文档库 最新最全的文档下载
当前位置:文档库 › 比率制动差动保护

比率制动差动保护

比率制动差动保护
比率制动差动保护

制动扩展

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器差动保护的比率制动特性曲线及现场测试方法

变压器差动保护的比率制动特性曲线及现场测试方法 摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

主变比率制动式差动保护

主变比率制动式差动保 护 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.1.1. 主变比率制动式差动保护 比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA 断线、TA 饱和、TA 暂态特性不一致的情况。 由于变压器联结组不同和各侧TA 变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。 1.1.1.1. 比率差动动作方程 ? ?? ??-+-+≥-+≥>)I 6I (6.0)I I 6(S I I ) I I (S I I I I e res 0.res e 0.op op 0.res res 0.op op 0.op op ) I 6I ()I 6I I ()I I (e res e res 0.res res.0res >≤<≤ (6-3-1) op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定 值,S 为动作特性折线中间段比率制动系数。op.0I ,res.0I ,S 需用户整定。 对于两侧差动: 21I I I op += (6-3-2) 2I 21res I I -= (6-3-3) 1I ,2I 分别为变压器高、低压侧电流互感器二次侧的电流。各侧电流的方向都以指向变压器为正方向。 1.1.1. 2. 比率差动动作特性 比率差动动作特性同图6-3-1所示: 图6-3-1 主变(厂变、励磁变)比率差动动作特性 注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。 1.1.1.3. 主比率差动启动条件 当三相最大差动电流大于倍最小动作电流时,比率制动式差动启动元件动作。 图6-3-2 主变增量差动保护动作特性图 1.1. 2. 主变差动保护逻辑图 主变差动保护逻辑如图6-3-3所示: 图6-3-3 主变(厂变、励磁变)差动保护逻辑图

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

8.2-母线差动保护的基本原理

8.2 母线差动保护原理 ——单母线完全电流差动保护 ——高阻抗母线差动保护 ——具有比率制动特性的中阻抗母线差动保护

为了满足速动性和选择性的要求,母线保护都是按差动原理构成的。实现母线差动保护必须考虑在母线上一般连接着较多的电气元件(如线路、变压器、发电机等),因此就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。

(1)在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等。 (2)当母线上发生故障时,所有与母线连接的元件都向故障点供给短路电流或流出残留的符合电流。 (3)从每个连接元件中电流的相位来看,在正常运行及外部故障时,至少有一个元件中的电流相位和其余元件中德电流相位是相反的。 根据原则(1)和原则(2)可构造电流差动保护,根据原则(3)可以构造电流比相式差动保护。

负荷1 电源 负荷2 1 I 2 I 3 I 3 21I I I +=负荷1 电源 负荷2 1 I 2 I 3 I 03 21=++I I I 若支路1、2、3上均安装相同变比的电流互感器,则三个电流互感器的电流之和应等于0(理想情况)。 =∑I

母线故障时的电流特征 若支路1、2、3上都安装有相同变比的电流互感器,则母线故障时,三个电流互感器的电流之和应等于短路电流(二次值)。 电源 1 I 2I 3 I 0321=+++k I I I I k I 依KCL : 即: k I I I I -=++321

8.2.1 单母线完全电流差动保护 KD 1p I 2p I 3 p I pn I 1 s I 2 s I 3s I sn I KA I 0 11 TA 1 ===∑∑==n i pi n i si KA I n I I 正常工作时

比率制动式差动保护

比率制动式差动保护 变压器差动保护 :这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简 称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 :下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:

1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA, 11'流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; 12'流过变压器高压侧所装设电流互感器即CT1的二次电流; I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 动作电流lop 4 d Iopo 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; P:比率制动斜线上的任一点; e: p点的纵坐标; b: p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于 电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬 高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴 影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 f Ires, o 图二 b 制动电流Ires

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

比率制动差动保护

1比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为0B,即保护区内短路时的短路电流必须大于0B所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于0A所代表的电流值,保护即能动作。OA <0B这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。 在实际的变压器差动保护装置中,其比率制动特性如下图2所示: 图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。即:lzd=le/nLH 图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。 2比率制动式差动保护的整定在比率制动式差动保护的整定计算时,通常按以下原则选取: 2.1 Icdsd即差动速断电流 当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6? 8 倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于

差动保护的比率制动特性曲线及现场测试方法

差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以 Y/△-11接线的两卷变压器为例进行说明。 假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为: 当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:

图2 图3 即星侧电流 通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为: 经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。 由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧: 这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

比率差动保护原理

故障分量差动保护 摘要深入地研究了基于故障分量的数字式差动保护的基本原理,并与传统的比率制动差动保护作了详细比较,讨论了故障分量差动保护的动作判据,最后介绍了基于该原理的保护在实际中的应用。 关键词故障分量差动保护微机保护发电机变压器 0 引言 基于故障分量(也称增量)来实现保护的原理最早可以追溯到突变 量原理的保护,但真正受到人们普遍关注和广泛研究则是出现微机保护技术之后。微机具有长记忆功能和强大的数据处理能力,可以获取稳定的故障分量,从而促进了故障分量原理保护的发展[1]。近20年来,陆续提出了基于故障分量的差动保护、方向保护、距离保护、故障选相等许多新原理,并在元件保护、线路保护各个领域得到了成功的应用。本文针对在发电机、变压器中广泛使用的比率制动式差动保护,讨论故障分量保护的基本原理、判据和应用中的一些问题。 1 故障分量比率差动保护原理 故障分量电流是由从故障后电流中减去负荷分量而得到的,可以由它来构成比率差动保护。习惯上常用“Δ”表示故障分量,故也有人称之为“Δ差动继电器”[2]。以两侧纵联差动保护为例,若两侧电流假定正向均取为流入被保护设备,故障分量比率差动保护的动作方程可表示为: (1) 式中;下标L表示正常负荷分量;下 标Ⅰ,Ⅱ则分别表示被保护设备两侧的电量。 在故障分量比率差动保护中,令,分别表示动作量(差动量)和制动量,即

(2) 因正常运行时有,故传统比率差动保护的动作量 d 可表示为: 和制动量 r (3) 比较式(2)与式(3)可见,忽略变压器两侧负荷电流的误差之后,两种差动保护原理的动作量相同,主要不同之处表现在制动量上。发生内部轻微故障(如单相高阻接地或小匝数匝间短路)时,可能出现 L决定,从 ,这时式(3)中制动量主要由2I Ⅰ 而使得传统比率差动保护方案因制动量太大而降低了灵敏度。利用降低K值来改善灵敏度是有限的。因为必须保证外部严重故障时有足够的制动量不使保护误动,发生外部严重故障时,一般有 ,因此两种原理差 ,制动量主要决定于Δ r 动保护的制动量相当,不会引起误动。由以下进一步的分析可更清楚地看到这一点。 设一单相变压器发生对地高阻抗接地故障,现用一简化的具有两端电源的T形网络来表征,如图1所示。 图1 单相变压器内部故障简化等值电路 Fig.1 The simplified equivalent circuit of single-phase transformer with internal fault 短路阻抗为Z 。按照叠加原理,可将图1所示电路分解为正常网络 f 和故障附加网络。由故障附加网络推导出式(1)的另一种形式为:

比率制动差动保护

1 比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的 主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制 动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。 曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为OB′,即保护区内短路时的短路电流必须大于OB′所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于OA′所代表的电流值,保护即能动作。OA′

发电机差动保护原理

发电机差动保护原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ? ( I res ? 时) I op ? + S(I res – ( I res > 时) 式中:I op 为差动电流,为差动最小动作电流整定值,I res 为制动电流,为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图 5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零;

b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于倍的额定电流。 发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护 该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2.U ?的角度)。 故障分量负序方向保护的动作判据可表示为: 实际应用动作判据综合为: ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > ?P (?u 、?i 、?P 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保护极性图 图5.2.1.2 故障分量负序方向保护逻辑框图 5.2.2发电机纵向零序过电压及故障分量负序方向型匝间保护 本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及

差动保护原理

前提是变压器为常见的星星三角接线,点数11. 所谓差流平衡,就是当正常运行或主变区外故障时的状态,装置感受到的变压器两侧电流方向相反,大小相等。这里暂且称装置感受到用来计算差流的量为装置量。 先计算1202的平衡系数。方法如下: 高压侧:PH高=变压器绕组星形接线1/√3 中压侧:PM中=变压器绕组星形接线Mct*Mdy/(Hct*Hdy*√3) 低压侧:PL低=变压器绕组角形接线Lct*Ldy/(Hct*Hdy) 装置量=输入值*平衡系数 例:CT变比H:1200/5 M:1200/5 L:2000/5 PT变比H:230/100 M:115/100 L:37.5/100 变压器星星角接线,CT二次星星星接线 可计算得Ph高,Ph中和Ph低值 当做高低压侧差流平衡时,加量方法如下:任取一个装置制动量X A(装置量), 则测试仪加入X/PH高 0度(加在高压侧A相) X/ PH低 180度(加在低压侧A相) (补偿电流) X/PH低 0度(加在低压侧C相) 楼主给的是3A,取X为3代入,就可以得到测试仪加入的量了。这样加一定是装置无差流的。 至于为什么要加补偿电流,是因为从前的主变保护如果两侧为星型和三角型,则CT二次侧星型接为三角,三角接为星型,以补偿相位达到差流的平衡。但是现在的微机保护装置,统一二次侧全接为星型,因此需要软件中进行相位补偿。1202相位校正采取方法是星变三角,即将高压侧二次电流进行以下公式变换,也就是楼主所提供的公式。 IAH=(Iah-Ibh)/根3 IBH=(Ibh-Ich)/根3 ICH=(Ich-Iah)/根3 其实就是将来自高压侧的电流互相相减再除以根3 根据上式,如果做高低压侧差流平衡,本来在高压侧A相和低压侧A相通入相同幅值,相位相反的装置量,就应该差流平衡的。但是因为高压侧进行了以上的相位变换,所以当高压侧A相通入电流时,高压侧C相也产生了反相的同幅值电流,所以C相产生了差流。这样没有办法差流平衡。所以要进行补偿,同时在高压侧C相或者低压侧C相也加入一个同相同幅值的装置量来抵消。这就是C相补偿电流的来源。注意上面所

比率制动式差动保护

比率制动式差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就

比率制动纵联差动保护

我厂3#和4#机组用的是比率制动式纵联差动保护,采用的装置分别是珠海优特的UT-9931C和北京紫光的DCAP-3040A,动作原理基本相似,下面以4#机为例说明。 1定义: 发电机比率制动纵联差动保护简称比率纵差保护,是一种比较发电机两端电流大小和方向的保护,它能很灵敏的反应并切除发电机绕组及引出线相间短路故障,是发电机相间短路的主保护。[1] 2基本原理: 将发电机两端流过方向相同、大小相等的电流称为穿越性电流,而方向相反的电流称为非穿越性电流。作为主保护,发电机比率制动差动保护是以非穿越性电流作为动作量、以穿越性电流作为制动量,来区分被保护元件的正常状态,故障状态和非正常运行状态的。 正常运行状态,穿越性电流即为负荷电流,非穿越性电流理论为零。 内部相间短路状态,非穿越性电流剧增。 当外部故障时,穿越性电流剧增。 3特点: 该保护采用机端电流If作为制动电流,动作电流随外部短路电流的增大而增大,即可保证外部短路时不误动,同时内部短路又有较高的灵敏度。 4动作条件:

Icd>IcdO (IfIcdO+k(If-Igd) (If 〉Igd) Icd-----差动电流 IcdO-----差动最小动作电流 Iqd-----拐点电流,规定为0.9倍的发电机二次侧额定电流 If------机端电流 Isd-----差动速度动作值 K------比率制动系数 (1) 差动速断 差动速断保护实质上是反映差动电流的过电流保护,不经任何闭锁回路,直接快速动作于出口。 动作判据:任一相差动电流大于差动速断定值。

(2) 比率差动 比率制动式差动保护的特点是,动作电流随外部短路电流的增大而增大,既可保证外部短路不误动,同时对于内部短路又有较高的灵敏度。 (3) 差流越限告警 当任一相的差流大于差流越限定值时,经延时发差流越限告警信号。

差动保护和比率差动保护

差动保护主要就是内部短路的保护,但当外部故障时有不平衡电流可能穿越差动保护电流互感器,造成差动保护误动作。因此为了躲过外部故障时不平衡电流引起差动保护动作,采用了制动电流来平衡穿越电流引起差动保护的启动电流。 发电机采用机端电流作为制动电流,能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用。变压器采用二次谐波作为励磁涌流闭锁判据。 一般设有CT断线闭锁保护。如下图: 图中Ie为额定电流, Icdqd为启动电流, Ir为制动电流, Kb1为比率制动系数。 阴影部分为动作区

差动保护灵敏度与启动电流、制动系数与原理之间的关系摘要:分析了差动保护的有关整定原则,明确提出了差动保护的灵敏度与许多因素有关,如定值、原理与实现方式等。不能仅改变某一个因素(如定值)来提高灵敏度,而需要综合考虑各个因素的影响,否则适得其反。 0 引言 随着继电保护技术的不断发展与进步,技术人员对保护的认识越来越深刻,对许多继电保护约定俗成的做法开始了反思。如规程上对差动保护规定:使用比率制动原理的差动保护,不要校核灵敏度,其灵敏度自然满足。那么这个“自然满足”的灵敏度就是什么灵敏度呢?其实对发电机差动保护而言,就就是在发电机机端发生两相短路,该差动继电器的灵敏度校验结果肯定能够满足要求;在现场运行过程中,经常有人将保护中的比率制动系数与比率制动斜率混淆,究竟这两个概念有什么区别,又有什么联系?标积制动原理对提高差动保护的灵敏度有什么有利的地方,它与比率制动之间又有什么关系,它们之间从根本上就是否一致呢?本文就这些用户所关心的问题展开深入的分析与讨论,并阐明作者自己的观 点[1,2] 。 1 差动保护灵敏度系数的定义与校验 设流入发电机的电流为正方向,取继电电器差动电流Id为:

二次谐波制动比率差动的原理

二次谐波制动比率差动的原理 摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。 关键词:差动保护;误动;暂态特性;线路纵差保护 电力系统中,主变是承接电能输送主要设备,作为主设备主保护微 机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不 明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。 1主变差动保护 主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。 1.1比率差动保护动作特性 比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。 二次谐波制动主要区别是故障电流励磁涌流,主变空载投运时会产生比较大励磁涌流,并伴随有二次谐波分量,使主变不误动,采用谐波制动原理。判断二次谐波分量,是否达到设定值来确定是主变故障主变空载投运,决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。 有些大型变压器,增加保护可靠性,也有采用五次谐波制动原理。 1.2差动速断作用 差动速断是较严重区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断定值是按躲过变压器励磁涌流,和最大运行方式下穿越性故障引起不平衡电流,两者中较大者。定值一般取(4~14)Ie。 2主变差动保护误动作原因分析 主变差动保护误动作可能性大小,大致分为新建变电站、运行中变 电站、改造变电站三个方面进行说明,这种分类方法并绝对相互区别, 便于分析问题时优先考虑现实问题。 2.1新建变电站主变差动保护误动作原因分析 新建变电站主变差动保护误动作,主变差动保护误动作中占了较大 比例,但这种情况误动作,一般大多主变投运带负荷试运行72h就会被发现。现场经验,可以总结以下几方面。 2.1.1定值不合理造成主变差动保护误动作 差动速断定值和二次谐波制动比率差动定值选择不正确造成误动作。 差动速断是较严重区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断定值是按躲过变压器励磁涌流和最大运行方式下,穿越性故障引起不平衡电流,两者中较大者。定值一般取(4~14)Ie。保护定值计算部门,特别是非电力系统定值计算部门,往往运行经验,将差动速断定值取为(5~6)Ie。这样,就会造成主变空载合闸时断路器出现误跳。 比率差动是当变压器内部出现轻微故障时,保护不带制动量动作跳开各侧

相关文档
相关文档 最新文档