削力的指数公式及公式中各符号的意义。 2,掌握根据切削力计算公式计算单位切削力及单位切削功率的方法。 3.熟练掌握切削力经验公式的建立过程。 4.1.4 影响切削力的因素 1.掌握被加工工件材料对切削力影响的要点。 2.掌握切削用量对切削力影响的要点。 3.能够正确分析背吃刀量、进给量对切削力影响程度不同的原因。 4.能够正确分析切削速度对切削力影响产生的驼峰曲线关系的原因。 5.掌握刀具前角对切削力影响的要点。 6.正确分析主偏角对各切削分力影响程度不同的原因。 7.掌握刀具材料对切削力影响的要点。 8.掌握切削液对切削力影响的要点。 9.掌握刀具磨损对切削力影响的要点。 4.1.5 其它 1.了解切削力的理论公式建立。 2.了解切削力理论公式的不足。 4.2 典型范例和答题技巧 [例4.1] 车削时切削合力F r为什么常分为三个相互垂直的分力?说明这三个分力的作用。 [分析]作用在切削刃上的切削力是沿空间的某一方向,根据切削运动,可以将合力分解成沿各运动方向的分力。车削是按主运动(切削速度)方向、进给运动(进给量)方向、切深运动(背吃刀量)方向进行分解,三个方向的分力在车削时是互相垂直的。同时,车床完成上述三个方向运动的各运动机构也将以各分力为设计、计算的依据参数。而钻削加工是把切削力分解成轴向力和扭矩,同样也是为了便于设计、计算机床功率、运动机构强度等问题。 [答案] 切削合力方向为空间的某一方向,与切削运动中的三个运动方向均不重合,切削力是设计、计算机床功率、校验运动机构强度、合理选择切削用量、提高工件加工精度的一个重要参数或影响因素。所以按照车削的实际情况,将切削力沿车削时的三个运动方向分解成三个力(见例图4.1)。车削时的切削运动为:主运动(切削速度)、进给运动(进给量)、切深运动(背吃刀量)。三个运动方向在车削时是互相垂直的,所以车削时将切削力分解成沿三个运动方向、互相垂直的分力。 各分力的名称、定义及作用为: F t(新国标为F c)——切削力或切向力。它切于加工表面并与基面垂直。F x是计算车刀

切削用量对切削力的影响比较讲解

] 3[切削用量对切削力的影响比较 (陕西理工学院 机械工程学院 ) 摘 要:通过分析切削力单因素实验,探讨切削用量对切削力的影响规律; 同时讨论刀具几何参数对切削力的影响,得出一般结论;进而对比说明精密切削切削力的特殊规律。 关键词:切削变形;切削力;刀具;精密切削;规律 1.引言 金属机械加工过程中,产生的切削力直接影响工件的粗糙度和加工精度,同 时也是确定切削用量的基本参数。所以掌握切削用量对切削力的影响规律也显得重要。本文从一般切削和精密切削两个方面对切削用量对切削力的影响规律做初步探讨。 2.金属切削加工机理 金属切削加工是机械制造业中最基本的加工方法之一。金属切削加工是指在金属切削机床上使用金属切削刀具从工件表面上切除多余金属,从而获得在形状、尺寸精度及表面质量等方面都符合预定要求的加工。 2.1切削加工原理 利用刀具与工件之间的相对运动,在材料表面产生剪切变形、摩擦挤压和滑移变形,进而形成切屑。 2.2切削变形 根据金属切削实验中切削层的变形,如图1-2,可以将切削刃作用部位的切削层划分为3个变形区。 第Ⅰ变形区:剪切滑移区。该变 形区包括三个过程,分别是切削层弹 性变形、塑性变形、成为切屑。 第Ⅱ变形区:前刀面挤压摩擦区。 该变形区的金属层受到高温高压作用, 使靠近刀具前面处的金属纤维化。 第Ⅲ变形区:后刀面挤压摩擦区。 该变形区造成工件表层金属纤维化与 图1-2 切削层的变形区 加工硬化,并产生残余应力。

F x F y F z F xy F Z F 22222++=+ =] 1[3.切削力 切削力是指切削过程中作用在刀具或工件上的力,它是工件材料抵抗刀具切削所产生的阻力。 3.1切削力来源 根据切削变形的不同,切削过程中刀具会受到三种力的作用,即: (1)克服切削层弹性变形的抗力 (2)克服切削层塑性变形的抗力 (3)克服切屑对刀具前面、工件对刀具后面的摩擦力 3.2切削力的合成与分解 图2 - 2 切削力合力和分力 图2-2为车削外圆时切削力的合力与分力示意图。图中字母分别表示: N 1、F 1——作用在车刀前刀面的正压力、摩擦力 N 2、F 2——作用在车刀后刀面的正压力、摩擦力 Q 1、Q 2——N1与F 1、N 2与F 2的合力 F ——Q 1与Q 2的合力,即总切削力 一般地,为了研究方便,将总切削力F 按实际运动效果分为以下三个分力: 切削力F z ——垂直于水平面,与切削速度的方向一致,且该分力最大。 径向切削力F y ——在基面内,与进给方向垂直,沿切削深度方向,不做功,但能使工件变形或造成振动。 轴向切削力F x ——在基面内,与进给方向平行。 由图2-2可知,合力与各分力之间的关系为: 其中: k r F xy F x sin =。式中:F xy ——合力在基面上的分力。 k r F xy F y cos =

切削加工常用计算公式

附录3:切削加工常用计算公式 1. 切削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 金属切除率Q (cm 3/min) Q = V c ×a p ×f 净功率P (KW) 3p 1060Kc f a Vc P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明 D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm)

铣削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000Vf ae ap Q ??= 净功率P (KW) 61060Kc Vf ae ap P ????= 扭矩M (Nm) n 10 30P M 3 ?π??= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 a p — 轴向切深 (mm) a e — 径向切深 (mm)

切削速度Vc (m/min) 1000n d Vc ?π?= 主轴转速n (r/min) d 1000 Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min) 4Vc f d Q ??= 净功率P (KW) 310240kc d Vc f P ????= 扭矩M (Nm) n 10 30P M 3?π??= 以上公式中符号说明: d — 钻头直径 (mm) kc1 — 为前角γo=0、切削厚度hm=1mm 、切削面积为1mm 2时所需的切 削力。 (N/mm 2) mc — 为切削厚度指数,表示切削厚度对切削力的影响程度,mc 值越 大表示切削厚度的变化对切削力的影响越大,反之,则越小 γo — 前角 (度)

切削性能

两种Ti(C,N)基金属陶瓷刀具切削性能的研究 摘要:Ti(C.N)基金属陶瓷是本世纪七十年代出现的一种新型工具材料,具有许多优良的性能。本文用传统的粉末冶金的方法制备了纳米TiN改性TiC基金属陶瓷刀具试样和超细晶Ti(C,N)基金属陶瓷刀具试样,对两种刀具试样进行切削性能实验,对比其性能的优异,为制备性能更优异的金属陶瓷刀具提供理论依据。关键字:纳米TiN改性TiC基金属陶瓷刀具,超细晶Ti(C,N)基金属陶瓷刀具,切削性能 ABSTRACT :As a new kind of tool material in seventy’s, has many good properties. The cutting and wear behaviors of two kinds of cermets cutters were investigated in this paper,which expects to present theoretical instruction for preparation of high performance cermets cutters and enrich materials design theory.Key words:Nano TiN modified TiC-based cermets cutters,Ultra-fine Ti(C,N)一based ccrmets cutters,Cutting performance 1引言 Ti(C,N)金属陶瓷刀具是20世纪70年代初发展起来的一种新型材料刀具,由于具有硬度高、耐磨性好、高温力学性能优良和不易与金属发生粘结等特性,广泛应用于难加工材料的切削加工中,并可用于超高速切削、高速干切削和硬材料的切削加工【1】。由于全球W的价格不断上涨,所以其是代替硬质合金刀具材料的很好选择。但是也存在抗塑性变形能力、抗崩刃性能差及韧性不好等问题。因此,长期以来对金属陶瓷刀具进行增韧一直是国内外科技工作者努力的方向,而近十年多来出现的通过纳米材料添加对传统材料进行改性,改善了金属陶瓷的力学性能。本文通过将纳米TiN改性的TiC基金属陶瓷刀具和用亚微米级Ti(C,N)粉末为原料烧结的金属陶瓷刀具加工成可转位车刀片,按照实际的生产条件来进行切削性能实验,考察不同成分和不同后角条件下,刀具的耐用度和失效形式。研究纳米TiN改性的TiC基金属陶瓷刀具的切削性能。 2 试验 本实验所用的刀具是自行研制的,试验用粉末原料均为外购。其中TiC和Ti(c,N)粉末购于石家庄华泰纳米陶瓷材料厂;TiN纳米粉购于中国科学院成都有机化学;Ni粉购于四川江油国营八五七厂。其余粉末均从株洲硬质合金厂购得。本实验所用的TiC粉末为微米级,Ti(C,N)粉末为亚微米级,而TiN为纳米级。 实验中TiN、WC、Mo和C的添加量分别取为lO%、15%、5%、1%。另外为了保证金属粘结相对陶瓷相的润湿性,制出致密的高性能的金属陶瓷试样,选用对陶瓷相润湿性较好的Co和Ni作为粘结剂。本实验中金属陶瓷的基本成分配

影响切削力和切削温度的因素

影响切削力和切削温度的因素 影响因素 被影响的因素力温度 工件材料强度、硬 度 材料的强度、硬度越高,则屈服强度越高,切削 力越大。 材料的强度、硬度越高,温度越高。 塑性、韧 性 在强度、硬度相近的情况下,材料的塑性、韧性 越大,则刀具前面上的平均摩擦系数越大,切削 力也就越大。脆性材料,切削时一般形成崩碎切 屑,切屑与前面的接触长度短,摩擦小,故切削 力较小。 导热系数导热系数越低,温度越高 切削用量背吃刀量 和进给量 进给量f 增大时,切削力有所增加;(程度小) 背吃刀量a p增大时,切削刃上的切削负荷也随之 增大,即切削变形抗力和刀具前面上的摩擦力均 成正比的增加。(程度大) 从切削力和切削功率角度考虑,加大进给量比加 大背吃刀量有利。 切削温度与切削用量的关系式为: ) (C K v f a c z c y x p θ θ θ θ θ θ= 三个影响指数zθ>yθ>xθ,说明切削 速度对切削温度的影响最大,背吃刀量对切削 温度的影响最小。 切削速度切削速度在5~17m/min区域内增加时,积屑瘤高 度逐渐增加,切削力减小; 切削速度继续在17~27m/min范围内增加,积屑 瘤逐渐消失,切削力增加; 在切削速度大于27m/min时,积屑瘤消失,由于 切削温度上升,摩擦系数减小,切削力下降。一 般切削速度超过90m/min时,切削力无明显变化。 在切削脆性金属工件材料时,因塑性变形很小, 刀屑界面上的摩擦也很小,所以切削速度υc 对 切削力F c无明显的影响。 在实际生产中,如果刀具材料和机床性能许可, 采用高速切削,既能提高生产效率,又能减小切 削力。 刀具几何参数前角前角: γo↑→切削变形↓→切削力↓(塑性材 料) 前角γo↑→塑性变形和摩擦↓→切削温度。 但前角不能太大,否则刀具切削部分的锲角过 小,容热、散热体积减小,切削温度反而上升。 前角超过 20 ~ 18后,对降低切削温度 并无明显作用 负倒棱负倒棱参数大大提高了正前角刀具的刃口强度, 但同时也增加了负倒棱前角(负前角)参加切削的 比例,负前角的绝对值↑→切削变形程度↑→切 削力↑; 基本无影响 主偏角Fp=F D cosKr F f=F D SinKr Kr ↑→Fp ↓, Ff ↑(课本P47图1-52) 主偏角κr↑→切削刃工作接触长度↓,切削宽 度b D↓,散热条件变差,故切削温度↑ 刀尖圆弧 半径 rε↑→切削刃圆弧部分的长度↑→切削变形↑ →切削力↑。此外rε增大,整个主切削刃上各点 主偏角的平均值减小,从而使Fp增大、Ff 减小。 基本无影响 刃倾角λs↓→Fp↑, Ff↓,Fc基本不变

刀具后刀面磨损量对切削力及加工表面粗糙度的影响

4 李亚非.G C 杯形砂轮修整碟形金刚石砂轮实验研究.金刚石与磨料磨具工程,2003(10):28~30 5 阎秋生,田中宪司,庄司克雄.小直径C BN 砂轮的磨削特 性研究———砂轮修整方法及砂轮要素参数选择.制造技术与机床,1999,9 6 庄司克雄.陶瓷结合剂金刚石砂轮的修整研究Ⅲ(1).金 刚石与磨料磨具工程,1993(1) 第一作者:于晓娟,硕士研究生,北京理工大学机械与车辆工程学院,100081北京市 收稿日期:2004年10月 刀具后刀面磨损量对切削力及加工表面粗糙度的影响 吴泽群 刘亚俊 汤 勇 陈 平 华南理工大学 摘 要:通过切削试验探索了在相同的工件材料、刀具材料、切削参数(切削深度、进给量)和不同的刀具磨损状态(后刀面磨损量)下,刀具后刀面磨损量(VB )对切削过程中的切削力及工件表面粗糙度的影响,并对这些影响的产生机理进行了讨论。 关键词:后刀面磨损量, 切削力, 表面粗糙度 E ffect of Tool Flank Wear on Cutting Force and Surface R oughness Wu Z equn Liu Y ajun T ang Y ong et al Abstract :The effect of the tool flank wear (VB )on the cutting force and the sur face roughness is studied ,basing on the ex 2periments with the same w orkpiece materials ,same tool materials ,same cutting parameters (depth of cut ,feed rate )and different tool conditions (focusing on different tool flank wears ).The mechanism production of these effects is als o discussed. K eyw ords :tool flank wear , cutting force , sur face roughness 1 引言 切削力是描述切削过程的一个基本参数。近年来,随着加工过程自动控制技术的发展,切削力已成为适应和控制切削过程的一个重要反馈参数。切削力的变化直接决定着切削热的产生、分布,并影响刀具的磨损状况和使用寿命,进而影响零件被加工表面的加工精度和已加工表面质量。 影响切削力的因素有很多,诸如车床的转速、切削深度、进给量、后刀面磨损量等。刀具的磨损量不仅对切削力的大小有影响,而且在金属的切削过程中,刀具的磨损与破损是影响加工零件精度和表面质量的重要因素,严重的刀具磨损还会引起切削颤振,损坏机床、刀具、工件等。 国内外对切削力影响因素的研究大多数都着眼于车床转速、切削深度等参数的选择,对刀具磨损对切削力影响的研究相对较少,而且有关刀具磨损对工件表面质量影响的研究也不多,因此,研究刀具磨损对切削力和表面粗糙度的影响具有一定的现实意义。 2 切削试验 211 试验条件 (1)试验设备:C M6140车床; 刀具材料:硬质合金Y W ; 被切削材料:45钢;(2)测量仪器:K istler 9441测力仪、K istler 5019A 多通道放大器、TR200粗糙度仪 。 图1 试验系统 212 试验参数的选择 刀具后刀面磨损量VB 是刀具磨损的重要指标之一。在一定范围内选择VB 的六个值,分别为0(未磨损的)、011mm 、012mm 、013mm 、014mm 、015mm 。 图2 后刀面磨损量VB 7 32005年第39卷№5

切削加工常用计算公式(完整资料).doc

【最新整理,下载后即可编辑】 附录3:切削加工常用计算公式 1. 车削加工 切削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000Vc n ?π?= 金属切除率Q (cm 3/min) Q = Vc ×a p ×f 净功率P (KW) 3p 1060Kc f a V c P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明

D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm) 2. 铣削加工 铣削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000Vf ae ap Q ??= 净功率P (KW) 610 60Kc Vf ae ap P ????=

扭矩M (Nm) n 1030P M 3 ?π??= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 ap — 轴向切深 (mm) ae — 径向切深 (mm) 3. 钻削加工 切削速度Vc (m/min) 1000 n d Vc ?π?= 主轴转速n (r/min) d 1000Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min)

常用切削速度计算公式

常用切削速度計算公式 一、三角函數計算 1.tanθ=b/a θ=tan-1b/a 2.Sinθ=b/c Cos=a/c 二、切削刃上选定点相对于工件的主运动的瞬时速度。 2.1 铣床切削速度的計算 Vc=(π*D*S)/1000 Vc:線速度(m/min) π:圓周率(3.14159) D:刀具直徑(mm) 例題. 使用Φ25的銑刀Vc為(m/min)25 求S=?rpm Vc=πds/1000 25=π*25*S/1000 S=1000*25/ π*25 S=320rpm 2.2 车床切削速度的計算计算公式如下 v c=( π d w n )/1000 (1-1) 式中 v c ——切削速度 (m/s) ; dw ——工件待加工表面直径( mm ); n ——工件转速( r/s )。 S:轉速(rpm) 三、進給量(F值)的計算 F=S*Z*Fz F:進給量(mm/min) S:轉速(rpm) Z:刃數 Fz:(實際每刃進給) 例題.一標準2刃立銑刀以2000rpm)速度切削工件,求進給量(F 值)為多少?(Fz=0.25mm) F=S*Z*Fz F=2000*2*0.25 F=1000(mm/min) 四、殘料高的計算 Scallop=(ae*ae)/8R Scallop:殘料高(mm) ae:XY pitch(mm) R刀具半徑(mm) 例題. Φ20R10精修2枚刃,預殘料高0.002mm,求Pitch為多 少?mm Scallop=ae2/8R 0.002=ae2/8*10 ae=0.4mm 五、逃料孔的計算 Φ=√2R2 X、Y=D/4 Φ:逃料孔直徑(mm) R刀具半徑(mm) D:刀具直徑(mm) 例題. 已知一模穴須逃角加工(如圖), 所用銑刀為ψ10;請問逃角孔最小 為多少?圓心座標多少? Φ=√2R2 Φ=√2*52 Φ=7.1(mm) X、Y=D/4 X、Y=10/4

加工中心常用计算公式

θ=b/a θ=tan-1b/a θ=b/c Cos=a/c Vc=(π*D*S)/1000 Vc:线速度(m/min) π:圆周率 D:刀具直径(mm) S:转速(rpm) 例题. 使用Φ25的铣刀Vc为(m/min)25求S=rpm Vc=πds/1000 25=π*25*S/1000 S=1000*25/ π*25 S=320rpm F=S*Z*Fz F:进给量(mm/min) S:转速(rpm) Z:刃数 Fz:(实际每刃进给) 例题.一标准2刃立铣刀以2000rpm)速度切削工件,求进给量(F 值)为多少(Fz= F=S*Z*Fz

F=2000*2* F=1000(mm/min) Scallop=(ae*ae)/8R Scallop:残料高(mm) ae:XYpitch(mm) R刀具半径(mm) 例题.Φ20R10精修2枚刃,预残料高,求Pitch为多 少mm Scallop=ae2/8R =ae2/8*10 ae= Φ=√2R2 X、Y=D/4 Φ:逃料孔直径(mm) R刀具半径(mm) D:刀具直径(mm) 例题. 已知一模穴须逃角加工(如图), 所用铣刀为ψ10;请问逃角孔最小 为多少圆心坐标多少 Φ=√2R2 Φ=√2*52 Φ=(mm)

X、Y=D/4 X、Y=10/4 X、Y= mm 圆心坐标为, Q=(ae*ap*F)/1000 Q:取料量(cm3/min) ae:XYpitch(mm)ap:Zpitch(mm) 例题. 已知一模仁须cavity等高加工,Φ35R5的刀XYpitch是刀具的60%,每层切,进给量为2000mm/min,求此刀具的取料量为多少 Q=(ae*ap*F)/1000 Q=35***2000/1000 Q=63 cm3/min Fz=hm * √(D/ap ) Fz:实施每刃进给量hm:理论每刃进给量ap:Zpitch(mm) D:刀片直径(mm) 例题(前提depo XYpitch是刀具的60%) depoΦ35R5的刀,切削NAK80材料hm为,Z轴切深,求每刃进给量为多少 Fz=hm * √(D/ap ) Fz=*√10/

切削力计算的经验公式.-切削力计算

您要打印的文件是:切削力计算的经验公式打印本文 切削力计算的经验公式 作者:佚名转贴自:本站原创

度压缩比有所下降,但切削力总趋势还是增大的。强度、硬度相近的材料,塑性大,则与刀面的摩擦系数μ也较大,故切削力增大。灰铸铁及其它脆性材料,切削时一般形成崩碎切屑,切屑与前刀面的接触长度短,摩擦小,故切削力较小。材料的高温强度高,切削力增大。 ⑵切削用量的影响 ①背吃刀量和进给量的影响背吃刀量ap或进给量f加大,均使切削力增大,但两者的影响程度不同。加大ap 时,切削厚度压缩比不变,切削力成正比例增大;加大f加大时,有所下降,故切削力不成正比例增大。在车削力的经验公式中,加工各种材料的ap指数xFc≈1,而f的指数yFc=0.75~0.9,即当ap加大一倍时,Fc也增大一倍;而f加大一倍时,Fc只增大68%~86%。因此,切削加工中,如从切削力和切削功率角度考虑,加大进给量比加大背吃刀量有利。 ②切削速度的影响在图3-15的实验条件下加工塑性金属,切削速度vc>27m/min 时,积屑瘤消失,切削力一般随切削速度的增大而减小。这主要是因为随着vc的增大,切削温度升高,μ下降,从而使ξ减小。在vc<27m/min时,切削力是受积屑瘤影响而变化的。约在vc=5m/min时已出现积屑瘤,随切削速度的提高,积屑瘤逐渐增大,刀具的实际前角加大,故切削力逐渐减小;约在vc=17m/min处,积屑瘤最大,切削力最小;当切削速度超过vc=17m/min,一直到vc=27m/min时,由于积屑瘤减小,使切削力逐步增大。 图3-15 切削速度对切削力的影响 切削脆性金属(灰铸铁、铅黄铜等)时,因金属的塑性变形很小,切屑与前刀面的摩擦也很小,所以切削速度对切削力没有显著的影响。 ⑶刀具几何参数的影响 ①前角的影响前角γo加大,被切削金属的变形减小,切削厚度压缩比值减小,刀具与切屑间的摩擦力和正应力也相应下降。因此,切削力减小。但前角增大对塑性大的材料(如铝合金、紫铜等)影响显著,即材料的塑性变形、加工硬化程度明显减小,切削力降低较多;而加工脆性材料(灰铸铁、脆铜等),因切削时塑性变形很小,故前角变化对切削力影响不大。 ②负倒棱的影响前刀面上的负倒棱(如图3-16a),可以提高刃区的强度,

怎么计算各中加工中心刀具的切削速度

质量+效率+成本控制=效益怎么计算各中加工中心刀具的切削速度浏览次数:202次悬赏分:10 | 解决时间:2011-3-3 10:15 | 提问者:zhaoqizhi521 问题补充: 例如:(16,20,25,32,50,63,80,125)平面铣刀,(1~20)涂层合金立铣刀,(1~30)钨钢钻,(6~80)镗刀((求切削速度切削用量))不是公式,公式我知道,就是刀具的切削用量,切削速度!! 最佳答案 S=Vc*1000/*D F=S*fz*z 刀具线速度(刀具商提供)乘以1000再除去再除掉刀具直径就等于主轴转数; 主轴转数乘以每齿进刀量(刀具不同进刀量不同)再乘以刀具总齿数就等于进给速度; 高速钢铣刀的线速度为50M/MIN 硬质合金铣刀的线速度为150M/MIN 切削用量的话是每齿切削之间。 切削速度为转速*齿数*每齿进给。 不锈钢的话*80% 铝合金本身材料很软,主轴转速应当高点(刀具能承受的情况下),进给速度要竟量小点,如果进给大的话排屑就会很困难,只要你加工过铝,不难发现刀具上总会有粘上去的铝,那说明用的切削液不对, 做铝合金进给可以打快一点 每一刀也可以下多一点

转数不能打的太快10MM F1500 20MM F1200 50MM F1000 加工中心-三菱系统的操作步骤与刀具应用 (2009-04-23 09:02:03)转载标签:数控刀具转速进给杂谈 三菱系统操作: 1,打开机床开关—电源接通按钮 2,归零:将旋钮打到ZRN—按循环启动键,三轴同时归零。(也可以xyz分开来归零:将 旋钮打到ZRN—按Z+,X+,Y+,一般要先将Z轴归零)注意:每次打开机床后,就要归零。 3,安装工件(压板或虎口钳) 4,打表(平面和侧面)侧面打到2丝之内,表面在5丝之内,最好再打一下垂直度。 5,中心棒分中,转速500. 6,打开程序,看刀具,装刀具,注意刀具的刃长和需要的刀长,绝不能装短了。7,模拟程序—传输程序。 8,将旋钮打到DNC,进给打到10%,RAPID OVERRIDE打到0%—然后在RAPID上在0%~25%上快速转换。刀具会在工件上方50mm处停顿一下,当刀具靠近工件时需要特别注意。进给需要打到零。看看刀具与工件的距离与机床显示的残余值是否对应。 9,最后调整转速与进给。

CNC常用计算公式

CNC常用计算公式 一、三角函数计算 1.tanθ=b/a θ=tan-1b/a 2.Sinθ=b/c Cos=a/c 二、切削速度的计算 Vc=(π*D*S)/1000 Vc:线速度(m/min) π:圆周率(3.14159) D:刀具直径(mm) S:转速(rpm) 例题. 使用Φ25的铣刀Vc为(m/min)25 求S=?rpm Vc=πds/1000 25=π*25*S/1000 S=1000*25/ π*25 S=320rpm 三、进给量(F值)的计算 F=S*Z*Fz F:进给量(mm/min) S:转速(rpm) Z:刃数 Fz:(实际每刃进给)

例题.一标准2刃立铣刀以2000rpm)速度切削工件,求进给量(F 值)为多少?(Fz=0.25mm) F=S*Z*Fz F=2000*2*0.25 F=1000(mm/min) 四、残料高的计算 Scallop=(ae*ae)/8R Scallop:残料高(mm) ae:XY pitch(mm) R刀具半径(mm) 例题. Φ20R10精修2枚刃,预残料高0.002mm,求Pitch为多少?mm Scallop=ae2/8R 0.002=ae2/8*10 ae=0.4mm 五、逃料孔的计算 Φ=√2R2X、Y=D/4 Φ:逃料孔直径(mm) R刀具半径(mm) D:刀具直径(mm) 例题. 已知一模穴须逃角加工(如图), 所用铣刀为ψ10;请问逃角孔最小为多少?圆心坐标多少? Φ=√2R2 Φ=√2*52 Φ=7.1(mm) Φ10銑刀(0.0)

X、Y=D/4 X、Y=10/4 X、Y=2.5 mm 圆心坐标为(2.5,-2.5) 六、取料量的计算 Q=(ae*ap*F)/1000 Q:取料量(cm3/min)ae:XY pitch(mm) ap:Z pitch(mm) 例题. 已知一模仁须cavity等高加工,Φ35R5的刀XY pitch 是刀具的60%,每层切1.5mm,进给量为2000mm/min,求此刀具的取料量为多少? Q=(ae*ap*F)/1000 Q=35*0.6*1.5*2000/1000 Q=63 cm3/min 七、每刃进给量的计算 Fz=hm * √(D/ap ) Fz:实施每刃进给量hm:理论每刃进给量 ap:Z pitch(mm) D:刀片直径(mm) 例题 (前提depo XY pitch是刀具的60%) depoΦ35R5的刀,切削NAK80材料hm为0.15mm,Z轴切深1.5mm,求每刃进给量为多少?

机械加工计算公式说明

切削速度和进给速度公式当选择一把刀具后,我们通常不明白该选用多少切削速度、多少转速,而只是通过实验,只要没有特别的问题,就认为是可以了。这样做非常危险,经常问题就是断刀,或者导致材料溶化或者发焦。有没有科学的计算方法,答案是肯定的。铣削切削速度是指刀具上选定点相对于工件相应点的瞬时速度。 切削速度v = nπD v 切削速度,单位m/min n 刀具的转速,单位r/min D 铣刀直径,单位m 切削速度受到刀具材料、工件材料、机床部件刚性以及切削液等因素的影响。通常较低的切削速度常用于加工硬质或韧性金属,属于强力切削,目的是减少刀具磨损和延长刀具的使用寿命。较高的切削速度常用于加工软性材料,目的是为了获得更好的表面加工质量。当选用小直径刀具在脆性材料工件或者精密部件上进行微量切削时,也可以采用较高的切削速度。常见材料的切削速度另附。比如用高速钢铣削速度,铝是91~244m/min,青铜是20~40m/min。进给速度是决定机床安全高效加工的另外一个同等重要的因素。它是指工件材料与刀具之间的相对走刀速度。对于多齿铣刀来讲,由于每个齿都参与切削工作,被加工工件切削的厚度取决于进给速度。切削厚度会影响铣刀的使用寿命,而过大的进给速度则会导致切削刃破损或者刀具折断。 进给速度以mm/min为单位: Vf = Fz * Z * n = 每齿进给量* 刀具齿数* 刀具转速= 每转进给量* 刀具转速 进给速度Vf,单位:mm/min 每齿进给量Fz,单位:mm/r 刀具转速n,单位:r/min 刀具齿数Z 从上面公式看出,我们只需要知道每齿的进给量(切削量),主轴转速,就可以知道进给速度了。换言之,知道了每齿的进给量和进给速度,就可以求出主轴转速。 比如高速钢铣刀进给量,当刀具直径是6毫米时,每齿的进给量 铝青铜铸铁不锈钢 0.051 0.051 0.025 0.025 切削深度加工时需要考虑的第三个因素是切削深度。它受工件材料切削量、机床的主轴功率、刀具以及机床刚性等因素的限制。通常切钢立铣刀的切削深度不应超过刀具直径的一半。切削软性金属,切削深度可以更大些。立铣刀必须是锋利的,并且在工作时必须与立铣刀夹头保持同心,并尽可能减少刀具安装时的外伸量。

切削加工常用计算公式

创作编号:BG7531400019813488897SX 创作者: 别如克* 附录3:切削加工常用计算公式 1. 切削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 金属切除率Q (cm 3/min) Q = V c ×a p ×f 净功率P (KW) 3 p 10 60Kc f a V c P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明

D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm) 2. 铣削加工 铣削速度Vc (m/min) 1000 n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000 Vf ae ap Q ??= 创作编号:BG7531400019813488897SX 创作者: 别如克* 净功率P (KW) 6 10 60Kc Vf ae ap P ????= 扭矩M (Nm)

n M ?π= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 a p — 轴向切深 (mm) a e — 径向切深 (mm) 3. 钻削加工 切削速度Vc (m/min) 1000 n d Vc ?π?= 主轴转速n (r/min) d 1000 Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min) 4 Vc f d Q ??= 净功率P (KW) 3 10240kc d Vc f P ????= 扭矩M (Nm)

切削力计算的经验公式

切削力计算的经验公式 通过试验的方法,测出各种影响因素变化时的切削力数据,加以处理得到的反映各因素与切削力关系的表达式,称为切削力计算的经验公式。在实际中使用切削力的经验公式有两种:一是指数公式,二是单位切削力。 1 .指数公式 主切削力 背向力 进给力 式中F c————主切削力( N); F p————背向力( N); F f————进给力( N); C fc 、 C fp 、 C ff————系数,可查表 2-1; x fc 、 y fc、 n fc、 x fp、 y fp、 n fp、 x ff、 y ff、 n ff 指数,可查表 2-1。

K Fc 、 K Fp 、 K Ff---- 修正系数,可查表 2-5,表 2-6。 2 .单位切削力单位切削力是指单位切削面积上的主切削力,用 kc表 示,见表 2-2。 kc=Fc/A d=Fc/(a p·f)=F c/(b d·h d)(2-7) 式中A D----- 切削面积( mm 2); a p ------ 背吃刀量( mm); f -------- 进给量( mm/r); h d------ 切削厚度( mm ); b d------ 切削宽度( mm)。 已知单位切削力k c ,求主切削力F c F c=k c·a p·f=k c·h d·b d(2-8) 式 2-8中的 k c是指f = 0.3mm/r 时的单位切削力,当实际进给量 f大于或小于 0.3mm /r时,需乘以修正系数 K fkc,见表 2-3。

Λ2-ι车削时的切剛力&切削功率的计Ir公式 表2-3进给量?对单位切削力或单位切削功率的修正系数 KfkC, KfPS

切削用量对切削力的影响比较

切削用量对切削力的影响 比较 Prepared on 22 November 2020

切削用量对切削力的影响比较 (陕西理工学院机械工程学院) 摘要:通过分析切削力单因素实验,探讨切削用量对切削力的影响规律;同时讨论刀具几何参数对切削力的影响,得出一般结论;进而对比说明精密切削切削力的特殊规律。 关键词:切削变形;切削力;刀具;精密切削;规律 1.引言 金属机械加工过程中,产生的切削力直接影响工件的粗糙度和加工精度,同时也是确定切削用量的基本参数。所以掌握切削用量对切削力的影响规律也显得重要。本文从一般切削和精密切削两个方面对切削用量对切削力的影响规律做初步探讨。 2.金属切削加工机理 金属切削加工是机械制造业中最基本的加工方法之一。金属切削加工是指在金属切削机床上使用金属切削刀具从工件表面上切除多余金属,从而获得在形状、尺寸精度及表面质量等方面都符合预定要求的加工。 切削加工原理 利用刀具与工件之间的相对运动,在材料表面产生剪切变形、摩擦挤压和滑移变形,进而形成切屑。 切削变形 根据金属切削实验中切削层的变形,如图1-2,可以将切削刃作用部位的切削层划分为3个变形区。 第Ⅰ变形区:剪切滑移区。该变

] 3[形区包括三个过程,分别是切削层弹 性变形、塑性变形、成为切屑。 第Ⅱ变形区:前刀面挤压摩擦区。 该变形区的金属层受到高温高压作用, 使靠近刀具前面处的金属纤维化。 第Ⅲ变形区:后刀面挤压摩擦区。 该变形区造成工件表层金属纤维化与 图1-2切削层的变形区 加工硬化,并产生残余应力。 3.切削力 切削力是指切削过程中作用在刀具或工件上的力,它是工件材料抵抗刀具切削所产生的阻力。 切削力来源 根据切削变形的不同,切削过程中刀具会受到三种力的作用,即: (1)克服切削层弹性变形的抗力 (2)克服切削层塑性变形的抗力 (3)克服切屑对刀具前面、工件对刀具后面的摩擦力 切削力的合成与分解 图2-2切削力合力和分力 图2-2为车削外圆时切削力的合力与分力示意图。图中字母分别表示: N 1、F 1——作用在车刀前刀面的正压力、摩擦力 N 2、F 2——作用在车刀后刀面的正压力、摩擦力 Q 1、Q 2——N1与F 1、N 2与F 2的合力

切削三要素对切削力的影响有何不同

切削三要素对切削力的影响有何不同 金属切削的原理研究金属切削加工过程中刀具与工件之间相互作用和各自的变化规律的一门学科。在设计机床和刀具、制订机器零件的切削工艺及其定额、合理地使用刀具和机床以及控制切削过程时,都要利用金属切削原理的研究成果,使机器零件的加工达到经济、优质和高效率的目的。 《金属切削原理与刀具》主要有以下内容: 一 刀具材料与切削加工基本知识1 课题一 刀具材料的选用1 课题二 切削运动和切削用量6 课题三 刀具的组成及其主要角度10 课题四 常用车刀的绘制及刃磨15 课题五 车刀的工作角度18 二 金属切削加工中的主要现象及规律23 课题一 切削中的变形23 课题二 切屑的种类及断屑26 课题三 积屑瘤30 课题四 加工硬化34 课题五 切削力与切削热37 课题六 刀具磨损与刀具耐用度41 三 金属切削加工质量及刀具几何参数的选择46 课题一 工件材料的切削加工性46 课题二 已加工表面质量50 课题三 刀具几何参数的合理选择54 四 车刀59 课题一 机械夹固式车刀及其使用60 课题二 径向成形车刀67 五 孔加工刀具73 课题一 标准麻花钻74 课题二 标准麻花钻的修磨与群钻77 课题三 深孔加工刀具与铰刀80 六 铣刀86 课题一 铣刀的种类和用途86 课题二 铣刀的几何参数和铣削用量90 七 螺纹刀具与砂轮96 课题一 螺纹刀具96 课题二 砂轮的合理选择101 八 数控机床用刀具107 课题一 数控车床用刀具107 课题二 数控铣床用刀具111 课题三 数控加工中心用刀具115 机械制造基础┇金属切削加工原理

金属切削加工是用刀具从工件上切除多余材料,从而获得形状、尺寸精度及表面质量等合乎要求的零件的加工过程。实现这一切削过程必须具备三个条件:工件与刀具之间要有相对运动,即切削运动;刀具材料必须具备一定的切削性能;刀具必须具有适当的几何参数,即切削角度等。金属的切削加工过程是通过机床或手持工具来进行切削加工的,其主要方法有车、铣、刨、磨、钻、镗、齿轮加工、划线、锯、锉、刮、研、铰孔、攻螺纹、套螺纹等。其形式虽然多种多样,但它们有很多方面都有着共同的现象和规律,这些现象和规律是学习各种切削加工方法的共同基础。 1.1.1 切削运动及切削用量 1.零件表面的形成 各种切削加工的目的都是为了得到合乎要求的零件表面。因此,零件表面的形成问题是切削加工的基础问题。常见的零件表面有以下几种: (1)圆柱面是以直线为母线,以和它相垂直的平面上的圆为轨迹,作旋转运动所形成的表面。 (2)圆锥面是以直线为母线,以圆为轨迹,且母线与轨迹平面相交成一定角度作旋转运动所形成的表面。 (3)平面是以直线为母线,以另一直线为轨迹作平移运动所形成的表面,如图5.1(c)所示。 (4)成形面是以曲线为母线,以圆为轨迹作旋转运动或以直线为轨迹作平移运动所形成的表面,此外,其它较为复杂的表面可以用上述各表面组合而成。 2.切削运动 在金属切削加工中,为了切除多余的金属,刀具和工件间必须有相对运动——切削运动。 外圆车削加工中常见的加工方法,如图5.2所示:工件旋转,车刀作连续纵向直线进给运动,于是形成工件的外圆柱表面。在其它切削加工方法中,刀具和工件也同样必须完成一定的切削运动。通常,切削运动包括主运动和进给运动。 (1)主运动主运动是由机床或人力提供的主要运动,它促使刀具和工件之间产生相对运动,使刀具接近工件,产生切削。通常主运动的速度最高,消耗的功率最大。主运动可以由工件完成,也可以由刀具完成,它是刀具与工件之间主要的相对运动。如图5.2所示,工件的回转运动是主运动。 (2)进给运动进给运动是由机床或人力提供的运动,它使刀具和工件之间产生附加的相对运动,加上主运动,即可连续地或间断地切除多余材料,获得已加工表面。进给运动的速度较低,消耗的功率较小。进给运动可以是步进的,也可以是连续进行的。车削时车刀的纵向移动和横向移动是进给运动。 在这两个运动的合成作用下,工件表面的一层金属不断地被刀具切下来并转变为切屑,从而加工出所需要的工件新表面。在新表面的形成过程中,工件上有三个依次变化着的表面,即待加工表面、过渡表面和已加工表面。 3.切削用量

相关文档
相关文档 最新文档