文档库 最新最全的文档下载
当前位置:文档库 › 超临界水氧化技术的优缺点学习资料

超临界水氧化技术的优缺点学习资料

超临界水氧化技术的优缺点学习资料
超临界水氧化技术的优缺点学习资料

超临界水氧化技术的

优缺点

超临界水氧化技术的优缺点

超临界水氧化技术与其他处理技术相比,具有其明显的优越性:

(1)效率高,处理彻底,有机物在适当的温度、压力和一定的保留时间下,能完全被氧化成二氧化碳、水、氮气以及盐类等无毒的小分子化合物,有毒物质的清除率达99.99%以上,符合全封闭处理要求:

(2)由于SCWO是在高温高压下进行的均相反应,反应速率快,停留时间短(可小于1min ),所以反应器结构简洁,体积小;

(3)适用范围广,可以适用于各种有毒物质、废水废物的处理;

(4 )不形成二次污染,产物清洁不需要进一步处理,且无机盐可从水中分离出来,处理后的废水可完全回收利用;

(5)当有机物含量超过2%时,就可以依靠反应过程中自身氧化放热来维持反应所需的温度,不需要额外供给热量,如果浓度更高,则放出更多的氧化热,这部分热能可以回收。

表5是超临界水氧化与湿式空气氧化法(WAO)以及传统的焚烧法的对比。

参数与指标SCWO WAO焚烧法

温度/C400?600150?3502000?3000

压力/Mpa30 ?402?20r常压

催化剂不需要需要不需要

停留时间/min< 115 ?20> 10

去除率/%> 99.9975 ?9099.99

自热是是不是

适用性普适受限制普适

排出物无毒、无色有毒、有色含有NO

后续处理不需要需要需要

然而,尽管超临界水氧化法具备了很多优点,但其高温高压的操作条件

无疑对设备材质提出了严格的要求。另一方面,虽然已经在超临界水的性质和物质

在其中的溶解度及超临界水化学反应的动力学和机理方面进行了一些研究,但是这些与开发、设计和控制超临界水氧化过程必需的知识和数据相比,还远不能满足要求。

在实际进行工程设计时,除了考虑体系的反应动力学特性以外,还必须注意一些工程方面的因素,例如腐蚀、盐的沉淀、催化剂的使用、热量传递等。

(1)腐蚀在超临界水氧化环境中比通常条件下更易导致金属的腐蚀。

高浓度的溶解氧、高温高压的条件、极端的pH值以及某些种类的无机离子均可使

腐蚀加快。腐蚀会产生两个方面的问题,一是反应完毕后的流出液中含有某些金属离子(如铬等),会影响处理的质量;二是过度的腐蚀会影响压力系统正常工作。

在300?500 C、pH值2?9、氯化物浓度为400mg/L的条件下,对13种合金的腐蚀进行了实验研究。结果表明,在给定的温度范围内pH对腐蚀的影响不大。在300 C的亚临界状态下,由于水的介电常数和无机盐的溶解度均较大,主要以电化学腐蚀为主。当温度升至400 C以上时,水的介电常数和盐的溶解度迅速下降,这时以化学腐蚀为主。

(2)盐的沉淀在超临界水氧化中,往往在进料中加入碱中和过程中产生的酸和生成的盐,因超临界条件下无机物的溶解度很小,过程中会有盐的沉淀。某些盐的粘度较大,有可能会引起反应器或管路的堵塞。通过反应器形式的优化和适当的操作方式可予以部分地改善。对于某些高含盐体系可能需要预处理。

(3)催化剂在一些物质的超临界水氧化研究中使用了催化剂,主要是为了提高复杂有机物的转化率、缩短反应时间或降低所需的反应温度。现在应用的绝大部分催化剂是以往湿式空气氧化和亚临界水氧化过程研究中使用的。均相催化和非均相催化相比,非均相催化的综合效果较好。

(4 )热量传递因为水的性质在临界点附近变化很大,在超临界水氧化过程中也必须考虑临界点附近的热量传递问题。在临界点温度以下但接近临界点时,水的运动粘度很低,温度升高时自然对流增加,热导率增加很快。但当温度超过临界点不多时,传热系数急剧下降,这可能是由于流体密度下降以及主体流体和管壁处流体的物理性质的差异所导致。

虽然,超临界水氧化技术仍存在着一些有待解决的问题,但由于它本身所具有的突出优势,在处理有害废物方面越来越受到重视,是一项有着广阔发展和应用前景的新型处理技术。

电化学氧化法对处理垃圾渗透液的影响

电化学氧化法对处理垃圾渗透液的影响 外加不同盐类对污染物去除的影响 图1在电化学氧化法处理过程中,加入其它盐来探讨外加盐类对电化学氧化处理的影响。在电解时,分别加入5000mg?L-1硫酸钠和氯化钠。 盐类对污染物去除的影响 对比图1和图2可知,当外加入硫酸盐后电化学处理垃圾渗滤液时污染物去除效率较未加硫酸盐时降低了,这说明硫酸盐的加入对渗出液电化学氧化处理起到了消极作用。硫酸根是含氧阴离子,其加入抑制了Cl2/HClO生成,进而导致了垃圾渗滤液的处理率降低。 当外加氯化物时,COD和铵氮的去除率都提高了,这说明外加氯化物对垃圾填埋场浸出液的电化学氧化处理有积极作用。同时,外加氯化物时,铵氮去除率远远高于COD的去除率,铵氮的去除占主要地位。 氯化物浓度对污染物去除的影响 通过外加不同浓度的氯化钠来研究氯化物浓度对电化学氧化法处理垃圾渗滤液的影响。 图3氯化物浓度对污染物去除的影响 由图3可知:铵氮与COD去除率均随氯化物浓度增大而提高。因为Cl-浓度高,生成 Cl2/HClO浓度也高,增强了间接氧化作用。从图3还可知,在电解过程中,COD去除率低于

铵氮去除率。然而,在电解过程的后阶段,当铵氮几乎完全去除时,COD的去除率立即增大。这也说明在去除铵氮与COD过程中,铵氮被优先去除。 当外加氯化物6000mg?L-1、电流密度为12A?dm-2,电解240min,COD去除率可达90 %。 3电流密度对污染物去除的影响 电流密度对污染物去除的影响 污染物去除率随电流密度增加而增加。电流密度增加,铵氮去除率大幅增加,而COD 去除率只是稍稍增加。因为垃圾渗滤液中含有较高浓度铵氮,在电化学氧化处理过程中,铵氮优先去除,故要得到较高的COD去除率,外加氯化物是十分必要的。 结论 (1)电化学氧化法能有效处理垃圾渗滤液。使用SPR阳电极,12A?dm-2电流密度, 6000mg?L-1氯化物,电解240min,COD去除率可达90%。 (2)电化学氧化法对COD与铵氮的去除情况不同。铵氮能优先被去除,去除效率高达100%。当铵氮完全去除后COD去除率明显增大。若预先将铵氮去除,则电解时COD去除率会提高,这样会减少电耗。 (3)SPR阳极对渗出液处理率最高。随着电流密度和氯化物浓度增大,渗出液处理率增大。

超临界水氧化法处理污泥技术介绍

超临界水氧化法处理污泥技术介绍 1、超临界水氧化技术 超临界水氧化技术(Supercritical Water Oxidation,SCWO)是指某一流体当温度和压力升高至该流体的临界温度和临界压力之上时,该流体便成为超临界流体。超临界水氧化技术是指在温度和压力高于水的临界温度(374.3℃)和压力(22.1MPa)之上的反应条件下,以超临界水为反应介质,以空气或氧气为氧化剂,将水中有机污染物彻底氧化成CO2和H2O的过程。 该技术适用于处理含有机污染物的任何废液及废弃固体。超临界水氧化技术发展遭遇到了一些技术挑战,主要是盐酸、硫酸等腐蚀和盐类沉积。目前发现的耐超临界水氧化腐蚀性能最好的Ni基合金Inconel625 和Hastelloy C-276 在SCWO环境下的均匀腐蚀速率达到 17.8mm/a,远高于作为设备结构材料要求的腐蚀速率(低于 0.5mm/a)。反应器和换热器的腐蚀问题成为直接制约SCWO技术大规模产业化应用的关键因素。 2、超临界水氧化技术及特点: 超临界水具有低的粘度,高的扩散系数,促进了超临界水反应器中混合物的传质。很低的极性,导致无机盐溶解度的大幅降低和有机物溶解能力的增加。超临界水具有很高的热容,使得热传输效率高。常况水进入超临界态后,约2/3的氢键断裂,引起介电常数急剧降低。超临界水氧化法使用超临界水的独特性能,将有机废物转化为环境无害的产物。 其技术特点表现在以下几方面:

①使用环境友好、廉价易得的水作为反应介质,符合绿色化学发展要求; ②超临界水既有接近常规液态水的密度,又有接近气体的粘度,因而有很高的传质速度。在超临界区,由于流体的密度、溶解度、粘度等特性随水密度而改变。因此,可以通过控制操作条件(即温度和压力)改变反应环境; ③超临界水氧化操作温度远低于焚烧温度,所以不会产生氮氧化物以及硫氧化物等二次污染物;氧化反应产物主要为CO2、N2、H2O和无机盐,实现了污染物零排放; ④超临界水作为有机物和氧气的良好溶剂,使得氧化反应在均相进行,不存在相间传质限制,反应速度快,处理效率高,有机物降解效率在不到一分钟或者更短的时间内达到99.99%; ⑤超临界水氧化系统体积小、完全封闭且可以迅速停车,使得易于控制; ⑥超临界水氧化系统适于处理的有机物范围广,几乎适用于各种有机废物的处理,且对有机物浓度适用范围宽; ⑦超临界水氧化反应为放热过程,当有机物浓度超过 10%甚至更高时,需要的热交换器很小甚至不需要外部供热,只需在引发反应的初期供热即可。

超临界水氧化

1 scwo概念原理 超临界水氧化( SCWO)法是一种新兴的废物处理技术,具有节能、高效、适用性强等特点,。美国国家关键技术所列的六大领域之一“能源与环境”中指出,最有前途的废物处理技术是SCWO法。 超临界水氧化(supercritical water oxidation,SCWO)是在水的温度超过水的临界温度、压力超过水的临界压力条件下,以氧气作为氧化剂,超临界水作为反应介质,使水中的有机物与氧化剂在均一相(超临界液体相)中发生强烈的氧化反应的过程。 2 超临界水氧化反应机理 比较典型的超临界水氧化反应机理为在湿式空气氧化、气相氧化的基础上提出的自由基反应机理。 RH+O2→R·+HO2· RH+ HO2·→R·+H2O2 H2O2+M→2HO· RH+ HO·→R·+H R·+O2→ROO· ROO·+RH→ROOH+ R· M 为均质或非均质介质(界面)。过氧化物通常分解生成分子较小的化合物,这种断裂迅速进行直至生成甲酸或乙酸为止。甲酸或乙酸最终也转化为CO2和水。 2 SCWO法优点 与其他技术相比,应用SCWO法处理有机废水、废物具有以下优点: ( 1)对有机物的分解效率高,可达99. 99 %以上;适用范围广,可用于处理各种有毒难降解的有机物; ( 2)反应速度快,在几十秒的时间内有机物即可完全氧化为CO2和H2O;不形成二次污染,分解产物不需做进一步处理;杂原子被氧化成对应的酸或以盐的形式从超临界水中析出。 ( 3)一般不需外部供热,有机物含量超过2 %,即可利用有机物氧化反应产生的热量维持系统的反应温度; (4)反应器结构较简单,体积小。 SCWO法处理有机废水具有显著的效果。此外,城市污水、造纸废水和人类代谢产物也可用SCWO法处理成无毒、无味、无色的气体和水。 3SCWO法废水处理工艺流程 Modell提出的连续式SCWO法废水处理工艺流程如图1所示。有机废水和氧气(或空气)经加压、预热后进入SCWO反应器,废水中的有机物被快速氧化分解,反应器出水经冷却、减压后进入气液分离器,分离后的水、气分别排放。此外, Thornto n等人还分别设计出间歇式处理试验装置。

七、铝的电化学氧化法

七、铝的电化学氧化法 在工业生产中,采用电化学氧化主要的电解液有三种:硫酸、草酸、和铬酸。根据电解条件的不同,在这些电解液里,可以获得不同厚度的、具有不同机械和物理—化学性能的氧化膜。 电化学铝氧化机理: 以硫酸为例,硫酸在水溶液中以离子状态存在: H2SO4?2H+SO42- 水本身也有一部分离解为H+和OH-。在外加电压的作用下,阳离子[H+]移向阴极并在阴极还原发生氢气。 H++e?H→H2↑ 阴离子[OH-]和[SO42-]移向阳极。在氧化工艺条件下,保持只有OH-的放电,而未达到SO4-放电电位,这是因为OH-容易失去电子的缘故。所以在阳极OH-失去电子生成水和新生态氧; 2 OH- -2e→H2O+[O] 在这一过程中,从反应式可以看出硫酸是没有消耗的,而新生态氧[O]则是由H2O分子离解除的OH-放电产生的。新生态氧的氧化能力很强,可以和AL反应生成Al2O3的氧化膜:2Al+3[O] →Al2O3(阳极)由于硫酸对金属铝和氧化膜都有溶解作用,所以在氧化过程中,还存在在以下二个化学反应: 2Al+3H2SO4→Al2(SO4)3+3H2↑ Al2O3+3H2SO4→Al2(SO4)3+3H2O↑ 从以上可知,而整个电解反应中,存在着电化学反应和化学反应两个过程。电化学反应是膜的生产过程,化学反应式膜的溶解过程。只有当生成速度大于溶解速度时氧化膜才能生长,并保持一定厚度。 在通电时,与电解接触的表面首先形成无孔,而绝缘一层薄膜(内层)本来膜不会再生长,因为该膜将底金属与电解液隔绝,但在内层形成的同时,膜就开始溶解而呈不均一性。某些薄的地方电阻较小,电流就集中在这里,把膜击穿,使电解液能通过膜孔而继续与底金属作用,而生成新的内层。原来的内层,由于电解液的溶解作用,生成多孔性的外层。内层的生成和溶解在整个氧化过程中是不断进行的:当膜在一定厚度时,膜的溶解速度小于生成速度,以致使膜不断增厚,因此阳极氧化所取得膜是整片玻璃状的无水氧化铝(Al2O3)组成的,其厚度始终变化不大,一般在0.01~0.1微米之间。而膜的外层较软,是由氧化铝(Al2O3*H2O)组成,多孔,孔呈毛细管形圆锥状,其小孔所占的区域占膜总体积约10~15%,这些小孔就是染色时吸附染料的地方。 阳极氧化处理方法和类型: 1.硫酸氧化工艺: 硫酸氧化法目前广泛应用在防护装饰性的阳极氧化处理方面。 硫酸氧化法工艺有以下优点: (1)膜层较厚,表面色泽为透明无色,吸附能力好,有利于染着各种鲜艳的 色彩。 (2)本工艺操作简单,电能消耗较小,不需要高压电源。 (3)生成效率高,氧化时间短。 (4)槽液毒性小,槽液价格便宜。 (5)溶液温度,生产操作易掌握。 (6)适用范围广,故在工业上得到广泛应用。

电化学方法-环保

阳理工大学 研究生课程考试卷 课程名称:应用电化学 年级:2014 专业:化学工程 考号:1482060260 学号:1482060260 姓名:坤坤 阅卷人:

废水处理的电化学法 一电化学法介绍 有机废水的处理的电化学法有电氧化法、电还原法、电凝聚法、电渗析法、电气浮法、磁电解法、微电解法等。 和其他废水处理法比较,电化学法具有适应面广、可控性强、流程简短、操作便等优点,同时也具有能耗大、成本高、有机物分解不彻底等缺点。相对于废水处理而言,电化学转化可以把有毒物质转变为无毒物质,或把非生物相容的有机物转化为生物相容的物质(如芳香物开环氧化为脂肪酸),以便进一步实施生物处理。 电化学处理工业废水主要是通过电解作用来完成的。电解质溶液在直流电的作用下使得废水中有害物质在阳极和阴极上进行氧化还原反应,沉淀在电极表面或沉淀在电解槽中,或生成气体从水中逸出,从而降低废水中有害物质的浓度或把有毒物质变成无毒、低毒物质。 电化学氧化法是指利用具有催化活性的电极氧化去除水中污染物的法,阳极可以通过氧化反应过程使污染物质氧化破坏,也可通过某些阳极反应产物(Cl2、ClO-、O2、H2O2)间接破坏污染物质。电化学氧化的法来处理含有机物的工业废水,就是在一定的电能条件下,让有机物进行缓慢燃烧,极缓慢氧化,使之最终生成CO2和H2O。 被氧化物质和电极基体直接进行电子传递的氧化法称为直接氧化法。根据被氧化物质氧化程度的不同,直接氧化法又分为2类:一是电化学转换,即被氧化物质未发生完全氧化。二是电化学燃烧,即被氧化物质彻底氧化为稳定的无机物。

电极表面的性质决定了被氧化物质的氧化程度。电极催化特性、电极结构与电化学反应器结构特性等操作条件是影响电化学氧化效率的重要因素。电极材料的性质是决定电极催化特性的关键因素。常见的用于废水处理的电极材料有金属、碳素体、金属氧化物等。通过变换电极基体材料或用有电催化性能的涂层对电极表面进行修饰改性可以改变电极材料的性质。 金属电极在废水处理易发生钝化,电极的活性降低。因此常用贵金属作为阳极处理污水。碳素体种类很多,常用的有墨电极和活性炭电极。金属氧化物电极大多为半导体材料,钛基涂层电极是金属氧化物电极的主要形式。 为改善或加强传质,提高电极比表面积可以改变电极结构和反应器几形状。在电化学氧化过程中,常出现被氧化物在电极表面上形成聚合物膜的现象,使传质受到影响。为了提高电极比表面积,可以把电极做成多状、网状、球状、环状等多种形状。 电流密度是影响电化学反应速度的主要因素,但电流密度不能无限增大,当超过某一值后,过量的电子不经过电极反应,直接流进溶液,使电流效率下降。 利用电化学反应产生的氧化剂M氧化被氧化物质的法称为间接电化学氧化法。这时氧化剂M是被氧化物质与电极交换电子的中介体。常见的氧化剂是电化学反应过程中产生的短寿命中间物,如溶剂化电子,·OH,O2·和HO2·等。Comninellis[1]利用阳极上产生的含氧自由基成功实现了对含酚废水的处理。电极反应产生的其他形态的氧化剂主要是金属及其氧化物,如MnO2,CuO,NiO,Ag(Ⅰ/Ⅱ)等。当金属氧化物作氧化剂时,有机物氧化的电位区由这些金属氧化物的氧化还原电位所决定。为了得到高的电流效率,间接氧化法必须满足以下要求:①M的生成电位必须不靠近析氢或析氧反应的电位;②M的产生速度足够大;

Mallory磷钨酸苏木素染色液(PTAH化学氧化法)

Mallory磷钨酸苏木素染色液(PTAH化学氧化法) 简介: 肌纤维(Muscle fiber)属于肌组织成分,由肌细胞组成。根据形态和功能特点,肌纤维可以分为平滑肌(又称横纹肌)、骨骼肌、心肌。肌纤维染色的方法有很多种,如丽春红法、苯胺蓝法、钨磷钨酸苏木素法等。最初发明磷钨酸苏木素染色液时,Mallory的PTAH方法中有多种钨磷酸苏木素方法,1900年左右Mallory将磷钨酸水溶液和苏木素染液联用,发现该法对于肌纤维染色较好,现在广泛使用的即为Mallory磷钨酸苏木素染色液(PTAH 自然氧化法)。苏木素可用PTAH化学氧化法,但有效期较短且染色力易下降。尽管自然氧化耗费时间,但制得的苏木素可用2年以上,染色力也不易丢失,是较为理想的染色液。适用于CNS、一般组织结构以及所有标准固定液固定的组织。染色时间依配制方法、所用固定液和所显示的组织结构而异。 Leagene Mallory磷钨酸苏木素染色液(PTAH化学氧化法)主要由PTAH氧化剂、草酸溶液、Mallory PTAH染色液组成。Mallory PTAH染色液为化学催熟的染液,短时间内染色力较好,保存时间不宜过长。多用于显示横纹肌的横纹,用该法对横纹肌肉瘤进行诊断。横纹肌肉瘤的组织学形态变化多样,与未分化的间胚叶肿瘤很难鉴别。采用磷钨酸苏木素染色后,如果在瘤细胞胞质内发现蓝色横纹,则可以证明该肿瘤是呈横纹肌分化。该染色试剂盒也可以对炎症渗出的纤维素、DIC的毛细血管中纤维素以及神经病理等方面进行染色。 组成: 自备材料: 1、10%福尔马林固定液 2、蒸馏水 3、95%乙醇编号 名称DC0004 3×100ml Storage 试剂(A): PTAH氧化剂A1: PTAH氧化剂A 50ml RT 避光A2: PTAH氧化剂B 50ml RT 临用前,取A1与A2等量混合即为PTAH氧化剂,即配即用。 试剂(B): 草酸溶液100ml RT 试剂(C): Mallory PTAH染色液(化学氧化法) 100ml RT 避光使用说明书1份

电化学法测试TAC氧化能力

总抗氧化能力TAC 对于什么是总抗氧化能力,相信很多人无法清楚表述。 总抗氧化能力是指一个体系中大小分子和酶总和的水平,也就是抗氧化自由基,就代表该体系的总抗氧化能力。目前有多种方法可以检测,我们下面一一讨论。 那为什么要测试总抗氧化能力呢?怎样量化总抗氧化能力这个参数呢? 首先回答第一个问题,越来越多的研究显示抗氧化是预防衰老的重要步骤,因为自由基或氧化剂会将细胞和组织分解,影响代谢功能,并会引起不同的健康问题。如果能够消除过多的氧化自由基,对于许多自由基引起的及老化相关疾病都能够预防。例如常见的癌症、动脉硬化、糖尿病、白内障、心血管病、老年痴呆、关节炎等,这些疾病都被认为与自由基相关。 研究抗氧化能力,可以有效克服其所代理的危害,为人类身体健康带来重大突破,所以被化妆品企业、保健企业以及饮料食品企业还有生命科学届所关注。 3.第二个问题,我们该怎样量化总抗氧化能力这个参数,用什么方法来测试?FRAP法、电化学法、e-BQC电化学总抗氧化能力测试法。 1.FRAP法 是一种采用Ferric Reducing Ability of Plasma(FRAP)方法,对血浆、血清、唾液、尿液等各种体液,细胞或组织等裂解液、植物或中草药抽提液、或各种抗氧化物(antioxidant)溶液的总抗氧化能力进行检测的方法。植物或中草药抽提液、或各种抗氧化物溶液的总抗氧化能力的检测可以用于检测各种溶液的抗氧化能力的强弱,可以用于筛选强抗氧化能力的药物。 FRAP法测定总抗氧化能力的原理是酸性条件下抗氧化物可以还原Ferric- tripyridyltriazine (Fe3+-TPTZ)产生蓝色的Fe2+-TPTZ,随后在593nm测定蓝色的Fe2+-TPTZ即可获得样品中的总抗氧化能力。 Antioxidant Fe3+-TPTZ ——————> Fe2+-TPTZ (蓝色) 由于反应在酸性条件下进行,可以抑制内源性的一些干扰因素。并且由于血浆等样品中的铁离子或亚铁离子的总浓度通常低于10μM,因此血浆等样品中的铁离子或亚铁离子不会显著干扰FRAP法的检测反应。由于反应体系中的铁离子或亚铁离子是和TPTZ螯合的,样品本身含有的少量金属离子螯合剂通常也不会显著影响检测反应。 2.ORAC法 ORAC分析是指对的抗氧化能力的测定中,在各种类型的,如食品和生物样品。荧光指

超临界水氧化技术的优缺点学习资料

超临界水氧化技术的 优缺点

超临界水氧化技术的优缺点 超临界水氧化技术与其他处理技术相比,具有其明显的优越性: (1)效率高,处理彻底,有机物在适当的温度、压力和一定的保留时间下,能完全被氧化成二氧化碳、水、氮气以及盐类等无毒的小分子化合物,有毒物质的清除率达99.99%以上,符合全封闭处理要求: (2)由于SCWO是在高温高压下进行的均相反应,反应速率快,停留时间短(可小于1min ),所以反应器结构简洁,体积小; (3)适用范围广,可以适用于各种有毒物质、废水废物的处理; (4 )不形成二次污染,产物清洁不需要进一步处理,且无机盐可从水中分离出来,处理后的废水可完全回收利用; (5)当有机物含量超过2%时,就可以依靠反应过程中自身氧化放热来维持反应所需的温度,不需要额外供给热量,如果浓度更高,则放出更多的氧化热,这部分热能可以回收。 表5是超临界水氧化与湿式空气氧化法(WAO)以及传统的焚烧法的对比。 参数与指标SCWO WAO焚烧法 温度/C400?600150?3502000?3000 压力/Mpa30 ?402?20r常压 催化剂不需要需要不需要 停留时间/min< 115 ?20> 10 去除率/%> 99.9975 ?9099.99 自热是是不是 适用性普适受限制普适 排出物无毒、无色有毒、有色含有NO 后续处理不需要需要需要 然而,尽管超临界水氧化法具备了很多优点,但其高温高压的操作条件 无疑对设备材质提出了严格的要求。另一方面,虽然已经在超临界水的性质和物质

在其中的溶解度及超临界水化学反应的动力学和机理方面进行了一些研究,但是这些与开发、设计和控制超临界水氧化过程必需的知识和数据相比,还远不能满足要求。 在实际进行工程设计时,除了考虑体系的反应动力学特性以外,还必须注意一些工程方面的因素,例如腐蚀、盐的沉淀、催化剂的使用、热量传递等。 (1)腐蚀在超临界水氧化环境中比通常条件下更易导致金属的腐蚀。 高浓度的溶解氧、高温高压的条件、极端的pH值以及某些种类的无机离子均可使 腐蚀加快。腐蚀会产生两个方面的问题,一是反应完毕后的流出液中含有某些金属离子(如铬等),会影响处理的质量;二是过度的腐蚀会影响压力系统正常工作。 在300?500 C、pH值2?9、氯化物浓度为400mg/L的条件下,对13种合金的腐蚀进行了实验研究。结果表明,在给定的温度范围内pH对腐蚀的影响不大。在300 C的亚临界状态下,由于水的介电常数和无机盐的溶解度均较大,主要以电化学腐蚀为主。当温度升至400 C以上时,水的介电常数和盐的溶解度迅速下降,这时以化学腐蚀为主。 (2)盐的沉淀在超临界水氧化中,往往在进料中加入碱中和过程中产生的酸和生成的盐,因超临界条件下无机物的溶解度很小,过程中会有盐的沉淀。某些盐的粘度较大,有可能会引起反应器或管路的堵塞。通过反应器形式的优化和适当的操作方式可予以部分地改善。对于某些高含盐体系可能需要预处理。 (3)催化剂在一些物质的超临界水氧化研究中使用了催化剂,主要是为了提高复杂有机物的转化率、缩短反应时间或降低所需的反应温度。现在应用的绝大部分催化剂是以往湿式空气氧化和亚临界水氧化过程研究中使用的。均相催化和非均相催化相比,非均相催化的综合效果较好。 (4 )热量传递因为水的性质在临界点附近变化很大,在超临界水氧化过程中也必须考虑临界点附近的热量传递问题。在临界点温度以下但接近临界点时,水的运动粘度很低,温度升高时自然对流增加,热导率增加很快。但当温度超过临界点不多时,传热系数急剧下降,这可能是由于流体密度下降以及主体流体和管壁处流体的物理性质的差异所导致。

光化学氧化法,催化湿式氧化法,声化学氧化

光化学氧化法,催化湿式氧化法,声化学氧化 高级氧化技术又称做深度氧化技术,以产生具有强氧化能力的羟基自由基(·OH)为特点,在高温高压、电、声、光辐照、催化剂等反应条件下,使大分子难降解有机物氧化成低毒或无毒的小分子物质。根据产生自由基的方式和反应条件的不同,可将其分为光化学氧化、催化湿式氧化、声化学氧化、臭氧氧化、电化学氧化、Fenton氧化等。 (一)光化学氧化法 由于反应条件温和、氧化能力强光化学氧化法近年来迅速发展,但由于反应条件的限制,光化学法处理有机物时会产生多种芳香族有机中间体,致使有机物降解不够彻底,这成为了光化学氧化需要克服的问题。光化学氧化法包括光激发氧化法(如03/UV)和光催化氧化法(如Ti02/UV)。 光激发氧化法主要以03、H202、02和空气作为氧化剂,在光辐射作用下产生·OH;光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光的照射下产生·OH,两者都是通过·OH的强氧化作用对有机污染物进行处理。 (二)催化湿式氧化法 催化湿式氧化法(CW AO)是指在高温(123℃~320℃)、高压(0.5~10MPa)和催化剂(氧化物、贵金属等)存在的条件下,将污水中的有机污染物和NH3-N氧化分解成C02、N2和H20等无害物质的方法。 (三)声化学氧化 声化学氧化中主要是超声波的利用。超声波法用于垃圾渗滤液的处理主要有两个方面:一是利用频率在15kHz~1MHz的声波,在微小的区域内瞬间高温高压下产生的氧化剂(如·OH)去除难降解有机物。另外一种是超声波吹脱,主要用于废水中高浓度的难降解有机物的处理。 (摘自:https://www.wendangku.net/doc/c05981664.html, https://www.wendangku.net/doc/c05981664.html, https://www.wendangku.net/doc/c05981664.html, https://www.wendangku.net/doc/c05981664.html, https://www.wendangku.net/doc/c05981664.html, https://www.wendangku.net/doc/c05981664.html,转载请注明!)

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

电化学氧化法处理难降解有机废水的研究

电化学氧化法处理难降解有机废水的研究 伍路 13721941 摘要:本文简要介绍了难降解有机物的主要种类和危害 ,阐述了国内外难降解有机物废水的主要处理方法,选取电化学氧化法做为研究方法。电化学水处理技术因其具有多功能性、高度的灵活性、易于自动化、无二次污染等特点倍受国内外研究者的重视。简单介绍了电化学氧化技术的基本理论 ,主要总结了电化学技术在去除有机污染物和处理废水领域的研究及应用现状 ,并指出了该技术目前应用中所存在的一些问题 ,分析了其不能广泛应用的主要原因 ,探讨了今后的发展方向。 关键字; 电化学氧化;难降解有机物;废水处理 Advances on treatment of refractory organic wastewater using electro-oxidation method Wulu Abstract: This paper briefly introduces the main types and harm of refractory organic compounds, and expounds the main treatment method of refractory organic wastewater at home and abroad, Selection of electrochemical oxidation method as a research method. because the electro-oxidation method have some advantages, such as versatility, high degree of flexibility, automately, no secondary pollution, attracted attention of the researchers at home and abroad. Simply introduces the basic theory of electrochemical oxidation technology, the main electrochemical technology in removing organic pollutants, the research and application status in the field of wastewater treatment are summarized , at the same time pointing out the problems in the current application of technology, analyzing its not the main reason for the widely used, discussing the development direction in the future. Key words: electro-oxidation; refractory organic; wastewater treatment 1. 前言 目前 , 生活污水和工业废水的种类和排放量日益增多 ,成分更加复杂 , 其中含有许多难降解有机物,如酚、烷基苯磺酸、氯苯酚、农药、多氯联苯、多环芳烃、硝基芳烃化合物、染料及腐殖酸等。其中有些有机物具有致癌、致畸、致突变等作用 , 对环境和人类有巨大的危害[ 1 ]。废水处理技术发展至今,一些成分简单 ,生物降解性能好、浓度较低的废水可通过组合传统工艺而得以去除。但是由于现代工业生产特别是化工工业的发展,工业废水的成分日益复杂,尤其是化工合成的有机物 ,往往难以用传统的废水处理方法 ( 主要是生物处理法) 去除 ,因此处理这类难以生物降解的有机废水成为我们面临的严峻挑战。 2.难降解有机物的主要种类和危害 所谓难降解 ( 难生物降解) 有机物是指微生物在任何条件下不能以足够快的速度降解的有机物。形成有机物难于生物降解的原因除了在处理时的外部环境条件 ( 如温度、pH 值等) 没有达到生物处理的最佳条件外 ,还有两个重要的原因 ,一是由于化合物本身的化学组成和结构 ,在微生物群落中 ,没有针对要处理的化合物的酶 ,使其具有抗降解性 ; 二

超临界水氧化法

超临界水氧化法 我们的生活每天都离不开水,水可以说是人类或者是所有生物生存和社会发展所必需的自然资源。水资源是一种可以循环利用的自然资源。但现今,水资源(尤其指淡水资源)的缺乏日益严峻,其中最主要的原因是因为水资源受到了污染。水资源受到污染,致使我们的生活用水量也受到影响,尤其在一些缺水地区,人们经常都喝不上水。目前,全世界约有40%的人口面临缺水问题。而为了改善这种状况,使得被污染的水源被二次利用,人们采取了许多措施来治理、净化这些受污染的水源。这里将介绍的就是其中一种方法——超临界水氧化法。 在我们采用氧化技术的时候,首先要注意的是先查明水中有哪些还原性物质,要了解选用的氧化剂发生热化学反应的可能性[1]。这样我们在选择氧化剂和氧化方法的时候才能有一个较好的依据,而不至于氧化率过低或者发生一些危险事件等。 目前,水处理的氧化方法是水处理中应用最广、发展最快的方法。在新型氧化方法中,主要可以又可以分为湿式催化氧化法、超临界水氧化法、半导体光催化氧化法和声空氧化四种类型。[1] 图一新型氧化方法的分类 而超临界水氧化法正是新型氧化方法中的一种。由于超临界水氧化法可以将水中的有机物彻底氧化为二氧化碳和水,这样一来,不仅被污染的水资源得到了净化,而且由于有机物得到了彻底氧化,所产生的二氧化碳和水对我们的生活也是一种有益的物质。因此,在水工业界中,超临界水氧化法引起了人们特别的关注。 图二超临界水氧化法流程[1] 超临界水氧化法又简称为SCWO 法,它在1980年代中期就已经被美国学者Modell 提出,现在我国也开始此法的应用技术的研究[1]。而超临界水氧化法的工艺流程如图二所示,它是用氧气作为氧化剂,在SCWO 反应器中与废水发生反应,然后经过一系列的处理,最终被分离为气体(二氧化碳)和液体(水)。 对于超临界水我们是如何来界定的呢?由图三可以看出水的各种状态的要求。 废水 氧气P ,MPa 22.1 水(s ) 水(l ) C SCF

电化学氧化处理

电化学氧化处理(阳极氧化) 铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用,在铝制品(阳极)上形成一层氧化膜的过程称为阳极氧化。阳极氧化按其电解液种类和膜层性质可分为硫酸、铬酸、草酸、混酸、硬质及瓷质阳极氧化法。 近年来由于建筑业和汽车工业大量使用铝合金型材,铝阳极氧化和着色技术获得了迅速的发展。 一、各种电解液阳极氧化的工艺特点 (1)硫酸法。成分简单稳定、操作容易、成本低廉,常温阳极氧化可获得厚5μm~25μm的无色透明膜,多孔吸附性强,容易着色。硫酸低温硬质氧化可获得数十至百微米的硬质膜。 (2)铬酸法。所得膜层厚度只能达2μm~5μm,膜层质软弹性高。能保持原来零件的精度和表面粗糙度,基本上不降低材料的疲劳强度。膜不透明呈灰白至深灰色,孔隙少不能着色。铬酸膜与有机物结合强固,不但是油漆的良好底层,而且广泛用作与橡胶的粘结件。 (3)草酸法。草酸对膜层溶解力小,容易获得硬而厚的膜层。膜孔隙小,耐蚀、耐磨和绝缘性比硫酸法高,但不容易着色。草酸法成本高,电耗大且有毒性,应用受到局限。主要用作绝缘保护膜,外观呈淡草黄色,也常作日用品的防护-装饰用。 (4)混酸法。以硫酸为主,加入少量草酸等二元酸,以获得较厚的膜,同时扩大使用温度的上限值,氧化膜的特性与硫酸相似。 (5)瓷质阳极化。在特殊的电解液中,在硬铝的抛光表面上可获得光滑的,类似搪瓷般的不透明白色膜而得名。其特点是有瓷质感、硬度高、耐磨性好。其绝热、绝缘、耐蚀性优于硫酸膜。有良好的吸附活性,可染成各种颜色,在仪器仪表和日用品方面有广泛的应用前景。缺点是成本高,生产控制较难。 二、铝硫酸阳极氧化机理 (一)电极反应 铝阳极反应是相当复杂的,至今仍有不少问题未弄清楚。这里描述两种观点,仍然不是定论。早期的观点认为阳极上产生的活性氧直接氧化铝,其反应为 现代应用电子显微镜,示踪原子等手段研究后,对氧化膜形成过程,生成膜的地点提出了新的观点。 在阳极上铝原子失去电子而氧化 与铝结合的氧离子来源于哪个原子团或离子呢?仍不得而知,一种假说认为由OH-电离而来 在硫酸电解液中用180和160同位素进行实验表明,在电场下氧离子的扩散速度比铝离子扩散速度快,氧化膜是由于氧离子扩散到阻挡层内部与铝离子结合而形成的,新的氧化膜在铝基/阻挡层界面上生长,氧化膜内的离子电流60%由氧离子、40%由铝离子输送的。 氧化膜为双层结构,内层为致密无孔的Al2O3,称为阻挡层;外层是由孔隙和孔壁组成的多孔层。在氧化膜/溶液界面上(即孔底和外表面)则发生氧化膜的化学溶解: 阴极上发生氢离子的还原反应:

超临界水氧化技术的优缺点

超临界水氧化技术的优缺点

开发、设计和控制超临界水氧化过程必需的知识和数据相比,还远不能满足要求。 在实际进行工程设计时,除了考虑体系的反应动力学特性以外,还必须注意一些工程方面的因素,例如腐蚀、盐的沉淀、催化剂的使用、热量传递等。 (1)腐蚀在超临界水氧化环境中比通常条件下更易导致金属的腐蚀。高浓度的溶解氧、高温高压的条件、极端的pH值以及某些种类的无机离子均可使腐蚀加快。腐蚀会产生两个方面的问题,一是反应完毕后的流出液中含有某些金属离子(如铬等),会影响处理的质量;二是过度的腐蚀会影响压力系统正常工作。在300~500℃、pH值2~9、氯化物浓度为400mg/L的条件下,对13种合金的腐蚀进行了实验研究。结果表明,在给定的温度范围内pH对腐蚀的影响不大。在300℃的亚临界状态下,由于水的介电常数和无机盐的溶解度均较大,主要以电化学腐蚀为主。当温度升至400℃以上时,水的介电常数和盐的溶解度迅速下降,这时以化学腐蚀为主。 (2)盐的沉淀在超临界水氧化中,往往在进料中加入碱中和过程中产生的酸和生成的盐,因超临界条件下无机物的溶解度很小,过程中会有盐的沉淀。某些盐的粘度较大,有可能会引起反应器或管路的堵塞。通过反应器形式的优化和适当的操作方式可予以部分地改善。对于某些高含盐体系可能需要预处理。 (3)催化剂在一些物质的超临界水氧化研究中使用了催化剂,主要是为了提高复杂有机物的转化率、缩短反应时间或降低所需的反应温度。现在应用的绝大部分催化剂是以往湿式空气氧化和亚临界水氧化过程研究中使用的。均相催化和非均相催化相比,非均相催化的综合效果较好。 (4)热量传递因为水的性质在临界点附近变化很大,在超临界水氧化过程中也必须考虑临界点附近的热量传递问题。在临界点温度以下但接近临界点时,水的运动粘度很低,温度升高时自然对流增加,热导率增加很快。但当温度超过临界点不多时,传热系数急剧下降,这可能是由于流体密度下降以及主体流体和管壁处流体的物理性质的差异所导致。 虽然,超临界水氧化技术仍存在着一些有待解决的问题,但由于它本身所具有的突出优势,在处理有害废物方面越来越受到重视,是一项有着广阔发展和应用前景的新型处理技术。

化学氧化法

化学氧化法处理选矿废水 选矿废水经过混凝沉降和活性炭吸附处理后,废水中的金属离子含量己经的很低,此时选矿废水中污染物成分是用于处理选矿废水的有机污染物,主要是可溶性的选矿药剂。有的选矿药剂通过废水在尾矿坝内的长期停留、日光辐射、生化作用和大气氧化因素等使其大部分沉淀或分解,有的则较难降解,该类的有机污染物多为有毒物质,直接排放必将造成非常严重的环境污染。如氰化物、硫化物、重铬酸钾、硅氟酸钠、硫化钠、硫酸锌和硫代化合物类捕收剂,这些药剂都能对人体直接产生危害;另外有腐蚀性如硫酸、氢氧化钠等化合物,当含有这些化合物的废水排放后,可使自然水体中的pH值升高或降低,不仅可危害农作物,改变土壤的性质,而且更为严重的是,酸可溶解矿石中的重金属,使其进入水体产生危害,也会溶解河流水体底泥中的金属离子,带来二次污染。 化学氧化法是向废水中添加氧化剂,将其中有机物氧化降解为易降解的小分子有机酸,达到降低废水COD、BOD及毒性的目的。化学氧化法是彻底去除废水中污染物的有效方法之一。化学氧化法相对于自然降解法、酸碱中和、混凝沉淀等方法对于处理难降解或大量的残存药剂的废水存在着一定的优势,它能将难降解有机物氧化成小分子有机物,改善废水的可生化性。 化学氧化法处理废水使用较多的氧化剂有臭氧(O3)、次氯酸(HOCl)、氯(Cl2)、过氧化氢(H2O2)和Fenton试剂。化学氧化法一般是根据所用氧化剂的名称来命名的,如臭氧氧化、空气氧化、氯氧化、湿式氧化等。 谢光炎[1]等曾开展了采用次氯酸钠作氧化剂氧化去除选矿废水中二号油的试验研究,结果表明,次氯酸钠对废水中二号油的去除效果较差。唐朝春135]等用次氯酸钠氧化对苯二酚废水取得了良好的实验结果,对苯二酚去除率超过了90%。 田依林[2]等用Fenton试剂处理6种难降解的芳香族化合物,提高了废水的可生化性,为废水的生物处理提供了条件。 顾泽平[3]等研究了Fenton试剂对南京某铅锌矿选矿废水的处理效果。该废水中主要有害物质为苯胺黑药,这也是选矿废水治理的难点。当H2O2用量为1800mg/L时,出水的CODcr从1000mg/L降低到32mg/L,去除率达到96.8%,达到了排放标准,实现了清洁生产

超临界水氧化技术说明书

超临界水氧化处理含有机物污水或污泥的方法及其生产系统 技术方案说明书 超临界水氧化(Supercritical Water Oxidation 简称SCWO)技术是以水为介质,在超临界状态下(温度>374.3℃;压力>22.1MPa),液相与气相间界面消失,氧气能以任意比例溶入,不存在气液相界面之间的物质移动等问题而提供了理想的氧化反应环境,对悬浮或溶解在水中的有机物质进行氧化并加以去除的一种方法。SCWO 法处理污水具有现有其它污水处理技术所无法比拟的优点,主要体现是:有害物质的清除率几乎达到100%,降解时间以秒计(取决于有机物的种类、温度和压力),几乎对所有有机有害物质均可处理,还可以实现能量自给。同焚烧、湿式催化氧化相比,SCWO在全封闭状态,具有污染物完全氧化;最终产物为水、N2、CO2和无机小分子化合物,不需要作进一步处理;运行费用相对较低等优势。另外,由于无机盐在超临界水中溶解度特别低,因此可以很容易地从中分离出来,处理后所得洁净水可完全回收利用。 目前的超临界水氧化和气化试验装置,国内外都存在共同的缺点: 从物料和水的加热方式看,要么是物料与反应介质先混合后一起预热、要么只预热反应介质,而物料不预热。前一种情况,如果预热温度达到超临界温度,则物料在预热管内就开始发生热解、裂解反应,会产生焦油、焦炭堵塞管路。如果预热温度低,则在进入反应器后,还需要继续加温到超临界温度,势必会使反应器结构更复杂。后一种情况,由于物料不预热,在进入反应器之前混合,导致整个流体的温度下降很多,使整个系统需要设计更多的加热部分。 当前,国际上投入了越来越多的人力和物力致力于SCWO技术的发展,许多的科学研究和工程技术侧重于各种各样设计方式的超临界

超临界水氧化处理废水研究进展

超临界水氧化处理废水研究进展 张志杰 葛红光3 陈开勋 (西安建筑科技大学环境与市政工程学院,西安710055) (西北大学化工系,西安710069) 摘 要 超临界水氧化是一种很有前途的废水处理方法。全面综述了超临界水的特性,超临界水氧化的基本原理、工 艺流程及应用现状。对超临界水氧化现存的问题,如反应器的腐蚀和无机盐的沉积进行了描述,并就可能的解决方法进行了讨论。对超临界水氧化领域中未来的研究和技术方法提出了建议。 关键词 超临界水氧化 反应器 废水 腐蚀 盐沉积 The prospects of supercritical w ater oxidation for w aste w ater treatment Zhang Zhijie G e H ongguang (School of Environmental &Municipal Engineering ,X i ’an University of Architecture &T echnology ,X i ’an 710055) Chen K aixun (Department of Chem ical Engineering ,N orthwest University ,X i ’an 710069) Abstract The supercritical water oxidation (SCW O )is a promising process of wastewater treatment.In this arti 2 cle ,the characteristic of supercritical water ,fundamental principle ,process flow ,and application actuality of SCW O are com pletely summarized.The existing problems of SCW O such as reactor corrosion and salt precipitation are de 2scribed and possible s olutions are discussed.A suggestion for future research and technical procedure in the SCW O field is given. K ey w ords supercritical water oxidation ;reactor ;wastewater ;corrosion ;salt plugging 基金项目:陕西省科技厅自然科学研究资助项目(2002C 124)收稿日期:2002-07-13;修订日期:2002-10-24 作者简介:张志杰(1937~),男,教授,博士生导师。长期从事环境污 染治理研究,发表论文80余篇,著作6部。 3通讯联系人:葛红光,副教授,博士生。 随着工业的发展,产生了大量有毒有机废水,而 现有的废水处理技术对于有毒有机废水的治理难以取得十分满意的效果。因此,开发新的高效废水处理技术势在必行。在过去的十几年间,超临界水以其独特的性质受到了广泛的关注和研究。最有意义的研究应用之一是,用来氧化处理有机废水的超临界水氧化(supercritical water oxidation ,简称SCW O ) 技术。SCW O 作为一种可以完全消除有毒有机废水的新技术,可被看作是湿空气氧化技术(W AO )的进一步发展。目前,该技术已取得了很大进展,正受到 日益广泛的重视。 1 超临界水的特性 在水的临界点(T c =374℃、P c =22.1MPa )以上,水的密度值、介电常数、离子积会下降,氢键会减 少,以致于水成为一种具有高扩散性和优良传递特性的非极性介质。此时甚至非极性的有机物和气体如象氧气能和水以任意比例互溶,形成单一的均相体系。这使得超临界水显现出一些特殊的性质,如表面张力可忽略、界面间的传质阻力消失、高的扩散性、较低的密度和粘度、对无机盐的溶解度显著下降[1—4]等。 2 超临界水氧化技术 2.1 超临界水氧化反应特点 SCW O 是20世纪80年代中期美国学者M odell 提出的一种能彻底破坏有机污染物结构的新型水处理技术。SCW O 技术具有很多优越性,首先,反应速度非常快、氧化分解彻底。一般只需几秒至几分钟 即可将废水中的有机物彻底氧化分解,去除率可达 99%以上。废水中的有机物和氧化剂(O 2、H 2O 2)在单一相中反应生成C O 2和H 2O 。出现在有机物中的 杂原子氯、硫和磷分别被转化为HCl 、H 2S O 4和 H 3PO 4,有机氮主要形成N 2和少量N 2O [5,6] 。因此, SCW O 过程无需尾气处理,不会造成二次污染。另 外,当废水中的有机物浓度>2%时,可利用反应放出的热维持过程的热平衡,从而实现自热反应,节约能源。SCW O 技术特别适合于有毒有害废物和高浓度难降解有机废水的处理。 第4卷第2期环境污染治理技术与设备 V ol .4,N o .22003年2月T echniques and Equipment for Environmental P ollution C ontrol Feb .2003

相关文档