文档库 最新最全的文档下载
当前位置:文档库 › 数学建模解多元线性回归问题

数学建模解多元线性回归问题

数学建模解多元线性回归问题
数学建模解多元线性回归问题

公司年销售额的分析

摘 要

公司年销售额通常和很多因素有关,但它们之间并不是确定性关系,所以我们用回归分析来处理,并建立了多元线性回归模型。本文用最小二乘的方法给出了变量间相关关系的回归方程,针对各因素对公司年销售额的影响我们与偏回归平方和联系起来,并将各因素的影响程度进行了排序。还通过F 检验和T 检验分别验证了回归方程的显著性和方程系数的显著性。最后我们采用了逐个剔除的方法找出了影响年销售额的主要因素,并且建立了新的回归方程,再次进行检验,新回归方程高度显著,最后得到了个人可支配收入、价格、投资和广告费密切相关的结论。

第一问:我们首先对附表1的数据进行处理,利用MATLAB 对残差向量进行分析,剔除其中的异常点。然后建立起多元线性回归模型,采用最小二乘的方法来估计回归方程的参数i 。我们引入偏回归平方和i Q 的概念来判定各因素对年销售额的影响程度,并对各因素的影响程度由深到浅进行了排序。

第二问:通过对回归平方和回S 和剩余平方和剩S 的分析,并且运用F 检验法

来判定线性回归方程的显著性。由于回归方程显著并不意味着每个自变量1x ,2x ,3x ,…8x 对因变量y 的影响都是重要的。所以我们对方程系数的显著性用T 检验

法进行了检验。最后通过逐个剔除的方法找出了其中的主要因素,主要因素为:

个人可支配的收入、价格、投资、广告费这四个方面。

第三问:通过逐个剔除的方法建立了新的回归方程,并对新的回归方程进行显著性检验,对方程系数进行显著性检验。得到了公司的年销售额与个人可支配收入、价格、投资和广告费密切相关的结论。

关键词:多元线性回归 最小二乘法 F 检验 T 检验 偏回归平方和

1 问题重述

在经济流通领域中,某公司的年销售额(y )与个人可支配的收入(1x );商人的回扣(2x );价格(3x );研究与发展费(4x );投资(5x );广告费(6x );销售费用(7x );总的工业广告预算(8x )等有关。附表1中是某公司的原始数据。建立模型,分析各因素对年销售额的影响程度。并对所做模型进行检验,找出影响销售额的主要因素。最后分析主要因素与销售额的关系,并给出结论。

2 问题分析

对于公司年销售额的分析,我们知道,和y 有关的变量有8个,研究y 与变量1x ,2x ,3x ,…8x 之间的定量关系的问题为多元回归问题。又因为许多多元非线性回归问题都可以化为多元线性回归问题,所以对于本问题我们建立了多元线性回归的数学模型。

第一问:

首先对附表1的数据进行处理,对残差向量进行,剔除其中的异常点。然后我们建立了多元线性回归的数学模型,并采用了最小二乘法来估计参数。把模型写成矩阵的形式,化简整理得其正规方程组,通过对正规方程组的求解,最后得到回归方程。

对于各因素对年销售额的影响程度,由于利用偏回归平方和i Q 可以衡量每个变量在回归中所起的作用大小(即影响程度),我们对每个变量i x 的偏回归平方和i Q 进行了计算,最后把影响程度由深到浅的各因素进行了排序。

第二问:

回归方程的显著性检验:事先我们并不能断定随机变量y 与一般变量1x ,2x ,3x ,…8x 之间是否确有线性关系。在求线性回归方程前线性回归模型只是一种假

设,所以在求出线性回归方程之后,我们需要对其进行统计检验。将总的平方和

总S 分解为回归平方和回S 和剩余平方和剩S ,运用F 检验法来判定线性回归方程

的显著性。

回归系数的显著性检验:由于回归方程显著并不意味着每个自变量1x ,2x ,

3x ,…8x 对因变量y 的影响都是重要的。而我们要找出响销售额的主要因素,即

从回归方程中剔除那些次要的、可有可无的变量,这就需要我们对每个变量进行

考察。显然,如果某个变量对y 的作用不显著,那么在多元线性回归模型中,它前面的系数j β就可以取值为零。因此,检验因子i x 是否显著等价于检验假设

00=i H β: 。最后再运用T 检验法来辨别模型中哪些因子是显著的。

第三问:

由于回归系数之间存在相关性,当从原回归方程中剔除一个变量时,其他变量,特别是与它密切相关的一些变量的回归系数就会受到影响,剔除一个变量后,这个变量对y 的影响很大部分转加到另一个变量对y 的影响上。所以,我们对回归系数进行一次检验后,只能剔除所有不显著因子中t 值最小的,然后重新建立新的回归方程,再对新的回归系数逐个进行检验,直到余下的回归系数都显著为止。

3 符号说明

4 模型假设

1.影响销售额的各个因素相互之间关联性不大,即相互独立。

2.异常值认为是人为因素引起的,可将其剔除。

5 模型的建立与求解

第一问:

5.1模型Ⅰ “多元线性回归的数学模型” 5.1.1 模型的建立

1、处理数据

我们先通过MATLAB (程序见附录1)对原始数据进行检验,对残差向量进行分析,得到了残差向量分析图,剔除其中的异常点。 2、设随机变量

假如变量y 与另外8个变量1x ,2x ,3x ,…8x 的内在联系是线性的,它的第α次试验数据是

),,...,;(821ααααx x x y α=1,2,…,8 (1)

那么这一组数据可以假设有如下的结构式:

??????

?+++++=+++++=+++++=,

....................................................................,..., (383888382238110382)

238822221102118812211101εββββεββββεββββx x x y x x x y x x x y (2) 其中0β,1β,…,8β是9个待估计参数,1x ,2x ,3x ,…8x 是8个可以精确测量的一般变量,,1ε,2ε…38ε是38个相互独立且服从同一正态分布),0(σN 的随机变量,这就是多元线性回归的数学模型。

??????? ??=821y y y Y , ??

??

?

??

?

?=388382

381282221

181211111x x x x x x x x x X

, ??????? ??=810ββββ , ????

??

?

??=3821εεεε ,

那么多元线性回归的数学模型(2)可以写成矩阵形式

.εβ+=X Y (3)

其中ε是38维随机向量,它的分量是相互独立的。 3、参数β的最小二乘估计

为了估计参数β,我们采用最小二乘估计法。设018,,,b b b ???分别是参数0β,1β,

…,8β的最小二乘估计,则回归方程为

^

0112288y b b x b x b x =+++???+ (4)

由最小二乘法知道,018,,,b b b ???应使得全部观察值αy 与回归值αy

?的偏差平方和Q 达到最小,即使

^

2

()Q y y ααα

=

-=∑最小 (5)

所以Q是018,,,b b b ???的非负二次式,最小值一定存在。根据微积分学中的极值原理,018,,,b b b ???应是下列正规方程组的解:

^

^

2()0,

2()0,j j

Q y y b Q y y x b ααααααα?

?=--=??????=--=???∑∑ (6) 显然,正规方程组的系数矩阵是对称矩阵,用A 来表示,则X X A '=,且其右端

常数项矩阵B 亦可采用矩阵X 和Y 来表示:Y X B '=。所以可以得到回归方程的回

归系数:

Y X X)X (B A b -1-1''== (7)

4、由于利用偏回归平方和i Q 可以衡量每个变量在回归中所起的作用大小(即影响程度),设回S 是p 个变量所引起的回归平方和,1回S 是p-1个变量所引起的回归平方和(即除去i x ),则偏回归平方和i Q 为:

i Q =回S -1回S =1p

j j j b B =∑-*

p

j j j b B =∑=ii i c b

2

(8)

就是去掉变量i x 后,回归平方和所减少的量。

5.1.2 模型的求解

1、数据筛选

通过MATLAB (程序见附录1)作图如下:

此时可见第八个点、第十四个点和第二十八个点是异常点,于是删除原始数据中第八行和第十四行和第二十八行数据。

2、回归方程的求解

由附表1和所得的公式(7),运用MATLAB 进行编程(程序见附录2),可得正规矩阵的系数矩阵为:

0.0000 0.0143 0.0045 0.0024 0.0007 0.0021 0.0021 0.0083 0.0083 0.0143 6.0183 1.8496 1.0033 0.2847 0.8713 0.8621 3.4729 3.4076 0.0045 1.8496 0.5918 0.3144 0.0893 0.2664 0.2676 A = 1.0686 1.0700 0.0024 1.0033 0.3144 0.1707 0.0489 0.1429 0.1460 0.5809 0.5739 0.0007 0.2847 0.0893 0.0489 0.0159 0.0444 0.0420 0.1670 0.1590 0.0021 0.8713 0.2664 0.1429 0.0444 0.2557 0.1349 0.5096 0.4788 0.0021 0.8621 0.2676 0.1460 0.0420 0.1349 0.1476 0.4957 0.4795 0.0083 3.4729 1.0686 0.5809 0.1670 0.5096 0.4957 2.0155 1.9679 0.0083 3.4076 1.0700 0.5739 0.1590 0.4788 0.4795 1.9679 2.4242?? ? ? ? ? ? ? ? ? ? ? ? ???

回归系数为:

03634.2b =,1 3.8b =,20.8b =,321.5b =-,48.6b =-

5 1.3b =, 68.1b =, 7 4.6b =, 80.7b =-

回归方程为:

^

123456783634.2 3.80.821.58.6 1.38.1 4.60.7y x x x x x x x x =++--+++- 3、偏回归平方和i Q 的比较

根据i Q 的大小可判断各因素对年销售额的影响程度:

24578136x x x x x x x x >>>>>>>

第二问: 5.2 模型Ⅱ

5.2.1 模型的建立

1、设随机变量

回归方程的显著性检验(F 检验):

因为^

y α是第α个试验点2,,p ααα???1(x ,x x )

上的回归值,显然

^011112181

^^

2122281'22^381382

388881...1........................1...b y x x x b x x x y Y b Xb XA X Y x x x b y -??

???? ? ?

? ? ?

? ? ?==== ? ? ?

? ? ??? ? ?

??

??

总的偏差平方和为

22

21

S ()()y y y y N ααααα

α

=-=-

∑∑∑总 (9)

它的自由度为f 1

N =-总,

又因为

=S +S S 总回剩

,其中回归平方和为

^

2S (), f y y i αα

-

=-=∑回回 (10)

是由于引入变量1x ,2x ,3x ,…8x 后引起的,剩余平方和

^

2S (), f 1y y N i ααα

=-=--∑剩剩 (11)

它是由于实验误差和其他一些因素引起的。

如果变量y 与变量1x ,2x ,3x ,…8x 之间无线性关系,则模型(2)中的一次项系数018,,,b b b ???应均为零。所以要检验变量y 与变量1x ,2x ,3x ,…8x 之间是否有线性关系,即要检验假设

0: 12H 0,0,,0,

p βββ==???= (12) 是否成立,这一点可以通过比较

S 剩

S 回

来实现。 可以证明:在满足矩阵X 满秩和假设

H 成立的条件下,

222

2

~(),

~(1)S S x i x N i σ

σ

--剩

(13)

S 剩

和S 回相互独立,从而

/~(,1)/(1)

S i

F F p N i S N i =

----回剩 (14)

这样就用统计量F 检验假设0H 成立与否,若对于给定的一组数据,算得

(,1)F F i N i >-- (15)

在显著水平α下,认为回归方程有显著意义。 2、方程系数的显著性检验(T 检验):

某个自变量如果对y 作用不显著, 则它的系数i β就应取值为0, 因此检验每个自变量i x 是否显著, 就要检验假设:

0: 12H 0,0,,0,

p βββ==???=

在0i β=假设下, 可应用t 检验:

t =

(16)

其中ii C 为矩阵C 的对角线上第i 个元素。

对给定的检验水平α, 从t 分布表中可查出与α对应的临界值t α, 如果有

i t t α>,

则拒绝假设

, 即认为i β与0有显著差异, 这说明i x 对y 有重要作用

不应剔除; 如果有i t t α<

则接受假设, 即认为0i β=成立, 这说明i x 对y 不

起作用, 应予剔除。

采用22//(1)

i ii b C F S n α=--

,t =

来检验回归系数i b 是否显著。

5.2.2 模型的求解

1、回归方程的显著性检验:

运用MATLAB 进行编程(程序见附录2)

^

26S ()8.044110y y αα

-

=-=?∑回

^

26S () 1.137910y y ααα

=-=?∑剩

22.9745=F

取0.05α=,0.05(8,26) 2.32F =。

所以回归方程高度显著。 2、方程系数的显著性检验:

剔除第一次检验所有不显著因子中t 值最小的因子2x

剔除第二次检验所有不显著因子中t 值最小的因子4x

剔除第三次检验所有不显著因子中t 值最小的因子7x

剔除第四次检验所有不显著因子中t 值最小的因子8x

计算知:16350.05(26) 2.0555t t t t t >>>>=,所以1x ,3x ,5x ,6x 显著,其余变量

对y 贡献不大,应剔除。

5.3 模型Ⅲ

由第二问得到1x ,3x ,5x ,6x 是影响销售额的主要因素,我们只考虑这

四个因素与销售额的关系,再根据第一问的方法,运用MATLAB 求解,重新建立回归方程:

1356?3368.4618.2 1.57.6y

x x x x =+-++ 然后再次检验新的回归方程的显著性,得

38.4337F =,0.05(4,30) 2.69F =

所以回归方程高度显著。

又因为

13560.059.1499, 2.9384, 2.2727, 4.9818,(30) 2.0423t t t t t =====(由上问可知)

所以自变量

1

x ,

3

x ,

5

x ,

6

x 高度显著。

最后得出结论:

销售额的大小与个人可支配收入、价格、投资和广告费密切相关。

6 模型的评价

6.1模型的优点

本文对于各种因素对于销售额的影响建立了多元线性回归模型,全面综合考虑了各个方面的因素,避免了单一因素分析的不准确性,得出了合理的数学模型。并且通过各因素的显著性分析,找到了影响销售额的主要因素,较符合实际情况,模型可靠,并且模型相对简单,利于操作;该方法不仅适用于本题,也适用于其他方面的数据预测,有实际背景,可运用于实践,具有广泛适用性。 6.2模型的缺点

本文忽略了除了所给因素之外的因素对销售额的影响,与实际问题存在偏差。同时是在假设各因素相互独立的情况下对销售额的影响进行分析,可能会导致误差

7 模型的改进与推广

模型中得到最优回归方程的方法是从包含全部变量的回归方程中逐次剔除不显著因子,这种方法是在不显著因子不多时采用,当不显著因子较多时,则工作量将会相当大,因为每剔除一个变量就得重新计算回归系数。

鉴于以上问题,我们引入了逐步回归分析的方法,它的基本思想是将因子一个个引入,引入因子的条件是,该因子的偏回归平方和经检验时显著的。同时,每引入一个新因子后,要对老因子逐个检验,将偏回归平方和变为不显著的因子

剔除。这种方法不需要计算偏相关系数,计算较简便,并且由于每步都作检验,因而保证了最后所得的方程中所有因子都是显著的。

若回归方程是拟合好的,就可以进一步利用它来进行预报和控制。预报问题,用统计数学的语言来说就是一个区间估计问题。在建立气象预报、地震预报、自动控制等数学模型时,都可以用到本文的模型。

8 参考文献

[1] 马新民,王逸迅. 概率与数理统计[M]. 北京:机械工业出版社,2010.

[2] 刘卫国. MATLAB程序设计与应用[M]. 北京:高等教育出版社,2009.

[3] 茆诗松. 回归分析及其试验设计[M]. 上海:华东师范大学出版社,1986.

9 附录

1、筛选数据程序

%data(14,:)=[];

%data(28,:)=[];

%data(8,:)=[];

n=35;m=8;

alpha=0.05;

y=data(:,9);

x1=data(:,1);

x2=data(:,2);

x3=data(:,3);

x4=data(:,4);

x5=data(:,5);

x6=data(:,6);

x7=data(:,7);

x8=data(:,8);

X=[ones(n,1),x1,x2,x3,x4,x5,x6,x7,x8];

[b,bint,r,rint,s]=regress(y,X,alpha);

% b 回归系数

% bint 回归系数的区间估计

% r 残差

% rint 残差置信区间

% stats 用于检验回归模型的统计量,有三个数值:相关系数R2、F值、与F 对应的概率p,相关系数R2越接近1,说明回归方程越显著;

%F > F1-α(k,n-k-1)时拒绝H0,F越大,说明回归方程越显著;与F对应的概率p 时拒绝H0,回归模型成立。

% Y为n*1的矩阵;

% X为(ones(n,1),x1,…,xm)的矩阵;

% alpha显著性水平

s2=sum(r.^2)/(n-m-1);

b,bint,s,s2

rcoplot(r,rint);

%用这个图来来做参差及其置信区间的图,如果数据的置信区间不包含零点,则可认为这个数据是异常的,应把它剔除

2、求多元回归方程并且进行显著性检验

[m,n]=size(data);

Y=data(:,9);

X=zeros(38,9);

X(:,1)=1;

Z=zeros(38,1);

t=zeros(1,8);

Q=zeros(1,8);

for i=1:m

for j=2:9

X(i,j)=data(i,j-1);

end

end

A=X'*X;

C=inv(A);

b=C*X'*Y; %求多元线性回归方程的系数

for i=1:m

Z(i)=b(1)+b(2)*data(i,1)+b(3)*data(i,2)+b(4)*data(i,3)+b(5)*data(i,4) +b(6)*data(i,5)+b(7)*data(i,6)+b(8)*data(i,7)+b(9)*data(i,8); end

%将数据代入回归方程,求出理论值

for i=2:9

Q(i-1)=(b(i).*b(i))/C(i,i); %求各因素所占比重end

Q

ft=m-8-1;

St=0;Sf=0;

for i=1:m

St=St+(Y(i)-Z(i)).*(Y(i)-Z(i)); %求S剩

Sf=Sf+(Z(i)-mean(Y)).*(Z(i)-mean(Y)); %求S总

end

p=sqrt(St/ft)

for i=2:9

t(i-1)=abs(b(i)/(p*sqrt(C(i,i)))); %t检验

end

b

t

St

Sf

Z

C

F=(Sf/8)/(St/ft); %F检验

flag=1;

a=min(t)

多元线性回归模型练习题及答案

C .(1-R)(k-1) 多元线性回归模型练习 一、单项选择题 1.在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为0.8500,则调整后的可决系数为(D) A.0.8603 B.0.8389 C.0.8655 D.0.8327 2.用一组有30个观测值的样本估计模型y t=b0+b1x1t+b2x2t+u t后,在0.05的 显著性水平上对b1的显著性作t检验,则b1显著地不等于零的条件是其统计量t大于等于(C) A.t0.05(30) B.t0.025(28) C.t0.025(27) D.F0.025(1,28) 3.线性回归模型y t=b0+b1x1t+b2x2t+......+b k x kt+u t中,检验 H0:b t=0(i=0,1,2,...k)时,所用的统计量服从(C) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2) 4.调整的可决系数与多元样本判定系数之间有如下关系(D) A.R2=n-1 n-k-1 R2 B. R2=1-n-1 n-k-1 R2 C.R2=1-n-1 n-k-1 (1+R2) D. R2=1-n-1 n-k-1 (1-R2) 5.对模型Y i=β0+β1X1i+β2X2i+μi进行总体显著性F检验,检验的零假设是( A) A.β1=β2=0 B.β1=0 C.β2=0 D.β0=0或β1=0 6.设k为回归模型中的参数个数,n为样本容量。则对多元线性回归方程进行显著性检验时,所用的F统计量可表示为(B) A.RSS k-1)B. R2k (1-R2)(n-k-1) R2(n-k) 2 ESS/(k-1) D.TSS n-k) 7.多元线性回归分析中(回归模型中的参数个数为k),调整后的可决系数R2与可决系数R2之间的关系(A) R2=1-(1-R2)n-1 n-k-1 A. B.R2≥R2

数学建模多元回归模型修订稿

数学建模多元回归模型 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

实习报告书 学生姓名: 学号: 学院名称: 专业名称: 实习时间: 2014年 06 月 05 日 第六次实验报告要求 实验目的: 掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及解释变量的增减的方法,以及运用相应的Matlab软件的函数计算。 实验内容: 已知某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据,见表1。请选择恰当的解释变量和恰当的模型,建立粮食年销售量的回归模型,并对其进行估计和检验。 表1 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据 年份粮食年销售量Y/ 万吨 常住人口X2/ 万人 人均收入 X3/元 肉销售量 X4/万吨 蛋销售量 X5/万吨 鱼虾销售量 X6/万吨 1974 1975 1976 1977 1978 1979 1980 1981

1982 1983 1984 1985 1986 1987 实验要求: 撰写实验报告,参考第10章中牙膏销售量,软件开发人员的薪金两个案例,写出建模过程,包括以下步骤 1.分析影响因变量Y 的主要影响因素及经济意义; 影响因变量Y 的主要影响因素有常住人口数量,城市中人口越多,需要的粮食数量就越多,粮食的年销售量就会相应增加。粮食销量还和人均收入有关,人均收入增加了,居民所能购买的粮食数量也会相应增加。另外,肉类销量、蛋销售量、鱼虾销售量也会对粮食的销售量有影响,这些销量增加了,也表示居民的饮食结构也在发生变化,生活水平在提高,所以相应的,生活水平提升了,居民也有能力购买更多的粮食。 2. 建立散点图考察Y 与每一个自变量之间的相关关系 从上述散点图,我们可以看出,当x2增大时,y 有向上增加的趋势,图中的曲线是用二次函数模型 。随着x3,x4,x5,x6的增加,y 的值都有比较明显的 线性增长趋势,直线是用线性模型 3.建立多元线性回归模型,并计算回归系数和统计量; 综合上述分析,可以建立如下回归模型: 表1 初始模型的计算结果 εββ++=210x y εββ++=510x y

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

多元线性回归模型案例(DOC)

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

(完整版)多元线性回归模型习题及答案

多元线性回归模型 一、单项选择题 1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A. i C (消费)=500+0.8 i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. s i Q (商品供给)=20+0.75i P (价格) D. i Y (产出量)=0.650.6i L (劳动)0.4 i K (资本) 3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水 平上对1 b 的显著性作t 检验,则1 b 显著地不等于零的条件是其统计量t 大于等于( C ) A. )30(05.0t B. ) 28(025.0t C. ) 27(025.0t D. ) 28,1(025.0F 4.模型 t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B ) A.x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C ) A.异方差性 B.序列相关 C.多重共线性 D.高拟合优度 6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...) t H b i k ==时,所用的统计量 服从( C ) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2)

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

数学建模——商品需求量的预测

实验十三 商品需求量的预测 【实验目的】 1.了解回归分析的基本原理和方法。 2.学习用回归分析的方法解决问题,初步掌握对变量进行预测和控制。 3.学习掌握用MATLAB 命令求解回归分析问题。 【实验内容】 现有某种商品的需求量、消费者的平均收入、商品价格的统计数据如表1所示,试用所提供的数据预测消费者平均收入为1000、商品价格为6时的商品需求量。 【实验准备】 现实生活中,一切事物都是相互关联、相互制约的。我们将变化的事物看作变量,那么变量之间的相互关系,可以分为两大类:一类是确定性关系,也叫作函数关系,其特征是一个变量随着其它变量的确定而确定,如矩形的面积由长宽确定;另一类关系叫相关关系,其特征是变量之间很难用一种精确的方法表示出来,如商品销量与售价之间有一定的关联,但由售价我们不能精确地计算出销量。不过,确定性关系与相关关系之间没有一道不可逾越的鸿沟,由于存在实际误差等原因,确定性关系在实际问题中往往通过相关关系来体现;另一方面,当对事物内部规律了解得更加深刻时,相关关系也可能转化为确定性关系。 1.回归分析的基本概念 回归分析就是处理变量之间的相关关系的一种数学方法,它是最常用的数理统计方法,能解决预测、控制、生产工艺化等问题。由相关关系函数确定形式的不同,回归分析一般分为线性回归、非线性回归和逐步回归,在这里我们着重介绍线性回归,它是比较简单的一类回归分析,在实际问题的处理中也是应用得较多的一类。 回归分析中最简单的形式是 y =0β+1βx +ε (x 、y 为标量) (1) 固定的未知参数0β,1β称为回归系数,自变量x 称为回归变量,ε是均值为零的随机变量,它是其他随机因素对 y 的影响,是不可观察的,我们称(1)为一元线性回归。它的一个自然推 广是x 是多元变量,形如 y =0β+1β1x +…+m βm x +ε (2) m ≥2,我们称为多元线性回归,或者更有一般地

matlab多元线性回归模型

云南大学数学与统计学实验教学中心 实验报告 一、实验目的 1.熟悉MATLAB的运行环境. 2.学会初步建立数学模型的方法 3.运用回归分析方法来解决问题 二、实验内容 实验一:某公司出口换回成本分析 对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本. 实验二:某建筑材料公司的销售量因素分析 下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品

竞争数和地区销售潜力分别是影响建筑材料销售量的因素。1)试建立回归模型,且分析哪些是主要的影响因素。2)建立最优回归模型。 提示:建立一个多元线性回归模型。

三、实验环境 Windows 操作系统; MATLAB 7.0. 四、实验过程 实验一:运用回归分析在MATLAB 里实现 输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x]; Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*'); [b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288 bint = 1.8873 3.4322 -0.3820 -0.0757 stats = 0.4958 10.8168 0.0072 0.0903 即==1,0?6597.2?ββ,-0.2288,0?β的置信区间为[1.8873 3.4322],1,?β的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立. 1 1.5 2 2.5 散点图 估计某家公司商品流转费用率是6.5%的出口换汇成本。将x=6.5代入回归模型中,得到 >> x=6.5; >> y=2.6597-0.2288*x y = 1.1725

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

多元线性回归 数学建模经典案例

多元线性回归 黄冈职业技术学院数学建模协会胡敏 作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 编写程序如下: data ex; input x1-x5 y@@; cards; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 ; proc reg; model y=x1 x2 x3 x4 x5/cli; run; 运行结果如下: (1)回归方程显著性检验. Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 5 2.25207 0.45041 11.63 0.0170 Error 4 0.15497 0.03874 Corrected Total 9 2.40704

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

数学建模多元回归模型

实习报告书 学生姓名: 学号: 学院名称: 专业名称: 实习时间: 2014年 06 月 05 日 第六次实验报告要求 实验目的: 掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及解释变量的增减的方法,以及运用相应的Matlab软件的函数计算。 实验内容: 已知某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据,见表1。请选择恰当的解释变量和恰当的模型,建立粮食年销售量的回归模型,并对其进行估计和检验。

表1 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据 年份粮食年销售 量Y/万吨 常住人口 X2/万人 人均收 入X3/ 元 肉销售 量X4/万 吨 蛋销售 量X5/ 万吨 鱼虾销 售量 X6/万吨 197498.45560.20153.20 6.53 1.23 1.89 1975100.70603.11190.009.12 1.30 2.03 1976102.80668.05240.308.10 1.80 2.71 1977133.95715.47301.1210.10 2.09 3.00 1978140.13724.27361.0010.93 2.39 3.29 1979143.11736.13420.0011.85 3.90 5.24 1980146.15748.91491.7612.28 5.13 6.83 1981144.60760.32501.0013.50 5.418.36 1982148.94774.92529.2015.29 6.0910.07

1983158.55785.30552.7218.107.9712.57 1984169.68795.50771.1619.6110.1815.12 1985162.14804.80811.8017.2211.7918.25 1986170.09814.94988.4318.6011.5420.59 1987178.69828.731094.6 523.5311.6823.37 实验要求: 撰写实验报告,参考第10章中牙膏销售量,软件开发人员的薪金两个案例,写出建模过程,包括以下步骤 1.分析影响因变量Y的主要影响因素及经济意义; 影响因变量Y的主要影响因素有常住人口数量,城市中人口越多,需要的粮食数量就越多,粮食的年销售量就会相应增加。粮食销量还和人均收入有关,人均收入增加了,居民所能购买的粮食数量也会相应增加。另外,肉类销量、蛋销售量、鱼虾销售量也会对粮食的销售量有影响,这些销量增加了,也表示居民的饮食结构也在发生变化,生活水平在提高,所以相应的,生活水平提升了,居民也有能力购买更多的粮食。

数学建模回归分析多元回归分析

1、 多元线性回归 在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

统计学数学模型

一、多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验

(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。 这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面! 二、聚类分析 聚类有两种类型: (1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法: (1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法 在具体做题中,适当选取方法; 3、注意事项 在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤 (1)首先把每个样本自成一类; (2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类, (4)重复第2步,直到只剩下一个类; 补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分

数学建模实验 ——曲线拟合与回归分析

曲线拟合与回归分析 1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1)说明两变量之间的相关方向; (2)建立直线回归方程; (3)计算估计标准误差; (4)估计生产性固定资产(自变量)为1100万元时的总资产 (因变量)的可能值。 解: (1)工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用spss回归 (2)spss回归可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示: .0+ y =x 896 . 395 567 (3)spss回归知标准误差为80.216(万元)。 (4)当固定资产为1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216) 即(1301.0~146.4)这个范围内的某个值。 MATLAB程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0.05); display(b); display(stats); x1 = [300:10:1250]; y1 = b(1) + b(2)*x1; figure;plot(x,y,'ro',x1,y1,'g-');

数学建模专题汇总-离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,…说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3和4等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 二、离散因变量

在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。 10 yes x no ?=?? 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。 三、线性概率模型

现在约定备择对象的0和1两项选择模型中,下标i 表示各不同的经济主体,取值0或l 的因变量i y 表示经济主体的具体选择结果,而影响经济主体进行选择的自变量i x 。如果选择响应 YES 的概率为(1/)i p y =i x ,则经济主体选择响应 NO 的概率为1(1/)i i p y -=x , 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。 根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 (1/)(/)i i i i i p y x E y x '===x β 011i k ik i x x u βββ=++++L 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。如果通过回归模型式得到的因变量拟合值完全偏离0或l 两个数值,则描述两项选择的回归模型的实际用途

(完整版)多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21), n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3.2.11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3.2.12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:

相关文档