文档库 最新最全的文档下载
当前位置:文档库 › 阐述冰蓄冷空调系统的设计与施工

阐述冰蓄冷空调系统的设计与施工

阐述冰蓄冷空调系统的设计与施工
阐述冰蓄冷空调系统的设计与施工

阐述冰蓄冷空调系统的设计与施工

发表时间:2016-01-12T11:02:52.490Z 来源:《基层建设》2015年14期供稿作者:孙成维[导读] 上海建科工程咨询有限公司建筑行业作为我国当前社会发展中最为重要的载体之一,其发展方向与发展模式对于整个社会的城乡建设发展都比较关键。

孙成维

上海建科工程咨询有限公司摘要:建筑行业作为我国当前社会发展中最为重要的载体之一,其发展方向与发展模式对于整个社会的城乡建设发展都比较关键。目前国内电力供应状况是高峰不足与低谷过剩的矛盾,若通过空调冰蓄冷等调整用电时间至非高峰时间段,可以有效平衡此矛盾,即所谓 “削峰填谷”。空调冰蓄冷技术,是通过利用在电力负荷低的夜间用电低谷期采用电动制冷机制冷,由此使蓄冷介质结成冰,利用蓄冷介质的潜

热显热将冷量储存起来;在用电高峰期,蓄冷介质会融冰,释放出储存的冷量,由此可以满足我们的实际需要。通过对某大型城市需求侧调控案例,分析冰蓄冷空调系统的设计与施工环节。关键词:冰蓄冷;空调系统;设计;施工前言

随着国内社会经济发展,我国城乡建设发展势头迅猛,成绩一日千里,但能源短缺的问题也随之凸现,在发展的过程中,建设节约型经济社会已经迫在眉睫。建筑行业作为我国当前社会发展中最为重要的载体之一,其发展方向与发展模式对于整个社会的城乡建设发展都比较关键。

1 工程概况

笔者参与的某大型剧院工程位于该超大型城市北侧,该工程集办公、歌舞演出剧场为一体,用地总面积30235平方米,总建筑面积54934平方米。本冰蓄冷系统主要是为整个建筑物提供空调冷冻水,由地下一层的蓄冰空调系统的冷冻机房和100平方米的蓄冰槽,通过晚间的用电低峰储存冷冻量,用以在白天用电高峰期时释放后缓解空调的制冷负荷,藉此来合理规划用电,降低用电整体负荷,最终降低制冷用电成本,达到节能减排降耗增效的目的。

2 设计系统设备参数

3 系统设备设计

这项工程系统设计将乙二醇制冷主机置于整个循环回路蓄冰装置上游,采取串联单循环回路方式。其中2台板式热交换器用来隔离冰蓄冷系统中的乙二醇回路和通往空调负荷的水,以保证乙二醇不因为流经各空调负荷回路而导致损耗或泄漏,每台热交换器换热量为用1850KW。设置 4 个电动调节阀在乙二醇回路中:设置两个调节阀调节进入蓄冰装置的乙二醇流量,在实际操作中根据冷负荷变化,控制乙二醇侧温度恒定且始终满足冷负荷要求;另外,工程采用二级泵系统的空调冷冻水回路,运行费用得以大大降低。工程设计的最大蓄冰容量为4140RTh,由 5 个冰槽组成,槽内净高为2.2m,冰槽是外保温结构,由内向外分别是放水涂刷层——聚氨酯发泡保冷层。施工中,根据现场空间将冰槽做成长方体标准型,以减少冰槽占地面积,充分利用建筑空间。为便于设备和检修人员出入,在顶板上方预留恰当大小的设备入口和检查孔。为了达到在供冷过程中的 “削峰填谷” 良好效果,我们采取了以融冰代制冷的办法,即在电力高峰段由双工况冷水机组和基载冷水机组满负荷运行,不足冷量由融冰输出供给。由于不可预知情况工程设计时考虑到备用设备,备用基载冷水机组在任一台机组发生故障时满足空调供冷的需求;或者代替发生故障的双工况冷水机组满足第二天空调供冷的需求;备用基载冷水机组也可以在任一分区蓄冰槽发生故障时满足空调供冷的需求。在春秋过渡季节空调供冷时,仅通过输出融冰供冷便可满足空调需求,可以停开冷水机组。通过控制电动调节阀来使得乙二醇溶液避开双工况冷水机组,降低运行成本。对蓄冰槽单独供冷的情况下的乙二醇溶液泵,以变频技术降低大量水泵能耗。

4 冰蓄冷空调运行方案调整根据当地每日实时电价情况和全日冷负荷曲线来设计冰蓄冷空调的运行方案。针对各时段电价高低和冷负荷的需求,采取符合均衡部分蓄冷的方案,在满足全日空调冷负荷的需求的同时有效降低运行成本。在夜间电价低时储存冷量,并在白天电价高电力高峰时最大限度的满足空调冷负荷需求。

5 冰蓄冷空调方案的选择

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

蓄冰制冷系统施工工艺

蓄冰制冷系统施工工艺 摘要:加强蓄冰制冷系统施工工艺的研究是十分必要的。本文作者结合多年来的工作经验,对蓄冰制冷系统施工工艺进行了研究,具有重要的参考意义。 关键词:蓄冰制冷系统;蓄冰罐;施工工艺 一、工程概况 笔者参与并主导实施的某制冷站安装工程,该工程采用冰蓄冷制冰工艺,制冰设备选用三台双工况螺杆式制冷机组及一台单工况螺杆式基载冷机,为闭式并联系统。蓄冰类型选用的是冰球蓄冰(容器式冰槽)。最大冷负荷为7203Kw(2048RT),设计日空调冷负荷为94199Kw.H(2678RT.H),设计蓄冰量为20563KW.H(5848RT.H),蓄冰率为28.5%,削峰率为29.4%。蓄冰装置采用容器式(即冰槽),共6台,每台体积为60m3,直径为2400mm,长度为13714mm,容器的钢板厚度为10mm,流量为130 m3/h,压力为21.6kPa。冰球为美国CRYOGEL公司生产的直径为Ф98凹形(圆形多面体)冰球,共40万个。 二、施工技术准备 1.管道综合的重要性 站房工程中,管道布置密度大,能否合理排列,不仅关系到安装完成后观观效果,而且更为重要的是关系到能否正常使用的问题。因此在施工准备阶段要进行施工组织及管线综合深化设计,根据施工图设计的管道标高、管径结合现场实测的高度空间位置进行各介质管道的平面位置、标高的综合排列。 2.管道综合的合理原则在进行排列时,要考虑到小管让大管,有压的让无压管道,电气管道布局于水管道上方的原则。 3.各类管道支架的设置 冷热站工程中,支架的设置各专业要统一考虑设置,否则会显得零乱不堪。支架的设置首先要满足荷载要求;其次要满足规范间距要求;第三要考虑到管道热胀冷缩产生应力的要求;第四要在考虑了以上三点的情况下再仔细考虑支吊架具体用料规格,制作安装方法,支吊架生根(固定点)的设置。 4.阀门位置及方向的设置 阀门的设置,在设计图纸中虽然已有,但施工时还要考虑到更具体的安装位置和方向,要考虑方便的操作高度、统一的旋转方向、手柄的朝向以使操作人员操作方便和检修更换的方便性。 综合以上四点,整理出具体的管道综合深化详图及施工说明并报甲方及设计

冰蓄冷中央空调系统

☆冰蓄冷中央空调系统☆ 冰蓄冷概念冰蓄冷就是利用夜间谷期低价电力,满负荷运行制冰主机,使水发生相变制成冰,存储在专用的蓄冰槽中,然后在白天用电高峰时段融冰供冷。冰蓄冷系统与常规空调系统结合构成冰蓄冷空调系统,是电力系统及用户削峰填谷、平衡用电负荷的最有效方法。 冰蓄冷空调系统工作原理图 冰蓄冷空调系统工作模式 运行模式冷却泵乙二醇泵循环泵V1阀V2阀V3阀V4阀 制冷机蓄冰开开关开关开关 冷机蓄冰又供冷开开开开关调节调节 蓄冰槽单独供冷关开开调节调节关开 制冷机单独供冷开开开关开关开 冷机和冰槽联合供冷开开开调节调节关开 上述工作模式的相互切换是由共盈公司开发的冰蓄冷计算机控制系统自动完成的。 冰蓄冷空调系统组成由双工况制冷主机、储冰盘管及蓄冰槽、乙二醇溶液、乙二醇水泵、板式换热器、共盈冰蓄冷自动控制系统(包括流量传感器、温度传感器、电磁阀、电脑、控制软件等)、常规空调配件等部件组成。 冰蓄冷空调的优点 ◆节省初投资:新建冰蓄冷空调可节省主机、附属设备及配电设备初投资,包括变压器、配电柜等一次电力投资费用,但冰蓄冷专用设备的投资较大。 ◆节省运行电费:由于充分利用了廉价的电力低谷期满负荷蓄冰蓄冷,供高峰期融冰供冷,所以只要峰谷电价比达到3∶1以上,即可在全年节省电费达到30%以上。 ◆节省基本电费:冰蓄冷空调系统可减少主机和循环水泵装机容量和功率达30%~50%,平衡用电负荷,降低配电容量,由此每月可节省18元/kV A的基本电费,数量相当可观。 ◆系统安全可靠:整套系统采用智能控制,实行电脑监控,无须专人值守,管理简单可靠。蓄冷系统作为相对独立的冷源,增加了集中空调系统的运行可靠性。 ◆增大供冷能力:常规空调系统配上冰蓄冷设备可以提高30%-50%的供冷能力。 冰蓄冷自控系统简介冰蓄冷空调系统比较复杂,不可能靠手动操作控制系统运行,必须借助共盈蓄冷自控系统,根据室外温度、天气走势、历史记录、电价政策以及各种传感器件信息,自动选择主机优先、融冰优先模式或全量融冰模式,自动切换制冰、制冷工况与融冰、供冷模式,自动控制制冷主机和其它设备的启停,监视记录统计各设备工作状况与运行参数,自动诊断系统故障,使系统在任何负荷情况下都能达到用户要求,保证空调系统始终处于最经济的运行状态,提高系统的自动化水平,提高系统的管理效率,实乃冰蓄冷空调系统的关键部分。 冰蓄冷与水蓄冷比较

冰蓄冷空调原理汇总

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

外文翻译--PLC在冰蓄冷中央空调系统控制中的应用

PLC in the ice storage central air-conditioning system of control 1 Introduction In PLC in 30 years which developed, it passes through develops unceasingly, already could unify simulates I/O, the network corresponds as well as uses new programming standard like IEC 61131-3. However, engineers only must use digital I/O and few simulations I/O number as well as simple programming skill on potential 80% industrial application. PLC has been widely used in all industrial sectors. According to "The United States market information" World PLC and software market report, in 1995 the global software PLC and its economies of scale of about 5 billion US dollars [5]. As electronic technology and the development of computer technology, Because uses traditional the tool to be possible to solve 80% industrial application, like this intensely needs to have low cost simple PLC; Thus promoted the low cost miniature PLC growth, it has the useful trapezoidal logical programming digital I/O. However, this has also created the discontinuity in the control technology, on the one hand 80% application need to use the simple low cost controller, but on the other hand other 20% application then have surpassed the function which the tradition control system can provide. Engineer is developing these 20% application to need to have the higher circulation speed, the senior control algorithm, the more simulations function as well as can well and the enterprise network integration. In 80 and the 90's, these must develop "20% application" engineers had considered uses PC in the industry control. PC provides the software function may carry out the senior task, provides the rich programming and the user environment, and the PC COTS part enables control engineer the technology which develops unceasingly to use in other applications. These technologies including floating point processor; High speed I/O main line, like PCI and ethernet; Fixed data memory; software development kit. Moreover PC also can provide the incomparable flexibility, highly effective software as well as senior low cost hardware. Ice thermal storage air conditioning is the central power grid could be redundant-night ice electricity in the form of cold storage, in the daytime peak hours

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷系统 施工方案

冰蓄冷系统施工方案: 1. 蓄冷槽体的制作 1.1 确认蓄冷槽体放置位置,混凝土基础已施工完毕,满足设备承重要求,表面平整,符合施工要求; 1.2 在混凝土基础上铺设塑料布防潮、隔气层; 1.3 沿设计槽钢位置在隔气层上面铺设木方,将槽钢放置在木方上面,焊接底面槽钢框架,焊接过程中注意防火,防止槽钢温度过高,引燃木方或者将塑料隔气层烫坏; 1.4 在底层槽钢框架的空隙内填充橡塑保温材料压实,然后将底层钢板与保温材料接触面刷环氧树脂漆,然后就位,使底层钢板与保温材料紧密接触,分块焊接底层钢板,焊接完毕后在钢板迎水面刷环氧树脂漆,防止钢板以后遇水腐蚀; 1.5 在底层槽钢钢板焊接制作完毕后,开始焊接竖直方向槽钢与三个方向的中间的两道槽钢腰梁以及蓄冷槽顶面槽钢; 1.6 分别焊接三个方向侧面钢板,在焊接过程中注意钢板以及槽钢因为受热而变形,在局部地区需做反方向的拉伸处理,保证焊接的竖直和水平; 1.7 在三面槽钢以及侧板焊接,经检查符合设计要求后,开始刷环氧树脂漆完毕后,蓄冰设备就位,具体就位方法参见后蓄冰盘管的安装与就位; 1.8 在确认蓄冷设备位置符合设计要求后,将第四面的横向两道腰梁焊接上去,焊接完后在制作侧板,同时制作蓄冷槽体的注水管,溢流管,排污管,观察孔,液位管; 1.9 以上工序完毕后,在确定无焊接瑕疵后,开始往蓄冷槽注水,注水到溢流管位置,静置24小时,确认无渗漏后放水; 1.10 在蓄冷槽的中间两道腰梁以及底面梁、顶面梁外安装木方,以用来固定外板;

1.11 确认蓄冷槽无渗漏后开始保温工作,采用现场聚氨酯发泡的方法保温,保证保温厚度至少为100mm,注意保温过程中会产生有毒物质,开启现场通风设施,以防中毒; 1.12 蓄冷槽顶板采用100mm厚聚氨酯净化彩钢板,注意彩板上方开孔位置与蓄冷槽出水,进水位置保持一致,彩板两头的长度以盖过保温层以及木方为宜; 1.13 在以上工序全部完成后,蓄冷槽体在保温层及木方外面敷设0.5mm厚镀锌钢板装饰面。 2. 蓄冰盘管的安装 2.1 出厂检验 蓄冷设备出厂前已整体装配好,以确保质量并使对现场安装要求减至最小。每台设备都被放置在木托架上运至现场,在卸货和签署提货单之前,需对其做彻底的检查。检查应注意外板、视管、控制部件和储冰量传感器。对所发现的任何损坏,都要记录在提货单上并通知装运机构; 2.2 临时性存放 如果蓄冷设备在运抵现场之前需要做临时性存放,需使之连同装运时用的木托架一并放在光滑、水平的地面上,地面上不得有任何突起或凹凸不平,否则会穿破或损坏能槽的底部; 2.3 进场、垂直吊装:室外自运输设备下放蓄冰盘管采用汽车起重机进行; 2.4 水平运输:蓄冰盘管自坡道沿运输通道,采用慢速卷扬机牵引至各蓄冰盘管下落点。蓄冰盘管在蓄冷位置区域内水平搬运采用两台液压手动拖车进行; 2.5 技术措施:为防止盘管扭曲变形,在现场制作多个吊装钢架,图示如下:

冰雪世界会议中心冰蓄冷空调设计

冰雪世界会议中心冰蓄冷空调设计 工程概况 冰雪世界会议中心位于北京市潮白河畔,为滑雪馆的配套设施,其主体建筑在滑雪馆的雪道正下方,总建筑面积为26700平方米。主要由客房及群房两部分组成,客房面积为13679平方米;群房的功能有会议、餐厅、厨房、多功能厅、体检中心、设备用房等,面积为13021平方米。地下二层,地上十层,建筑高度为43.35米。图1为该会议中心的正立面图。原滑雪馆已于2005年已建成,多种原因使得该滑雪馆制冷机未设置备用机组,此次会议中心制冷系统的设计需要考虑到为滑雪馆制冷系统提供备用的可能。 设计基本数据 电价政策及电价结构 冰蓄冷空调系统对电网移峰的意义在此不再赘述,影响冰蓄冷项目经济性的一个重要原因,是当地的电价政策及电价结构。项目所在地北京市顺义区的峰谷电时段及相应商业用电 电价如表1:

从表1可看出,尖峰电价与低谷电价的比为4:1,高峰电价与低谷电价的比为3.83:1,这对该建筑采用冰蓄冷空调系统提供了很好的电价基础。 设计日逐时冷负荷 经逐时冷负荷计算,设计日总冷负荷为36423kW,最大小时冷负荷(峰值)为3400kW,作为宾馆,其夜间也有一部分冷负荷。设计日的冷负荷曲线见图2。 对照表1和图2,可以看出,该建筑在电价的尖峰和高峰时段逐时冷负荷较大,在平电及低谷电时段有较低的连续的负荷,其负荷特点决定了该系统设置基载主机更为合理。 冰蓄冷系统设计 概述 冰蓄冷系统的设计应综合考虑多方面的因素,如建筑的规模、使用性质、设计日的冷负荷曲线以及所能采用的蓄冷装置的特性等等。建筑有可能提供的使用空间对蓄冷装置的选择有很大的限制。就本建筑而言,采用导热塑料(聚乙烯)蓄冰盘管,该盘管一般做成整体式的 蓄冰桶,为内融冰方式。 蓄冷系统的确定及主要设备 该建筑采用部分蓄冷的方式,在电网的尖峰及高峰时段,蓄冷设备提供部分空调负荷。双工况主机位于蓄冰设备的上游,为串联方式。同时考虑到连续空调负荷的比例设置基载主机一台。从系统运行的安全性及经济性的角度出发,设置了板式换热器,由乙二醇换取冷冻水(供回水温度为7℃/12℃)向空调系统供冷。蓄冷系统流程见图3。表2是蓄冷系统的主要 设备。

冰蓄冷空调的原理

冰蓄冷空调的原理及应用说明 阅读: 6146发布时间: 2009年 07月 14日 1. 冰蓄冷空调系统的原理 冰蓄冷空调系统的原理即是:选择电力离峰时段(电费较低)啓动压缩机运转,冷却冰水制冰,将压缩机的冷却能量,以冰的形态(潜热)储存起来,等到白天尖峰电力时段(电费较高)需使用空调(冰水),而又不适宜运转冷气机组的时间,即可让夜间所储存的冰溶化,吸收空调冰水的热量,达到冰水冷却的效果,如此即可将白天尖峰时段的冷气用电需量,转移至夜间离峰时段。 冰蓄冷空调系统流程图

2. 冰蓄冷空调应用说明 冰蓄冷空调系统于美、日等国己发展使用30年以上,即使在台湾也已发展25年之久,其对于电力电网的波峰谷平衡调整,及投资设置者的电费回收效益,已是明显且成熟的技术。 基于空调系统的耗电,约占商业大楼用电的40%~50%,且集中于夏天,对于尖峰电力的需求造成很大的负担,因此发展冰蓄冷空调系统,除了符合国家政策需求外,其另具有下述

的商业效益优点: 2.1.转移尖峰时间耗电量 压缩机利用夜间或离峰时间,转移白天(尖峰时间)耗电量。具有平衡电力负载功能,符合国家削峰填谷的用电政策。 2.2.节约基本电费及外线补偿费(增容费) 利用非空调设备的契约电力容量(照明、电梯等),在离峰电力时段移转给储冰系统使用,如此可降低契约电力容量,节约基本电费。另因电力设备使用时段措开,因此可将受电设备容量降低,包括:无熔丝开关、电磁开关、管线、变压器等设备,及施工费用均可减少(各种设备电力、设备容量、设备费用、电力申请费用、基本电费和施工费用等,全部降低约20%)。 2.3.节约流动电费 透过使用二段式和三段式时间电价,享受波峰谷电费差价措施。 2.4.提升机组运转效率 传统空调系统,冰水主机容量选定都是以尖峰负荷为依据,但是实际上尖峰负荷全年不超过60天,主机绝大多数时间是在部份负荷下运转,在春天和秋天时,负荷更可能低至50%以下,采用储冰空调系统,主机满载运转至储冰完成,机组完全在100%容量下运转,避免卸载运转时的效率损失(传统机组当容量卸载至50%时,其耗电量仍高达75%)。 2.5.具扩充能力 不增加设备的情况下,在空调使用时段时,只要机组辅助运转,即可立即增加空调能力。 2.6.低温的冰水供应 可提供1℃到5℃冰水,供冷藏、低温除湿及制程冷却系统使用。同时在相同室温条件

冰蓄冷中央空调系统分析报告

冰蓄冷中央空调系统分 析报告 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

冰蓄冷中央空调系统分析报告 清华大学建筑设计研究院张菁华 清华同方股份有限公司节能蓄能事业部张希春摘要以某博物馆蓄冰空调系统设计为例,详细分析了该系统的 经济性,并阐述了冰蓄冷空调系统的社会性; 关键词冰蓄冷空调系统常规空调系统投资回收期 Analyticalreportingoficestorgeair- conditioningsystem Byzhangjinghuaandzhangxichun Abstract Introduceicestorgeair- conditioningsystemdesignbywayofamuseum,alsoanalyseitsecon omicsandsociality Keywords icestorgeair-conditioningsystem,usualair- conditioningsystem,periodofinvestmentrecovery 我国建筑用能已达全社会能源消费量的27.6%,其中空调制冷耗电量占电网高峰负荷的1/3左右。蓄能空调顺势而生,电力部门也积极推行峰谷分时电价,在政策上扶植蓄能空调的应用与推广。 蓄冷技术是一种投资少、见效快的调荷措施,目前已成为许多经济发达国家积极推广的一项促进能源、经济和环境协调发展的、实用的系统节能技术。蓄冰技术的推广对于提高我国能源利用水平、促进经济发展将会具有积极的影响。 一、蓄冰系统设计 1、案例工程简介 工程名称:某省博物馆冰蓄冷中央空调系统 建筑面积:10万m2左右

地源热泵冰蓄冷中央空调浅析

地源热泵冰蓄冷中央空调浅析 目前生产和使用的空气源热泵户型中央空调存在有一些急待解决的问题,研究开发地源热泵户型蓄冰中央空调,对节能、降低用户运行费用和电网调峰有着十分重要的意义和发展前景。为了加快地源热泵户型蓄冰中央空调的发展和应用,建议电力部门尽快建立完善鼓励低谷用电的优惠政策,如尽可能拉大峰谷电价比,给予蓄冰空调设备的开发和使用补贴等。同时也建议有关厂家加强地源热泵户型蓄冰中央空调的开发研究,降低造价,提高综合效益,为户型蓄冰中央空调开辟更广阔的市场。 1、户型中央空调的发展 户型中央空调即住宅集中空调,自20世纪90年代进入中国市场以来,正得到很快的发展。就其原因,首先是我国一直把城乡居民住房当作头等大事来抓。 近年来人均住房面积有了很大提高,并且住房也有向大户型、多居室的别墅、多层和小高层发展的趋势;第二,人民生活水平提高,富裕起来的城乡居民住房室内装饰都达“小康”水平,房间空调已满足不了他们的要求,更多的人把消费投向了户型中央空调;第三,生产工艺的成熟和激烈的市场竞争,使得户型中央空调的造价逐渐为工薪阶层接受;第四,城市建筑景观和环境的限制,也使城市的一些小型商业用户转而使用小型集中空调。以上几点可以看出,关注和议论户型中央空调并非超前,户型中央空调将是21世纪的新消费热点。 2、户型中央空调目前存在的问题及解决办法 2.1户型中央空调目前存在的问题 经对目前户型中央空调的调查和了解,我们发现存在着如下问题: 1)国内生产的户型中央空调大多是以空气为热源的热泵机组,虽然在使用和安装上有其方便之处,但在夏季炎热的地区,机组冷凝温度较高,COP值较低,机组耗电量大;在冬季温度较低,湿度较大的地区,机组又需融霜,造成室温波动较大,机组耗电量同样增大。

相关文档