文档库 最新最全的文档下载
当前位置:文档库 › 汽轮机典型的事故处理

汽轮机典型的事故处理

汽轮机典型的事故处理
汽轮机典型的事故处理

汽轮机典型的事故事故处理

1 汽温汽压不正常对汽轮机的影响及处理

主蒸汽压力高会引起进入汽轮机的蒸汽流量加大同时在一定压力提升范围内整机的焓降增大,但气压升高过大,蒸汽管道阀门汽室内以及法兰螺栓中的压力会增大,当应力超过极限时就会拉断的危险,即使当应力极限低于极限值时,超过正常工作压力时,长期运行也会减少里不见得使用寿命。

主蒸汽压力低会引起理想焓降下降,气压降低过多汽轮机带不满负荷。

主蒸汽温度过后高影响通流部分安全运行的主要因素,应加强监视,初温越高机组的效率越高但如果温度高会加快金属的蠕变速度,缩短设备的使用寿命,使机组气缸膨胀过大甚至损坏设备。

主蒸汽温度过低会使机组的轴向推力增大,短时间内气温降低过多,主蒸汽温度直线下降50度10分钟内,可能使机组发生水冲击,并引起转子震动,可能导致动静摩擦,如发现主蒸汽温度直线下降50度以上时为了不发生水冲击,推力瓦不受到损坏应立即打闸停机。

汽轮机规定停机48h后的启动为温态启动

停机8h后的启动为热态启动。

停机2h后的启动为极热态启动。

按启动前汽轮机汽缸金属温度。

1.冷态启动汽缸温度是150℃低于。

2.温态汽缸温度181—350℃.

3.热态汽缸温度350—450℃。

4.极热态启动为450℃以上。

一、进汽温度过高的处理

1 汽机正常运行时进汽温度为435℃(+5℃,-10℃)。最大变化范围为

435℃(+10℃,-15℃)

2 发现进汽温度上升至445℃时,联系锅炉降温,并密切注意机组振动情

况,一般锅炉主汽温度与汽机处的主汽温差是6-8℃,发现表计误差大

时,联系热工进行校验。

3 在锅炉采取措施后,汽温仍超过450℃,应联系值长停机。汽温在450℃

时每次运行时间不得超过15分钟,全年累计不超过20小时。

4 对以上情况,运行人员必须作详细记录,包括超温情况,减负荷情况及处理时间。

二、进汽温度过低处理

1 发现汽温降低时,应密切注意机组的振动情况,推力瓦温度及轴向位

移的变化情况。

2 汽温降至420℃以下时,应联系锅炉升温。

3 汽温如继续下降时应紧急通知锅炉恢复,汽温在400℃以下时适当降负

荷,汇报班长,开启自动主汽门前疏水及汽缸疏水。

4 汽温下降至370℃减负荷至零,维持时间不得超过15分钟,否则紧急停机。

5 低汽温减负荷参照表(抽汽工况按流量参照):

6 汽温恢复时,根据汽温情况增加负荷,并在400℃时关闭所有疏水。

7 进汽温度下降较快时,应特别加强注意,防止水冲击事故发生。

三、进汽汽压过高的处理

1 汽压升到3.63Mpa时,汇报班长,通知锅炉降压,汽压升至3.63 Mpa时

运行超过15分钟或者大于3.9Mpa时用进汽总门节流到正常汽压,节流无

效时与值长联系停机。

2 汽压升高时,应注意管道有无漏汽现象、机组的振动情况及轴向位移的变化情况。

四、进汽压力过低的处理

1 发现汽压降低时,应密切注意推力瓦温度与轴向位移变化,并按以下方法处理。

2 汽压降至3.13Mpa时汇报班长,联系锅炉升压。

3 汽压降至3.13Mpa以下时可根据汽压负荷对照表减负荷(抽汽工况按流量参照)。

4 汽压降至2.0Mpa时,负荷应降至零.

2汽轮机震动的原因及处理

原因:

1汽轮机动*静部分发生摩擦。

2.汽轮机机械部分松弛*部件损坏或变形。

3.汽轮机发电机中心不正。

4.轴承底座地脚螺栓松动。

5汽轮机过负荷。

6发电机转子短路。

7轴瓦间隙不合格。

8润滑油膜破坏或油温过高过低不稳定。

9开机时暖管不良*热膨胀不均匀。

10蒸汽参数不合格,后排气温度过高。

11 动静部分之间调入杂物。

处理:

1; 运行中发生震动或不正常的声音时,立即降低机组负荷,直到震动和异音消失为止,并检查:

(1)润滑油压和油温是否正常。

(2)气缸膨胀是否正常,检查是否由于冷空气侵入高压部分而引起震动,应立即关闭门窗。

(3)主蒸汽温度是否过高过低。

(4) 在启动过程中发生震动或异音时,应将转速降低至震动或异音消失,进行充分的暖管和疏水。

(5)假如震动在发电机出去励磁后消失或在发电机提升电压时消失时机组发生震动,证明发电机转子短路引起的震动,此时应汇值长,停机进行检查。

2:当汽轮机发生震动时:1#轴承振动超过0.05mm,2#3#轴承振动超过0.07mm,应立即紧急故障停机。

3: 突然发生强烈震动并清除的听到金属摩擦声音,应立即故障停机。 4; 通知电气检查发电机*励磁机工作是否正常。

3轴向位移增大

轴向位移增大的原因

1.负荷增大,则主蒸汽流量增大,各级蒸汽压差随之增大,使机组轴向位移增加。

2.主蒸汽参数降低,各级的反动度都将增加,轴向推力也随着增加。

3.隔板汽封磨损,漏气量增大,是各级间压差增大。

4.机组通流部分因蒸汽品质不佳结垢时,相应级的叶片和叶轮前后压差增大,十几组的轴向推力增大。

5.发生水冲击时,机组轴向推力明显增大。

处理:1.轴向推力增大时,应检查推力瓦温度*负荷*汽温*汽压*真空*声音*震动是否正常,适当减去部分负荷。轴向位移增大至掉闸数值时,同时推力瓦温度明显升高,应紧急故障停机。如轴向位移保护失灵时,应及时汇报手动打闸停机。

2.轴向位移动作使汽轮机掉闸时,检查主汽门是否关闭,检查推力瓦温度,轴向位移指示,声音震动*汽温*汽压*真空*等正常时,(停用一级抽气改为双减供汽),通知热工人员轴向位移保护误动作请处理,

确认正常后重新合闸开机,注意调正汽封*热井水位*润滑油压*真空,在重新合闸开机和带负荷过程中,若轴向位移剧烈增大,应紧急故障停机。

4汽轮机水冲击的现象及处理

汽轮机在正常运行中经常会遇到各种各样的事故,直接影响机组的安全运行,经济效益.其中水冲击的危害对机组的影响和危害较大.以下是关于水冲击的现象,原因,处理方法以及运行方面所采取的措施的分析.

首先是关于汽轮机发生水冲击的现象有:

(1)主蒸汽汽温10分钟内下降50度或50度以上。

(2)主汽门法兰处汽缸结合面,调节汽门门杆,轴封处冒白汽或溅出水珠。

(3)蒸汽管道有水击声和强烈振动

(4)负荷下降,汽轮机声音变沉,机组振动增大

(5)轴向位移增大,推力瓦温度升高,差胀减小或出现负差胀。

汽轮机发生水冲击的原因有以下几种:

(1)锅炉满水或负荷突增,产生蒸汽带水。

(2)锅炉燃烧不稳定或调整不当。

(3)加热器满水,抽汽逆止门不严。

(4)轴封进水。

(5)旁路减温水误动作。

(6)主蒸汽,再热蒸汽过热度低时,调节汽门大幅度来回晃动。

汽轮机发生水冲击应做如下处理:

(1)启动润滑油泵,打闸停机。

(2)停主抽汽器,破坏真空,给水走液动旁路,稍开主汽管向大气排汽门。除通知锅炉以外疏水门外,全开所有疏水门。

(3)倾听机内声音,测量振动,记录惰走时间,盘车后测量转子弯曲数值,盘车电动机电流应在正常数值且稳定。

(4)惰走时间明显缩短或机内有异常声音,推力瓦温度升高,轴向位移,差胀超限时,不经检查不允许机组重新启动。

为防止发生水冲击,在运行维护方面着重采取如下措施;

(1)当主蒸汽温度和压力不稳定时,要特别注意监视,一旦汽温急剧下降到规定值,通常为直线下降50度时,应按紧急停机处理。

(2)注意监视汽缸的金属温度变化和加热器,凝汽器水位,即使停机后也不能忽视。如果发觉有进水危险时,要立即查明原因,迅速切断可能进水的水源。

(3)热态启动前,主蒸汽和再热蒸汽管要充分暖管,保证疏水畅通。

(4)当高加保护装置发生故障时,加热器不能投入运行。运行中定期检查加热器水位调节装置及高水位报警,应保证经常处于良好状态。加热器管束破裂时,应迅速关闭汽轮机抽汽管上的相应汽门及逆止门,停止发生故障的加热器。

(5)在锅炉熄火后蒸汽参数得不到可靠保证的情况下,不应向汽轮机供汽。如因特殊需要(如快速冷却汽缸)应事先制定可靠的技术措施。

(6)对除氧器水位加强监视,杜绝满水事故发生。

(7)滑参数停机时,汽温,汽压按照规定的变化率逐渐降低,保持必要的过热度。

(8)只要汽轮机在运转状态,各种保护就必须投入,不得退出。

(9)运行人员应该明确,在汽轮机低转速下进水,对设备的威胁更大,此时尤其要监督汽轮机进水的可能性。

5汽轮机凝结器真空下降的原因及处理

1、汽轮机轴封压力不正常

(1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝结器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝结器真空下降。而造成轴封压力低的原因可能是轴封压力调节伐故障;轴封供汽系统上的阀门未开或开度不足。

(2)、象征:机械真空表、真空自动记录表的指示值下降、汽轮机的排汽缸温度的指示值会上升。

(3)、处理:当确证为轴封供汽压力不足造成凝结器真空为缓慢下降时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则

应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应

该进行其它方面检查工作。

2、凝结器热水井水位升高

(1)、原因:凝结器的热水井水位过高时,淹没凝结器铜管或者凝结器的抽汽口,则导致凝结器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝结器的热水井水位升高的原因可能是除盐水补水量过大;机组#4低加凝结水排水不畅;凝结水系统上的阀门开度不足造成的。

(2)、象征:机械真空表、真空自动记录表、汽轮机的排汽缸温度的指示值下降、而凝结器电极点、就地玻管水位计值会上升。

(3)、处理:当确证为凝结器的热水井水位升高造成凝结器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝结器真水位上升,迅速想办法将凝结水位降至正常水位值。

3、凝结器循环水量不足

(1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷的量将减小,进而使排汽缸温度上升,凝结器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝结器两侧的进、出口电动门未开到位;在凝结器通循环水时,系统内的空气未排完。

(2)、象征:机械真空表、真空自动记录表的指示值会下降,汽轮

机的排汽缸温度的指示值上升,凝结器循环水的进、出口会波动,凝结器循环水的进、出口水温度会发生变化(进口温度正常,出口温度升高)。

(3)、处理:当确证为凝结器循环水量不足造成凝结器真空为缓慢下降时,值班员应迅速汇报班长,同时,联系循环水泵人员检查循泵运行是否正常,进水间水位是否正常。迅速到就地检查机组凝结器的两侧进、出口电动门是否已经开到位,两侧进、出口压力是否波动(编者按:若是波动则对其进行排空气工作,直至空气管排出水为止)。

4、处于负压区域内的阀门状态误开(或误关)

(1)、原因:由于机组启动过程中,人员操作量大,在此过程中难免会发生操作漏项或是误操作的情况,这是造成此类真空下降的主要原因。

(2)、象征:机械真空表、真空自动记录表、汽轮机的排汽缸温度的指示值下降,发生的时间之前,值班人员正好完成与真空系有关操作项目。

(3)、处理:当确证为处于负压区域内的阀门状态误开(或误关)造成凝结器真空为缓慢下降时,值班人员应迅速将刚才所进行过的操作恢复即可。

5、轴封加热器满水或无水

(1)、原因:在机组启动过程中,由于调整不当或是轴封系统本身

的原因使轴封加热器满水或是无水,将导致凝结器真空下降,造成轴封

加热器满水或是无水的原因可能是轴封加热器铜管泄漏;轴封加热器至凝结器热水井的疏水门开度不足,或是疏水门故障;抽汽逆止门的回水门开度过大;轴封加热器汽侧进、出口门开度不足,疏水量减少,使轴

封加热器无水。

(2)、象征:机械真空表、真空自动记录表的指示值会下降,汽轮机的排汽缸温度的指示值上升,若是轴封加热器满水,则汽轮机的高、低压缸前、后轴封处会大量冒白汽,而此时轴封压力会上升,严重时,造成轴封加热器的排汽管积水,使轴封加热器工况发生变化,导致真空下降;若是轴封加热器无水,则大量的轴封用汽在轴封加热器中未进行热交换就直接排入凝结器内,增加了凝结器的热负荷,导致真空下降。

(3)、处理:当确证为轴封加热器满水或无水造成凝结器真空为缓慢下降时,司机迅速通知副司机检查轴封加热器的水位是否正常,若是满水则开启轴封加热器汽侧排汽管上的放水门排水至有蒸汽流出为止,同时检查轴封加热器的汽侧疏水门是否已达全开位置。若是轴封加热器无水,则将轴封加热器的水位调至1/2

即可。

在汽轮机机组启动过程中,经常碰到的凝结器真空缓慢下降的原因就是这种。当然,这不是绝对的,但是应该遵循这样的原则:当凝结器真空缓慢下降时,值班员应根据有关仪表,象征,工况进行综合判断,然后进行相应的处理。

二、在汽轮机组正常运行中,造成凝结器真空缓慢下降的原因

1、轴封加热器排汽管积水严重

(1)、原因:当轴封加热器排汽管积水时,使排汽的通流面积减少,轴封供汽系统工作失常,导致真空下降。造成轴封加热器排汽管积水的原因可能是轴封加热器水位升高;排汽至射水抽气器下水管上的阀门故障;轴封蒸汽母管带水;季节变化(如天气变冷)。

(2)、象征:当排汽管积水时,轴封加热器排汽管的外壁温度偏低,严重时,高、低压缸前后轴封处会大量冒白汽,这时,机组凝结器真空开始缓慢下降。(3)、当确证为轴封加热器排汽管积水造成凝结器真空缓慢下降时,机组人员应迅速地将轴封排汽母管上的放水门全开,进行排水工作,直至水排完为止。必要时开启轴封母管端头疏水门排水,即可。(我厂#3机组轴封排汽管上未安装排水门,这就需要定期开启轴封端头疏水门进行放水工作。)

2、凝结器汽侧抽气管积水

(1)、原因:当凝结器汽侧空气管积水时,使抽气器空气管的通流面积相对减小,导致凝结器真空缓慢下降。造成凝结器汽侧空气管积水的原因可能是机组启动时,抽气器空气管疏水不及时;季节变化(如天气变冷);抽气器倒拉水进入空气管。

(2)、象征:当凝结器汽侧空气管积水时,凝结器甲、乙汽侧空气管的管壁及腔室疏水管的管壁的温度相对于正常时约低,而射水抽气处抽气器的外壁温度则相对升高。

(3)、处理:当确证为凝结器汽侧空气管积水造成凝结器真空缓慢下降时,机组人员应迅速汇报班、值长,然后进行凝结器空气管拉水工作。此项工作不是经常进行的,因此,应做好相应的安全措施之后,再开始进行操作,具体的方法是:①、汇报值长同意,若机组负荷为100MW则适当将负荷减至80MW运行,记录工作前的有关参数(真空、排汽温度、轴封压力等);②、缓慢关闭该机组运行中的射水抽气器空气门,注意真空下降的程度,必要时适当将机组负荷减少部分;

③、当空气门关完之后,稍开真空破坏门停留时间不超过60秒,紧接着又迅速关闭真空破坏门;

④、迅速将射水抽气器空气门全开,恢复至正常状态;⑤、汇报值长,将机组负荷加至100MW运行即可。

3、凝结水位升高

(1)、原因:在正常运行中,造成机组的凝结器水位升高的原因可能是除盐水补水量过大;凝结器铜管泄漏;凝结水再循环电动门误开或关不到位;低压加热器疏水泵出口压力过高和除氧器压力过高(排挤凝结水)。

(2)、象征:凝结器电极点、就地玻管水位计指示升高,凝结水泵出口压力升高,运行的凝结水泵电流升高达极限值。凝结水过冷度增大。

(3)、处理:当确证为凝结水位升高造成凝结器真空缓慢下降时,值班员应迅速查明造成凝结器水位升高的原因,将凝结器水位降低即可。

4、运行人员或检修人员工作过程中发生失误、造成凝结器真空缓慢下降(1)、原因:由于运行人员或检修人员在工作过程中发生失误,使凝结器真空缓慢或急剧下降,造成凝结器真空缓慢或急剧下降的原因可能是运行人员在正常操作中对系统或是其它原因误开、误关与真空系统有关的阀门;检修人员在进行与真空系统有关的检修工作时,擅自误开、误关阀门。

(2)、象征:类似的情况发生时,凝结器真空机械真空、自动记录

表的指示值下降速度会出现两种象征:①、凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升,凝结水泵电流和凝结水母管压力会升高;②、凝结器真空急剧下降时,汽轮机的排汽缸温度上升较快,机组运转声突变;凝结器电极点水位计的指示值上升同样较快(若是误关循环水系统的阀门,则机组的凝结器循环水压力将会发生变化)。

(3)、处理:当确证运行人员或检修人员工作失误造成凝结器真空缓慢或急剧下降时,值班人员应沉着冷静地迅速将事发前所进行的操作全部恢复。若是判断为检修人员在时进行检修工作造成的,则迅速到就地将检修人员擅自误开、误关阀门的阀门关闭即可。

5、在做与真空系统有关的安全措施时,凝结器真空缓慢下降

(1)、原因:在做与真空系统有关的安全措施的过程中,当真空系统阀门关不严密的因素存在时,凝结器真空缓慢下降,造成的原因可能是处于负压区的设备或阀门有空气被拉入凝结器内,使真空缓慢下降。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升。

(3)、处理:当确证为是因做安全措施而引起凝结器真空缓慢下降时,值班员应迅速将所的安全措施恢复即可。

6、运行中机组低压加热器汽侧无水

(1)、原因:机组正常运行中,由于人员疏忽大意或是工况发生变化时未能及时调整低压加热器的水位,导致低压加热器无水位运行,这时由于低压加热器无水位,抽汽未能进行热交换就直接排向凝结器热水井,使凝结器热负荷增大,真空下降。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升,就地检查可以发现运行中的低压加热器玻管水位计无水位指示。

(3)、处理:当确证为是运行中机组低压加热器无水导致凝结器真空缓慢下降时,值班员只要将低压加热器调整至有水位显示即可。

7、主抽汽器故障

(1)原因:主抽汽器第一级与第二级进汽压力低或喷嘴赌赛,主抽内凝结水量不足,两级抽气器压力调整不当,主抽疏水器赌赛故障。

(2)象征:真空表数值缓慢下降,主抽排气管冒出大量蒸汽,主抽内并有水击声。现场主抽两级进气压力表显示压力低。

(3)处理:调整进汽压力,调整凝结水水位,如凝结水过少可以设当像热水井补入除盐水,调整主抽疏水水位。

三、在汽轮机组事故处理中,造成凝结器真空缓慢下降的原因

1、轴封压力过低

(1)、原因:当机组发生事故时,由于多种因素会导致轴封压力下降。例如,单机运行或两台机组运行时,在事故处理过程中由于处理不当,造成轴封压力下降压力下降,使凝结器真空缓慢下降。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升,与轴封压力有关的表计指示值下降。

(3)、处理:

按下列几种情况进行处理:

①、单机运行发生事故的时,若发生轴封压力下降,凝结器真空缓慢下降,这时除氧器人员必须立即与锅炉司水联系,将吹灰汽源倒至汽平衡母管,同时,迅速关闭该除氧器汽平衡门,以保证轴封压力正常。

②、两台机组运行时,若壹台机组发生事故,则视除氧器的压力高、低而决定是否倒吹灰汽源,当除氧器的压力太低不能保证轴封用汽时,则应迅速与锅炉司水联系,将吹灰汽源倒至汽平衡母管,同时,迅速关闭该除氧器汽平衡门,以保证轴封压力正常。。

2、凝结器热水井满水

(1)、原因:由于在事故状态下,设备或人员的因素会使凝结器热水井满水,而造成满水的原因可是凝结水泵跳闸;凝结水泵跳闸之后因逆止门关不严,使凝结水系统中的倒回热水井造成满水;除氧器补水量过大;或是循环水泵跳闸(短时内恢复运行)。

(2)、象征:凝结器真空缓慢下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升,凝结水母管压力升高达1Mpa及以上,凝结消耗泵电流上升达极限值。

(3)、处理:当确证为凝结器热水井满水造成凝结器真空缓慢下降时,值班员就迅速想法将凝结器热水井的水位降至正常水位。

四、除盐水系统故障,或在除盐水补水管路、阀门检修工作过程中造成凝结器真空缓慢下降的原因

在正常运中,也曾发生过因除盐水系统故障而造成凝结器真空缓慢下降的异常现象。

(1)、原因:这种情况大都是除盐水泵跳闸;除盐水系统阀门误关(或故障);进行检修工作时引起的。空气被拉入凝结器的简意线路图是:

前提条件是除氧器除盐水补水调节伐进出及调节伐均处于开启位置,发电机内冷水箱除盐水补水门开启部份,则当除盐水系统故障时,空气是这样进入凝结器的[空气从内冷水箱顶部排气管→除盐水调节伐管路→进入凝结器喉部→导致大空气被拉入凝结器内→凝结器真空缓慢或急剧下降(若检修处理调节伐及调节伐进出口门时)。

(2)、象征:凝结器真空缓慢或急剧下降,汽轮机的排汽缸温度上升,凝结器电极点水位计的指示值上升。

(3)、处理:当确证为除盐水除盐水系统故障,或在除盐水补水管路、速汇值长,同时,适当减负荷运行,立即到就地查看,必要时关闭有关阀门,若判断为除盐水泵阀门检修工作过程中,造成凝结器真空缓慢下降时,机组人员应迅跳闸,则联系化学启动备用除盐水泵运行即可。

总而言之,本文所述的内容是在汽轮机正常运行中,较为常见的凝结器真空缓慢下降的原因、象征与处理方法。当然,这些不是绝对原因、象征与处理方法,因为随着我厂设备的老化,新的原因、象征也会产生。

6 给水泵的事故原因及处理

⒈电动机外壳(或铁芯)温度:

?变化原因:

①电流变化;

②进风温度或室温变化;

③电动机进风道阻塞或内部积灰严重;

④空气冷却器水量变化;

⑤通风机或通风叶片故障,冷却风量减少。

?外壳温度变化的影响:

①有铁芯温度测点的电动机,应以铁芯温度为准,无铁芯温度测点的电动机,可

测量电动机外壳温度,一般可用手测,如电动机外壳手摸感觉烫手,应用温度计敷于外壳进行测量。

②电动机外壳温度或铁芯温度过高,将影响电动机绝缘材料使用寿命缩短,温度

限额根据电动机所用的绝缘材料等级而定,一般A级绝缘的电动机,静子铁芯最高温度限额不超过90℃,外壳温度不超过75℃,对B级绝缘的电动机,一般限额还可放宽10℃,即铁芯温度不超过100℃,外壳温度不超过85℃。

③绝缘材料的绝缘等级:绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等

级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。

绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10

年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

④温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交

变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。当气温下降时,正常电机的温升会稍许减少。

●这是因为绕组电阻R下降,铜耗减少。温度每降1℃,R约降0.4%。

●对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。这是因为绕组铜损

随气温上升而增加。所以气温变化对大型电机和封闭电机影响较大。

●空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。

●海拔以1 000 m为标准,每升100 m,温升增加温升极限值的1%。

?.电机各部位的温度限度:

①与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度

(电阻法),即A级为60℃,E级为75℃,B级为80℃,F级为100℃,H级为125℃。

②滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。因温度太高

会使油质发生变化和破坏油膜。

③机壳温度实践中往往以不烫手为准。

④鼠笼转子表面杂散损耗很大,温度较高,一般以不危及邻近绝缘为限。可

预先刷上不可逆变色漆来估计。

⒉轴承温度:

?变化原因:

①轴承油位过高或牛油杯缺油;

②油质不良,发黑或有水;

③轴承冷却水量变化(轴承冷油器水量不足或滤水器阻塞等);

④轴承损坏(乌金或弹子碎裂);

⑤轴承油隙或紧力不符合要求;

⑥轴承发热或辅机其他部件传热影响;

⑦轴承油环转动不灵或折断;

⑧室温升高或环境通风不良。

?轴承温度变化的影响:

①中小型辅机轴承一般无测温指示,可用手摸外壳,如感觉烫手,应设法用温度

计测量,并检查轴承运行情况,消除发热原因。轴承温度高,将使油质迅速老化,如温度剧升至限额,为防止轴承乌金烧熔,或弹子碎裂故障,使辅机发生动静摩擦设备严重损坏,应及时停用调换备用辅机运行;

②一般中小型辅机及电动机轴承采用滚动轴承较多,因为滚动轴承可以承受一定

轴向推力,所以可以省略推力轴承,大型辅机需设推力轴承,立式泵的还起到径向支撑定位的作用,而整个转子重量和轴向推力靠轴承承受,50ZLQ-50型轴流泵的推力轴承要承受轴向推力22吨,而径向轴承导瓦负荷较轻,立式凝结水泵的推力轴承分工作面和非工作面瓦块,正常时由工作面瓦块承受,当泵内汽蚀严重,轴可能发生串动或者平衡盘装置平衡力过大,使非工作面承受向上的轴向推力。

对于轴承温度的变化要根据辅机运行特点进行分析。

③主油泵与辅助油泵在工作转速下并联运行,往往一台油泵出油受另一台功率大

的油泵影响打不出油,使油泵闷打油,影响轴承油流减少,油泵轴承温度迅速升高,一般注意在工作转速下,主油泵与辅助油泵不能长期并列运行。

⒊辅机轴承振动:

?变化原因:

①水泵与电动机中心不准;

②靠背轮检修安装不良或螺丝松动、断裂,靠背轮螺丝垫圈损坏;

③基础地脚螺丝松动;

④轴承紧力不够或损坏;

⑤辅机转动部件松动或损坏表现不平衡现象;

⑥水泵叶轮内绕有杂物;

⑦电动机轴承振动:电磁方面主要存在三相电压不平衡、电动机单相运行、三相

电流不平衡、各相电阻电抗不平衡、电动机不对称运行、电动机重绕后绕组接线错误、转子鼠笼断条、短路环开裂等。

?振动的影响:

①辅机允许轴承振动限额,一般与转速有关,高转速的辅机不允许振动大运行,

要求比较高,3000rpm的辅机振动值不超过0.06mm,1500rpm的辅机振动值不超过

0.10mm,750rpm的辅机振动值不超过0.16mm。

②电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,

电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响周围设备的正常工作,发出很大的噪声。

③瓦振—轴承座的振动,通过振动传感器测量(接触),3000转/分的转动机械质

量标准是5丝。轴振—转子轴颈处的振动,通过涡流探头测量(不接触),3000转/分的转动机械质量标准是16.5丝(各厂要求略有不同)。

⒋电动机电流:

?变化原因:

①电流到0:

a.失去电源;

b.电动机单相运行;

c.绕组匝间短路;

d.电动机或水泵故障,开关自动分闸;

e.表计问题或电流表断相。

②电流变化:

a.水泵流量变化,母管压力变化;

b.电压、频率变化;

c.水泵内有杂物绕住或碰擦,泵内部碰擦;

d.轴封填料过紧或轴承故障损坏;

e.电动机内部摩擦;

f.出水管道阻力变化;

g.泵的叶轮松动。

?电流变化的影响:

①电动机单相运行,电流表指示有时升高或降低至0,因为一般辅机电流表只接

单相,所以如果断路(熔丝爆断或接头松脱)发生在该相,则电流指示为0,若

断路发生在另外二相,则电流表指示要升高。

②频率降低,电动机转速相应降低,由于水泵输出流量与转速成正比,水泵出口

压力与转速平方成正比,水泵功率与转速三次方成正比,频率降低,功率明显大幅度下降,电流相应降低。

③电压降低,如果频率不变,即水泵转速及功率不变,电动机电流要相应升高满

足水泵功率的需要。

④电动机电流一般随水泵流量升高而上升,给水泵在给水母管压力降低时,给水

泵流量增加,电流相应升高,凝结水泵在除氧器压力降低或管阻减少时,由于凝泵出口门开足运行,凝结水流量决定于机组负荷,凝结水量变化不大,凝泵电流略为下降,凝泵电流随凝结水流量相应变化;循环水泵在运行台数减少,母管压力降低时,由于循泵流量与压力的特性曲线后段变陡,流量增加较少,耗电量反而下降,电流将降低,因此冬季循泵出口压力降低,流量升高,电流较低,夏季循泵运行台数增加,循泵出口压力升高,流量减少,电流相应升高,与一般水泵电流变化规律有明显区别,轴流式水泵,当出口流量增加,出口压力降低,电流减小更为明显,若轴流泵出口门误关,水泵流量很小时电动机电流会甩足,将会造成设备严重损坏。

⑤电动机电流升高将引起线圈与铁芯温度升高,当电流超限时,应关小出水门限

流或起动备用水泵减少水泵流量。轴流泵则应设法开大出水门,减少出水管阻,增加流量,使电流下降,若电流超过额定电流的10%应紧急停用,避免烧坏电动机。

⑥(附)电动机的保护:75KW以下电动机一般采用简单的熔断器保护,大容量电

动机的保护一般有以下四种:A、相间保护。当定子绕组相间短路时,保护装置立即动作,使断路器跳闸,从而保护了静子线圈,避免电机烧坏;B、单相接地保护。当电动机出现单相接地故障电流时,单相接地保护装置动作,使断路器跳闸从而保护了电动机;C、过负荷保护。电动机过负荷会使温升超过允许值,从而造成绝缘老化以致烧坏电动机,所以当负荷电流超过极限时,过负荷保护装置经过一定的时限发出信号;D、低电压保护。当电源电压低于整定限额时,低电压保护装置经过一定的时限,使断路器跳闸,以达到保护的目的。

⒌轴承油位:

?变化原因:

①轴承漏油,油压变化;

②水漏至轴承内;

③轴承温度变化;

④转速变化。

?油位变化的影响:

①轴承保持正常油位式确保轴承润滑的基本条件,轴承油位过低将会影响油瓦或

弹子轴承无法带油,润滑油减少或中断而烧坏轴承。轴承油位过高,运行时则会从油挡处漏出,观察油位如发现油中有水或油质恶化发黑应及时更换新油。

②一般辅机轴承油位在运行时要升高,主要是油温升高,油体积膨胀,油沫增加,

另外轴旋转时离心力作用,使油向轴承室甩出,如轴流循泵电动机轴承油位,在运行时由于导瓦内侧油流受转轴离心力作用向外甩出,使油位指示比停用时偏高较多。

二、给水泵运行

⒈给水流量:

?变化原因:

①给水母管压力变化,给水管道破裂;

②频率或转速变化;

③水泵内动静摩擦严重,内部泄露损失增大,效率下降;

④平衡盘的径向间隙增大;

⑤机组负荷变化;

⑥给水再循环门不严,出水门或逆止门开度不足;

⑦高加钢管漏水;

⑧锅炉大排污;

⑨进口滤网阻塞;

⑩给泵进口发生汽化:

a.给水箱水位过低;

b.进口温度过高;

c.除氧器汽压突降,进汽门误关或调节不当;

d.机组甩负荷。

e.给水系统进行切换时由于暖泵阀全开导致系统中运行的给泵进口温度升高(大概升高5.5℃就会发生),在其进口压力不变的情况下,饱和水的平衡状态被打破,时入口发生汽化。该原因一般是因为暖泵流量偏大导致。

?给水流量变化的影响:

①电动给泵在频率变化,或者汽动给泵汽轮机由于排汽压力或真空变化等原因引

起转速自行变化时,给水流量将与转速成正比关系变化。因此必须同时注意压力、流量的变化,及时调整给泵出力以满足锅炉需要,否则要影响锅炉出力变化。

②在给水母管压力变化时,并列运行的给泵,各台给泵的出口流量变化的程度不

一样,有的泵变化较大,有的则较小,这与各台泵的特性曲线有关,特性曲线陡的流量变化得少,特性曲线平坦的,流量降低得多,一般为适应锅炉负荷变化的需要,要求在调节改变流量以后,给泵出口压力变化小些,因此要求特性曲线必须平坦些。

③由于给泵输送的是一定压力下的饱和水,为防止给水汽化,应注意使给泵进口

的静压力高于进口水温相应的饱和压力。

④液偶调速给水泵采用变转速调节流量的较多,经济性好,调节方便简单;电动

给水泵一般采用节流调节调节出口调整门改变管路特性曲线,节流调节方法简单、可靠,但效率差,调节给水流量过大时,应监视电动机电流不超限,当流量较小时,泵内易发生汽蚀,泵内一部分作旋涡运动,旋涡的机械能转换为热能,可能使泵内水汽化,增强汽蚀作用,一般规定当泵的工作流量小于最大的流量的三分之一时,就应开启再循环门,确保给泵有一定流量。

⒉给水压力:

?变化原因:

①锅炉汽压变化;

②锅炉调节不当,使给水流量大幅度变化;

③给水管道爆破漏水;

④频率或转速变化;

⑤给泵停止或备用泵误起动;

⑥高压加热器进水门开度及投入台数变化,出口管阻变化;

⑦电压变化过大。

?给水压力变化的影响:

①在不影响锅炉供水的情况下,给水压力维持得低些,给泵耗电量减少,节约用

电量,给水压力波动过大,波及锅炉进水稳定易发生锅炉高水位或低水位,以及减温水量变化,使汽温升高或降低。

②给水压力过高会影响给水管道、高压加热器强度,易引起爆管,法兰垫床漏水

事故,国产30万机组规定给水压力最高为32X0.98Mpa,运行时间不超过5分钟。

⒊给水管道与锅炉压力差:

?变化原因:

①高加停用或使用,使用台数变化,高加阻力变化;

②高加进水门开度变化,使其他高加流量变化,阻力改变;

③运行方式改变,管道流动阻力变化;

④全厂出力变化,管道给水流量变化;

⑤各台锅炉出力分配不匀;

⑥锅炉进水调节门变化。

?压差变化的影响:

①给水母管与主、副给水母管压差增大,说明高压加热器阻力增加,与高加停用

或进水门开度过小有关,一般情况下,要求在不影响高加出水温度下降过多时,尽量将高加进水门开大,减少其他高加管阻,使给水母管与主、副给水母管压差减少,减少管阻损失,节省给泵耗电量。

②管道阻力损失与流量平方成正比,管道流量越大管阻损失越大,为满足锅炉进

水需要,主给水母管与锅炉汽包压力要求保持一定差值,差值的保持主要依靠给泵出力调正,差值保持得大,锅炉给水调整的富裕量大,对安全有利,但给泵耗电量或给泵运行台数增加,影响经济,差值保持过小,使锅炉进水困难,造成锅炉低水位异常运行或汽温升高。

⒋平衡盘出口压力:

?变化原因:

①给泵进口压力变化;

汽轮机典型事故处理

汽 轮 机 典 型 事 故 处 理 杨伟辉刘欢王熙博 2015年7月3日

目录 汽轮机水冲击 (1) 汽轮机组异常振动 (3) 汽轮机超速 (5) 汽轮机大轴弯曲 (6) 机组真空下降 (8) 汽轮机油系统着火 (10)

汽轮机水冲击 1.现象 1)主蒸汽、再热蒸汽和抽汽温度急剧下降,过热度减小。 2)汽缸上、下缸温差明显增大。 3)主蒸汽或再热蒸汽管道振动,轴封或汽轮机内有水击声,或从进汽管法兰、轴封、汽缸结合面处冒出白色的湿蒸汽或溅出水滴。 4)轴向位移增大,推力轴承金属温度和回油温度急剧上升。 5)机组发生强烈振动。 2.原因 1)锅炉汽温调节失灵,主蒸汽温度、再热蒸汽温度急剧下降,蒸汽带水进入汽轮机。 2)加热器管子破裂,大量给水进入汽侧或加热器水位调节失灵,造成加热器满水,加热器保护拒动,或加热器抽汽逆止门不严,水从加热器导入汽轮机。 3)轴封蒸汽温度不够或调节门动作不正常,水带入汽轮机轴封腔室。 4)7号低加满水,直接进入汽轮机。 5)抽汽管道低位疏水点调节门动作不正常,造成抽汽管道积水进入汽轮机。 6)高旁减温水门不严或误开。 7)高中压缸疏水不畅。 8)除氧水位高Ⅲ值未及时解列,造成水倒入汽轮机。 3.处理

1)紧急破坏真空停机。同时查找分析进水原因,切断进水途径。如确认加热器管束破裂,立即切除该加热器。 2)汽机打开各部疏水门。 3)细听机内声音,正确记录惰走时间。 4)监视推力瓦温度、轴向位移及高、低压缸胀差变化。 5)转子静止后投入连续盘车,测量大轴弯曲,检查上下缸温差。 6)如停机惰走过程中,一切正常,可重新启动,但启动前要充分疏水。再次启动时汽缸上下缸温差<42℃,转子偏心度应<0.076mm,重新启动过程中,密切监视机组振动、声音、推力瓦温及轴向位移、胀差、上下缸温差等数值。重新启动过程中,发现机内有异音或振动增大应停止启动。 7)如水冲击时,推力瓦温明显升高,轴向位移超过极限值,惰走时间较正常明显缩短时,应停机检查。 8)汽轮机盘车过程中发现汽缸进水,应迅速查明原因并消除,保持盘车运行直到汽轮机上下缸温差恢复正常。同时加强汽轮机内部听音检查,加强大轴晃动度、盘车电流的监视。 9)汽轮机在升速过程中发现进水,应立即停机,进行盘车。

大唐集团发电厂汽轮机事故案例分析题

目录 一、【案例一】机组启动检查漏项 (2) 二、【案例二】检修操作运行设备导致小机跳闸 (4) 三、【案例三】辅机跳闸造成全厂停电后烧瓦 (5) 四、【案例四】电泵油温高最终引起厂用电失去 (7) 五、【案例五】野蛮操作造成汽轮机烧瓦 (9) 六、【案例六】检修无票作业造成跑油烧瓦 (11) 七、【案例七】小机油箱油位低造成小机跳闸 (14) 八、【案例八】真空下降运行人员发现不及时 (15) 九、【案例九】表计不准责任心不强造成汽缸进水 (17) 十、【案例八】逻辑清楚盲目操作 (18) 十一、【案例十一】操作票执行不严格操作随意性大 (19) 十二、【案例十二】超负荷运行滑销系统卡振动大停机 (20) 十三、【案例十三】事故处理经验不足造成事故扩大 (21) 十四、【案例十四】思想麻痹,安全意识淡薄 (22) 十五、【案例十五】违章操作造成大轴弯曲 (23) 十六、【案例十六】操作不规范引起真空下降 (26) 十七、【案例十七】高排压比低保护动作停机 (27) 十八、【案例十八】机组由于功率回路故障处理不当停机 (28) 十九、【案例十九】DCS失电 (29) 二十、【案例二十】背压高保护停机 (31)

汽轮机案例分析题 一、【案例一】机组启动检查漏项 1、事件经过 1999 年4 月12 日,某电厂2 号机组在大修后的启动过程中4 月1日,#2 机组B 级检修结束后,经过一系列准备与检查后,#2 机于4 月12 日15 时55 分开始冲转,15 时57 分机组冲转至500r/min,初步检查无异常。16 时08 分,升速至1200r/min,中速暖机,检查无异常。16 时15 分,开启高压缸倒暖电动门,高压缸进行暖缸。16 时18 分,机长吴X 令副值班员庄XX 开高压缸法兰加热进汽手动门,令巡检员黄开高、中压缸法兰加热疏水门,操作完后报告了机长。16 时22 分,高压缸差胀由16 时的2.32mm 上升 2.6lmm,机长开启高压缸法兰加热电动门,投入高压缸法兰加热。1 6 时25 分,发现中压缸下压缸法兰加热进汽手动门,令巡检员黄开高、中压缸法兰加热疏水门,操作完后报告了机长。16 时22 分,高压缸差胀由16 时的 2.32mm 上升 2.6lmm,机长开启高压缸法兰加热电动门,投入高压缸法兰加热。1 6 时25 分,发现中压缸下增大,报告值长。13 时02 分,经就地人员测量,#2 瓦振动达140μm,就地明显异音,#2。机手动打闸,破坏真空停机。18 时08 分,#2 机转速到零,投盘车,此时转子偏心率超出500μm,指示到头,#2 机停炉,汽机闷缸,电动盘车连续运行。18 时18 分至24 分,转子偏心率降至40 70μm 后,又逐渐增大到300μm并趋向稳定,电动盘车继续运行。 在13 日的生产碰头会上,经过讨论决定:鉴于14 小时的电动盘车后,转子偏心率没有减少,改电动盘车为手动盘车180 度方法进行转子调直。并认为,高压转子如果是弹性变形,可利用高压缸上、下温差对转子的径向温差逐渐减少,使转子热弯曲消除。经讨论还决定,加装监视仪表,并有专人监视下运行. 13 日12 时40 分起到18 时30 分,三次手动盘车待转子偏心率下降后,改投电动盘车,转子偏心率升高,并居高不下,在300μm 左右。15 日19 时20 分,高压缸温度达145℃,停止盘车,开始做揭缸检查工作. 2、原因分析: 1) 4 月12 日16 时18 分,运行人员在操作#2 汽机高压缸法兰加热系统的过程中,

汽轮机运行常见事故及处理

汽轮机运行常见事故及处理 汽轮机2010-06-07 10:39:18 阅读305 评论0 字号:大中小订阅 2.2.1 汽轮机紧急事故停机 汽轮机破坏真空紧急停机:①、转速升高超过3300~3360r/min,或制造厂家规定的上限值,而危急保安器与电超速保护未动作;②汽轮机发生水冲击或汽温直线下降(10min内下降50℃);③、轴向位移达极限值或推力轴承温度超限而保护未动作;④、胀差增大超过极限值;⑤、油系统油压或主油箱油位下降,超过规定极限值;⑥、汽轮机轴承金属温度或轴承回油温度超过规定值,或轴承冒烟时;⑦、汽轮发电机组突然发生强烈振动或振动突然增大超过规定值;⑧、汽轮机油系统着火或汽轮机周围发生火灾,就地采取措施而不能扑灭以致严重危机设备安全;⑨、加热器、除氧器、等压力容器发生爆破;⑩、、汽轮机主轴承摩擦产生火花或冒烟;发电机冒烟、着火或氢气爆炸;励磁机冒烟、着火。 汽轮机不破坏真空紧急停机:①、凝汽器真空下降或低压缸排汽温度上升,超过规定极限值;②、主蒸汽或再热蒸汽参数超限;③、主蒸汽、再热蒸汽、抽汽、给水、凝结水、油系统管道及附件破裂无法维持运行;④、调节系统故障,无法维持运行。⑤、主蒸汽温度升高(通常允许主蒸汽温度比额定温度高5 ℃左右)超过规定温度及规定允许时间时。 机组运行中,对于机组轴瓦乌金温度及回油温度出现以下情况之一时,应立即打闸停机:①任一轴承回油温度超过75℃或突然连续升高至70℃时;②、主油瓦乌金温度超过85℃或厂家规定值时;③、回油温度急剧升高或轴承内冒烟时;④、润滑油泵启动后,油压低于运行规程允许值;⑤、盘式密封回油温度超过80℃或乌金温度超过95℃时;⑥、发现油管、法兰及其他接头处漏油、威胁安全运行而又不能在运行 中消除时。 汽轮机紧急故障停机的步骤:①、立即遥控或就地手打危急保安器;②、确证自动主汽门、调速汽门、抽汽止回阀关闭,负荷到零后,立即解列发电机;③、启动辅助油泵;④、破坏真空(开启辅抽空气门或关闭主抽总汽门),并记录转子惰走时间;⑤进行其他停机操作(同正常停机)。 2.2.2 凝结器真空下降的现象及处理 凝结器真空下降的主要特征:①、凝汽器真空表指示降低,排汽温度升高;②、在进汽量相同的情况下,汽轮机负荷降低;③凝结器端差明显增大;④、凝汽器水位升高;⑤、当采用射汽抽汽器时,还会看到抽汽器口冒汽量增大;⑥、循环水泵、凝结水泵、抽气设备、循环水冷却设备、轴封系统等工作出现异 常。 凝结器真空急剧下降的原因:①、循环水中断;②、低压轴封供汽中断;③、真空泵或抽气器故障; ④真空系统严重漏气;⑤、凝汽器满水。

汽机事故预想

汽机事故预想

————————————————————————————————作者:————————————————————————————————日期: ?

1汽轮机超速 1.1主要危害 严重时导致叶轮、叶片及围带松动变形脱落、轴承损坏、动静摩擦甚至断轴。 1.2现象 1)机组突然甩负荷到零,转速超过3000rpm并继续上升,可能超过危急保安器动作转速。 2)DEH电超速、OPC超速、TSI电超速、机械超速保护动作、报警发出。 3)机组发出异常声音、振动变化。 1.3原因 1)DEH系统控制失常。 2)发电机甩负荷到零,汽轮机调速系统工作不正常。 3)进行超速保护试验时转速失控。 4)汽轮机脱扣后,主汽门、调速汽门、高压缸排汽逆止门及抽汽逆止门、供热快关阀等卡涩或关不到位。 5)汽轮机主汽门、调速汽门严密性不合格。 1.4处理 1)汽机转速超过3330rpm而保护未动作应立即手动紧急停机,并确认主机高、中压主汽门,高、中压调门,各抽汽逆止门、供热快关阀应迅速关闭。 2)破坏凝汽器真空,锅炉泄压。汽机跳闸后,检查主机主汽门、调门和抽汽逆止门应关闭严密。若未关严,应设法关严若发现转速继续升高,应采取果断隔离及泄压措施。 4)当超速保安系统各环节部套设备,未发现任何明显损坏现象,且停机过程中未发现机组异常情况时,则在超速跳闸保护系统调整合格(包括危急遮断器调整),且主汽门、调门、抽汽逆止门等关闭试验合格后,方可重新启动机组。并网前必须进行危急遮断器注油试验,并网后,还须进行危急遮断器升速动作试验,试验合格后,方允许重新并网带负荷。 5)重新启动过程中应对汽轮机振动、内部声音、轴承温度、轴向位移、推力轴承温度等进行重点检查与监视,发现异常应停止启动。 6)由于汽轮机主汽门、调速汽门严密性不合格引起超速,应经处理且严密性合格后才允许启动。 1.5防范措施 1)启动前认真检查高、中压主汽门、调速汽门开关动作灵活,调节系统存在调节部套卡涩、调整失灵或其他工作不正常时,严禁启动。 2)机组启动前的试验应按规定严格执行。 3) 机组主辅设备的保护装置必须正常投入,汽轮机安全监控系统各参数显示正确,否则禁止启动,运行中严禁随意退出保护。 4)主汽门、调速汽门严密性试验不合格,严禁进行超速试验。 5)严格按规程要求进行调节保安系统的定期试验并做好完整的试验记录,运行中任一汽轮机超速保护故障不能消除时应停机消除。 6)应定期进行危急保安器充油试验、各停机保护的在线试验和主汽门、调速汽门及各抽汽逆止门的活动试验。 7)在机组正常启动或停机的过程中,汽轮机旁路系统的投入应严格执行规程要求。 8)停机过程中发现主汽门或调速汽门卡涩,应将负荷减至0MW,锅炉熄火,汽轮机打闸,发电机解列。 9)加强汽、水、油品质监督,品质符合规定。 10)转速监测控制系统工作应正常。

全国20起汽轮机事故汇编

一富拉尔基二电厂86年3号机断油烧瓦事故 (一)、事故经过86年2月23日3号机(200MW)临检结束,2时25分3号炉点火,6时20分冲动,5分钟即到3000转/分定速。汽机运行班长辛××来到三号机操作盘前见已定速便说:“调速油泵可以停了”,并准备自己下零米去关调速油泵出口门,这时备用司机王××说:“我去”,便下去了。班长去五瓦处检查,室内只留司机朱××。王××关闭凋速油泵出口门到一半(原未全开)的时候,听到给水泵声音不正常,便停止关门去给水泵处检查。6时28分,高、中压油动机先后自行关闭,司机忙喊:“快去开调速油泵出口门”,但室内无值班员。班长在机头手摇同步器挂闸未成功。此时1—5瓦冒烟,立即打闸停机。此时副班长跑下去把调速油泵出口门全开,但为时已晚。6时33分,转子停止,惰走7分钟,经检查除1瓦外,其他各瓦都有不同程度的磨损。汽封片磨平或倒状,22级以后的隔板汽封磨损较重,20级叶片围板及铆钉头有轻度磨痕。转入大修处理。

(二)、原因分析
1、油泵不打油,调速油压降低,各调速汽门关闭。三号机于84年9月25日投产,11月曾发生大轴弯曲事故,汽封片磨损未完全处理,汽封漏汽很大,使主油箱存水结垢严重,主油箱排汽阀堵塞未能排出空气。主油泵入口有空气使调速油压下降。此次启动速度快,从冲动到定速只有5分钟,调速油泵运行时间短空气尚未排出,就急剧关闭调速油泵出口门。过去也曾因调速油泵停的快,油压出现过波动,后改关出口门的方法停泵。这次又操作联系不当,使油压下降。
2、交直流油泵未启动。当备用司机关调速油泵出门时,司机未能很好的监视油压变化,慌乱中也忘记启动润滑油泵。24伏直流监视灯光早已消失一直未能发现。
3、低油压联动电源已经切除。20日热工人员未开工作票在三号机热控盘进行了四项工作,把热工保护电源总开关断开,工作结束忘记合上,致使低油压未能联动润滑油泵。
4、这次机组启动,使用了启动操作票,操作票中有“交直流润滑油泵联动试验和低油压联动试验”项目,但司机在执行这两项工作都没有做,而操作票上却已划“√”。
二浙江台州发电厂88年1号汽轮发电机组烧瓦事故 1988年8月18日15时25分,台州发电厂1号汽轮发电机组因油系统中渗有大量空气,造成自动主汽门自行关闭,调速油泵未自启动,交流润滑油泵刚自启动即被直流油泵自启动而闭锁,直流油泵自启动后电机烧损,致使断电烧瓦,构成重大事故。 (一)、事故经过 台州发电厂1号汽轮发电机系上海汽轮机厂制造,N125-135/535/535型,1982年12月投产。事故发生前,1号机组额定出力运行,各参数均正常,当时系统频率49.6Hz,汽轮机润滑油系统旁路滤网运行,主滤网撤出清理,14时55分主滤网清理结束。15时当班班长郑××下令一号机司机陶 ××将旁路滤网切换为主滤网运行,陶接令后即用电话令零米值班员李××开启交流润滑油泵轧兰冷却水。接着陶按规定启动了交流润滑油泵,并将监盘工作交给监盘副司机管××,即去零米执行润滑油滤网切换监护操作。15时12分主滤网充油排汽结束,15时16分主滤网投入运行,当关闭旁路滤网出口二圈时,发现调速油泵启动,陶即令李停止操作,并跑至零米值班室打电话询问情况。 同时,在监盘的副司机管××,当时在场的班长傅××,当班班长郑见调速油泵运行指示红灯闪光(自启动),并听到警铃响了一下,但未见光字牌亮,查油压正常。郑令现场副司机王××检查,未见异常,也无其他人员在工作,分析为误自启动,即令管停下调速油泵,停后各油压均稍有下降,几秒钟后调速油泵又自启动,警铃响,“主油泵出口油压低至0.9MPa光字牌亮后又熄灭,查油压恢复正常,管即复归开关控制把手(合上),15时17分郑接陶询问电话,郑告:“是自启动”。并查问下面操作情况后,通知陶:“上面准备停交流润滑油泵,保持调速油泵运行,滤网切换操作完毕后汇报”。陶答:“好的”。陶回到现场时见交流润滑油泵转速已下降,随即关闭该泵轧兰冷却水,调整好调速油泵冷却水。15时20分旁路滤网撤出运行操作完毕(出口门关闭)。陶汇报郑:“切换操作全部结束”。并提出:“慢慢关闭调速油泵出口门,上面注意油压变化,待全关后现扬按事故按钮停调速油泵,然后再开启出口门”。郑同意如此操作。陶令李去操作,由李关闭调速油泵出口门后,陶按事故按

汽轮机火灾事故现场处置方案(正式)

编订:__________________ 单位:__________________ 时间:__________________ 汽轮机火灾事故现场处置 方案(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3276-78 汽轮机火灾事故现场处置方案(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1事故风险描述 1.1事故类型 汽轮机火灾事故。 1.2事故区域 4米平台汽轮机头下方的抽汽管道附近。 [注:根据本公司实际进行描述,地点和位置尽量精确,考虑事故位置对救援的影响] 1.3事故的危害严重程度及其影响范围 汽轮机油系统着火,火势凶猛若处理不及时,可能造成事故扩大,威胁到动力及控制电缆安全以及邻机的安全运行,严重时甚至会造成汽轮机油箱爆炸等重大事故。 1.4事故前可能出现的征兆

(1)油系统有发生漏油现象,附近伴有轻微烟气。 (2)汽轮机阀门、油系统等附近出现火焰,并伴有烟尘。 2 应急机构及职责[注:各公司根据实际,言简意赅明确职责] 2.1应急处置小组 (1)指挥员:当值值长 (2)运行应急组:集控运行值班人员 (3)警戒疏散组:义务消防员、检修人员、保卫人员 2.2 职责 (1)指挥员:是事故现场的总指挥,负责油系统火灾事发现场应急工作的组织、指挥、协调、救援、恢复等应急工作;负责向上级汇报、通报重大突发事件应急预案的实施进展情况,听取指示并贯彻执行。 (2)运行应急组:在值长指挥协调下,迅速解除对人身和设备的威胁,根据仪表指示和设备外部特征,正确地判断事故原因;根据火灾情况对设备采取相应

汽机事故预想

1汽轮机超速 1.1主要危害 严重时导致叶轮、叶片及围带松动变形脱落、轴承损坏、动静摩擦甚至断轴。 1.2现象 1)机组突然甩负荷到零,转速超过3000rpm并继续上升,可能超过危急保安器动作转速。 2)DEH电超速、OPC超速、TSI电超速、机械超速保护动作、报警发出。 3)机组发出异常声音、振动变化。 1.3原因 1)DEH系统控制失常。 2)发电机甩负荷到零,汽轮机调速系统工作不正常。 3)进行超速保护试验时转速失控。 4)汽轮机脱扣后,主汽门、调速汽门、高压缸排汽逆止门及抽汽逆止门、供热快关阀等卡涩或关不到位。 5)汽轮机主汽门、调速汽门严密性不合格。 1.4处理 1)汽机转速超过3330rpm而保护未动作应立即手动紧急停机,并确认主机高、中压主汽门,高、中压调门,各抽汽逆止门、供热快关阀应迅速关闭。 2)破坏凝汽器真空,锅炉泄压。汽机跳闸后,检查主机主汽门、调门和抽汽逆止门应关闭严密。若未关严,应设法关严若发现转速继续升高,应采取果断隔离及泄压措施。 4)当超速保安系统各环节部套设备,未发现任何明显损坏现象,且停机过程中未发现机组异常情况时,则在超速跳闸保护系统调整合格(包括危急遮断器调整),且主汽门、调门、抽汽逆止门等关闭试验合格后,方可重新启动机组。并网前必须进行危急遮断器注油试验,并网后,还须进行危急遮断器升速动作试验,试验合格后,方允许重新并网带负荷。 5)重新启动过程中应对汽轮机振动、内部声音、轴承温度、轴向位移、推力轴承温度等进行重点检查与监视,发现异常应停止启动。 6)由于汽轮机主汽门、调速汽门严密性不合格引起超速,应经处理且严密性合格后才允许启动。 1.5防范措施 1)启动前认真检查高、中压主汽门、调速汽门开关动作灵活,调节系统存在调节部套卡涩、调整失灵或其他工作不正常时,严禁启动。 2)机组启动前的试验应按规定严格执行。 3)机组主辅设备的保护装置必须正常投入,汽轮机安全监控系统各参数显示正确,否则禁止启动,运行中严禁随意退出保护。 4)主汽门、调速汽门严密性试验不合格,严禁进行超速试验。 5)严格按规程要求进行调节保安系统的定期试验并做好完整的试验记录,运行中任一汽轮机超速保护故障不能消除时应停机消除。 6)应定期进行危急保安器充油试验、各停机保护的在线试验和主汽门、调速汽门及各抽汽逆止门的活动试验。 7)在机组正常启动或停机的过程中,汽轮机旁路系统的投入应严格执行规程要求。 8)停机过程中发现主汽门或调速汽门卡涩,应将负荷减至0MW,锅炉熄火,汽轮机打闸,发电机解列。 9)加强汽、水、油品质监督,品质符合规定。 10)转速监测控制系统工作应正常。

汽轮机常见事故及其处理方法

一、凝结器真空下降的现象及处理 (1) 1.1凝结器真空下降的主要特征 (1) 1.2凝结器真空急剧下降的原因 (1) 1.5凝结器真空缓慢下降的处理 (1) 1.3凝结器真空急剧下降的处理 (1) 1.4凝结器真空缓慢下降的原因 (1) 二、主蒸汽温度下降 (2) 2.1主蒸汽温度下降的影响 (2) 2.2主蒸汽温度下降的处理 (3) 三、汽轮机轴向位移增大 (3) 3.1影响汽轮机轴向位移增大的原因 (3) 3.2轴向位移大的处理 (4) 四、汽轮机大轴弯曲事故 (4) 4.1事故现象 (4) 4.2事故处理 (4) 4.3预防措施 (5) 五、厂用电源中断事故现象及处理 (5) 5.1厂用电源中断事故现象 (5) 5.2厂用电源中断事故处理 (5) 六、水冲击事故 (5) 6.1水冲击事故前的象征 (6) 6.2发生水冲击事故的处理 (6) 6.3水冲击事故后,重新开机的基本要点 (6)

6.4水冲击事故后,如有下列情况,应严禁机组的重新启动 (6) 七、凝结泵自动跳闸处理 (6) 八、汽轮机发生超速损坏事故 (7) 8.1汽轮机发生超速事故的原因 (7) 8.2汽轮机发生超速事故的处理 (7) 九、汽轮机油系统事故 (7) 9.1汽轮机油系统事故产生的原因 (8) 9.2汽轮机油系统事故的现象 (8) 9.3汽轮机油系统事故的处理 (8) 十、汽轮机轴瓦损坏事故 (8) 10.1轴瓦损坏的原因 (9) 十一、叶片断落事故 (9) 11.1事故象征 (9) 11.2事故处理 (10) 十二、汽轮机事故处理原则和一般分析方法 (10) 十三、在汽轮机组启动过程中,造成凝结器真空缓慢下降的原因 (10) 13.1汽轮机轴封压力不正常 (10) 13.2凝结器热水井水位升高 (11) 13.3凝结器循环水量不足 (11) 13.4轴封加热器满水或无水 (12) 十四、在汽轮机组正常运行中,造成凝结器真空缓慢下降的原因 (12) 14.1轴封加热器排汽管积水严重 (12) 14.2凝结器汽侧抽气管积水 (12) 14.3凝结水位升高 (13)

汽轮机反事故措施示范文本

汽轮机反事故措施示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机反事故措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 因汽轮机是在高温、高压、高转速下工作,并有各辅 助设备和辅助系统协调工作,往往由于某一环不慎而产生 事故,而影响调试工作顺利进行。造成事故的原因是多方 面的。如热状态下动静部件的间隙变化、启动和负荷变化 时的振动、轴向推力的变化。蒸汽参数变化、油系统工作 失常以及各种隐患等,如果发现和处理不及时,都可能引 起事故,所以在启动和试运期间,应采取有效措施,将事 故消除在萌芽期。 汽轮机几种常见典型事故及监视、分析和处理方法: 8.1 在运行中凝汽器真空下降: 真空下降,排汽温度增高,易使排汽缸变形,机组中 心偏移,使机组产生振动,以及凝汽器铜管产生松驰,变

形甚至断裂。 试运期间,应随时监视,如果发现排汽室温度升高,真空指示下降,抽气器冒汽量增加等现象,首先应降低负荷,查找原因。 真空下降的原因及处理: 8.1.1 循环水中断或供水不足:查找循环水系统,主要检查循环水泵和各电动阀门。 8.1.2 后轴封供汽中断:查找供汽压力是否产生变化,蒸汽带水使轴封供汽中断,轴封压力调整器失灵等。 8.1.3 抽气器水源中断,或真空管严重漏气。 8.1.4 凝汽器水位升高:查找凝结泵入口是否产生气化,可检查泵的电流是否下降。 8.1.5 检查真空系统管道与阀门是否严密。 以上原因,如不能在运行中及时处理,应停机处理,机组不得在低真空下长期运行。

汽轮机水冲击事故

汽轮机水冲击事故 李亿宏汽轮机水冲击事故是一种恶性事故,如不及时处理,易造成汽轮机本体损坏。汽轮机运行中突然发生水冲击,将使高温下工作的蒸气室、汽缸、转子等金属部件骤然冷却,而产生较大的热应力和热变形,导致汽缸发生拱背变形,而产生裂纹,并能使汽缸法兰结合面漏气,负差胀增大,静动部分发生磨擦;转子发生大轴弯曲,同样也会使汽轮机发生动静摩擦,引起机组发生强烈振动。水冲击时,因蒸汽中携带大量水分,形成水塞汽道现象,使叶轮前后压差增大,导致轴向推力剧增,如不及时打闸停机,推力轴承将会被烧损,从而使汽轮机发生剧烈的动静摩擦而损坏。此外,当发生水冲击时,特别是在低压长叶片处,水滴对其打击力相当大,严重时将会把叶片打弯或打断,可见发生水冲击时将会导致汽轮机严重损坏。 一、水冲击的现象: 1、主汽温度急剧下降,10min下降50℃或50℃以上。 2、从自动主汽门、门杆、调门、汽缸法兰平面、轴封等处冒白汽或溅出水滴。 3、主汽管、排汽管及汽机内部发生冲击声或金属噪音。 4、机组振动逐渐增大直至强烈振动。 5、轴向位移增大,轴力瓦温度迅速升高,差胀减小或出现负差胀。 6、汽缸上下缸温差变小,下缸温度降低较多。 二、水冲击的处理方法: 水冲击事故是汽轮机运行中最危险的事故之一,运行人员必须迅速、准确的判断,一般情况下应以主汽温度是否急剧下降为依据。同时应注意检查汽缸上下缸温度的变化,确认发生水冲击时,处理方法如下: 1、立即破坏真空,紧急打闸故障停机。 2、开启主汽管、导管、汽缸、排气管道疏水门,彻底疏水。 3、准确记录惰走时间及真空变化。 4、检查推力瓦温度和润滑油回油温度,注意轴向位移变化,仔细听汽轮机内部声音。

汽轮机事故应急处理预案

汽轮机事故应急处理预案 为快速、正确的处理各种事故,提高事故处置应急能力,防止发生设备重大损坏事故及人身伤害事故,降低事故损失,特制定事故应急处理预案。 一、事故应急处理领导小组 组长:副组长:成员: 二、事故处理原则 1、发生事故时,现场值班人员应沉着冷静,正确判断,准确而迅速的处理。 2、尽快消除事故根源,隔绝故障点,防止事故蔓延。 3、在确保人身安全和设备不受损害的前提下,尽可能恢复设备正常运行,不使事故扩大。 4、发挥正常运行设备的最大的出力,尽量减少事故对用户的影响。 5、运行当值值班长是事故处理的直接指挥者,应快速正确的判断事故发生的原因,统一指挥各专业人员准确进行操作,防止发生混乱而扩大事故。 6、在处理事故的同时,现场负责人应按事故的汇报程序逐级向领导汇报,各级人员应快速赶到事故现场,直接参与或监督事故处理,力争用最短的时间消除事故,减少损失。 7、发生重大事故或处置严重威胁设备及人身安全的隐患时,厂主要负责人应直接指挥处理,调度一切资源,尽快消除,避免扩大事故。

8、事故处理结束后,应按有关规定,及时组织召开分析会,调查事故发生原因,吸取事故教训,并举一反三,制定防范措施,严肃追究责任人,及时按程序上报有关部门。 三、电气事故应急处置措施 1、发电机非同期并列:并列合闸瞬间产生强烈的冲击电流,系统电压显著降低。静子电流剧烈摆动,发电机发生强烈震动,并发出强烈音变。 (1)将发电机解列停机。 (2)拉出手车开关对静子线圈及发电机开关等进行详细检查。 (3)经检查未发现不正常现象时,可重新启动并列。 (4)如非同期并列合闸后,发电机已迅速拉入同期,并经检查未发现有明显损坏象征异常,可允许暂时运行,安排适当的机会停机检 查处理。 2、发电机自动跳闸: (1)检查灭磁开关是否断开,如没有断开应手动掉闸。 (2)检查何种保护动作,并根据保护动作情况和事故象征对有关设备进行检查。 (3)如是人员误动引起应立即将发电机并入运行。 (4)如发电机由于内部故障而掉闸时,应对动作保护装置进行检查,验证动作是否正常。

汽轮机飞车事故案例

汽轮机飞车事故案例 1999年2月25日凌晨1时40分左右,中国石油乌鲁本齐石油化工总厂(以下简称乌石化)热电厂3号发电机一变压器组污闪,3号汽轮发电机组甩负荷。在当班操作人员进行事故处理时,发生汽轮机超速飞车的设备事故,同时发电机及机组油系统着火。事故无人员伤亡,设备直接经济损失1916万元。 乌石化热电厂3号汽轮发电机组的汽轮机为哈尔滨有限责任公司生产的CC50—8.83/4.02/1.27型高压双缸双抽冷凝式汽轮机,发电机为哈尔滨电机厂生产的QF—60—2型发电机,总成设计为西北电力设计院,安装、调试由新疆电力安装公司承担,投产日期为1997年1月30日。1998年5月12日至6月18日进行了鉴定性大修。 一、事故经过 凌晨1时37分48秒,3号发电机一变压器组发生污闪,使3号发电机组跳闸,3号机组电功率从41MW甩到零。汽轮机抽汽逆止阀水压联锁保护动作,各段抽汽逆止阀关闭。转速飞升到3159r/min后下降。司机令副司机到现场确认自动主汽门是否关闭,并确认转速。后又令另一副司机启动交流润滑油泵检查。车间主任赶到3号机机头,看到副司机在调整同步器。车间主任检查机组振动正常,自动主汽门和调速汽门关闭,转速2960r/min,认为是污闪造成机组甩负荷,就命令副司机复位调压器,自己去复位同步器。副主任在看到3号机控制盘上光字牌显示“发电机差动保护动作和“自动主汽门关闭”后,向司机询问有关情况,同意维持空转、开启主汽门,并将汽机热工联锁保护

总开关切至“退除”位置。随后副主任又赶到3号机机头,看到副司机正在退中压调压器,就令副司机去复位低压调压器,自己则复位中压调压器。副司机在复位低压调压器时,出现机组加速,机头颤动,汽轮机声音越来越大等异常情况(事后调查证实是由于低压抽汽逆止阀不起作用,造成外管网蒸汽倒流引起汽轮机超速的)。车间主任看到机组转速上升到3300r/min时,立即手打危急遮断器按钮,关闭自动主汽门,同时将同步器复位,但机组转速仍继续上升。车间主作和另一副司机又数次手打危急遮断器按钮,但转速依然飞速上升,在转速达到3800r/min时,车间主任下令撤离,此时的转速为4500r/min。 约1时40分左右,3号机组发生超速飞车。随即一声巨响,机组中部有物体飞出,保温棉渣四处散落,汽机下方及冷油器处起火。乌石化和热电厂领导迅速赶至现场组织事故抢险,并采取紧急措施对热电厂的运行设备和系统进行隔离。于凌晨4:20将火扑灭,此时,汽轮机本体仍继续向外喷出大量蒸汽,当将1.27MPa抽汽供外网的电动门关闭后,蒸汽喷射随即停止。 二、事故性质及原因 经调查,这是一起由于关键设备存在隐患及事故应急处理时无序操作导致飞车的责任事故。主要原因如下: (一)1.27MPa抽汽逆止阀阀碟铰制孔螺栓断裂使阀碟脱落,抽汽逆止阀无法关闭,是机组超速飞车的主要直接原因。 通过调查表明,3号机发生超速飞车是在按正常程序恢复生产,复位低压调压器时,由于外管网低压蒸汽倒流进入汽轮机所引起的。

汽轮机发生水冲击原因分析及事故处理

汽轮机发生水冲击原因分析及事故处理(1) 北极星电力网技术频道作者: 2012-12-10 10:07:19 (阅501次) 所属频道: 火力发电关键词: 汽轮机水冲击 汽轮机发生水冲击危害:进入汽轮机的蒸汽必须保持足够的过热度:(当湿蒸汽中的水全部汽化即成为饱和蒸汽,此时蒸汽温度仍为沸点温度。如果对于饱和蒸汽继续加热,使蒸汽温度升高并超过沸点温度,此时得到的蒸汽称为过热蒸汽,过热度指的是蒸汽温度高于对应压力下的饱和温度的程度。)正常运行中蒸汽应保持在额定参数允许范围内。如果蒸汽带水进入汽轮机,将使推力急剧增大,将转子向后推移,导致推力瓦烧损和动静碰磨。同时汽轮机运行中汽缸、转子、阀门等都处于高温状态,低温蒸汽或水突然进入汽轮机的某一部位,将造成部件急剧收缩,除本身金属产生大的热应力影响寿命外,局部收缩变形可能导致动静碰磨、大轴弯曲、部件裂纹、接合面变形泄漏等等。近年来汽轮机进水事故时有发生,有的甚至造成设备损坏。 现象: 1.主蒸汽温度和汽缸温度急剧下降,汽缸上、下壁温差升高(发生水冲击此现象最为明显和直观,我曾经在运行中遇到过汽包满水事故,最为直接的现象就是主汽温度快速下降,此时机侧能做的就是快速降负荷,并开启机侧的疏水门优先开启主汽管道和高压内缸等疏水,及时联系锅炉调整,同时对机组的本体画面加强监视,如本体个参数发生异常现象无法挽回,必要时打闸停机并破坏真空处理。) 2.主汽门、调速汽门门杆法兰,汽缸结合面,轴封处冒白汽或溅出水滴(此现象说明已经是发生严重水冲击必须立即打闸停机加强放水,并根据情况采取连续盘车或定期盘车。)。 3.蒸汽管道有强烈的水冲击声和振动。(此现象较为严重) 4.机组声音异常,机组振动增加。 5.轴向位移增大:定义:又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零为.向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。发生水冲击(蒸汽带水):水珠冲击叶片使轴向推力增大,同时水珠在汽轮机内流动速度慢,堵塞蒸汽通路,在叶轮前后造成很大压力差,说的通俗一点就是说水比起蒸汽来走的太慢,而力量又很大,不能像蒸汽一样从动叶片之间钻过去,而是打在了叶片上,就像水枪冲击其他东西似的,所以轴向推力才会加大,推力瓦块温度升高(轴向推力过大会使推力轴承超载,而推力瓦主要是起平衡轴向推力的作用,所以会导致瓦块温度升高而乌金烧毁),胀差(汽轮机转子与汽缸

汽轮机常见事故处理

汽轮机运行常见事故及处理 1 汽轮机紧急事故停机 汽轮机破坏真空紧急停机:①、转速升高超过3300~3360r/min,或制造厂家规定的上限值,而危急保安器与电超速保护未动作;②汽轮机发生水冲击或汽温直线下降(10min内下降50℃);③、轴向位移达极限值或推力轴承温度超限而保护未动作;④、胀差增大超过极限值;⑤、油系统油压或主油箱油位下降,超过规定极限值;⑥、汽轮机轴承金属温度或轴承回油温度超过规定值,或轴承冒烟时; ⑦、汽轮发电机组突然发生强烈振动或振动突然增大超过规定值;⑧、汽轮机油系统着火或汽轮机周围发生火灾,就地采取措施而不能扑灭以致严重危机设备安全;⑨、加热器、除氧器、等压力容器发生爆破;⑩汽轮机主轴承摩擦产生火花或冒烟;发电机冒烟、着火或氢气爆炸;励磁机冒烟、着火。 汽轮机不破坏真空紧急停机:①、凝汽器真空下降或低压缸排汽温度上升,超过规定极限值;②、主蒸汽或再热蒸汽参数超限;③、主蒸汽、再热蒸汽、抽汽、给水、凝结水、油系统管道及附件破裂无法维持运行;④、调节系统故障,无法维持运行。⑤、主蒸汽温度升高(通常允许主蒸汽温度比额定温度高5℃左右)超过规定温度及规定允许时间时。 机组运行中,对于机组轴瓦乌金温度及回油温度出现以下情

况之一时,应立即打闸停机:①任一轴承回油温度超过75℃或突然连续升高至70℃时;②、主油瓦乌金温度超过85℃或厂家规定值时;③、回油温度急剧升高或轴承内冒烟时; ④、润滑油泵启动后,油压低于运行规程允许值;⑤、盘式密封回油温度超过80℃或乌金温度超过95℃时;⑥、发现油管、法兰及其他接头处漏油、威胁安全运行而又不能在运行中消除时。 汽轮机紧急故障停机的步骤:①、立即遥控或就地手打危急保安器;②、确证自动主汽门、调速汽门、抽汽止回阀关闭,负荷到零后,立即解列发电机;③、启动辅助油泵;④、破坏真空(开启辅抽空气门或关闭主抽总汽门),并记录转子惰走时间;⑤进行其他停机操作(同正常停机)。 2 凝结器真空下降的现象及处理 凝结器真空下降的主要特征:①、凝汽器真空表指示降低,排汽温度升高;②、在进汽量相同的情况下,汽轮机负荷降低;③凝结器端差明显增大;④、凝汽器水位升高;⑤、当采用射汽抽汽器时,还会看到抽汽器口冒汽量增大;⑥、循环水泵、凝结水泵、抽气设备、循环水冷却设备、轴封系统等工作出现异常。 凝结器真空急剧下降的原因:①、循环水中断;②、低压轴封供汽中断;③、真空泵或抽气器故障;④真空系统严重漏气;⑤、凝汽器满水。

汽轮机典型故障处理

汽轮机典型故障处理 1. 破坏真空停机: 1、汽轮机转速升至3360rpm,危急遮断器拒动时。 2、机组突然发生强烈振动而保护拒动时或正常运行时振动瞬间突变达 时。 3、汽轮机或发电机内有清晰的金属磨擦声或撞击声。 4、汽轮机轴向位移大,或推力瓦金属温度过高而保护拒动时。 5、润滑油供油中断或油压降低而保护拒动时,备用泵启动仍无效时。 6、油系统严重泄漏,主油箱油位过低,经处理无效时。 7、汽轮机轴承金属温度过高而保护拒动时。 8、汽机发生水冲击或上下缸温差大。主、再热汽温急剧下降,抽汽管道 进水报警且温差超过大而保护拒动时。 9、轴封或挡油环异常摩擦冒火花。 10、任一轴承回油温度过大而保护拒动时或任一轴承断油冒烟时。 11、主机高、中压胀差过小或过大而保护拒动时。 12、发生火灾,严重威胁机组安全时。 2.不破坏真空停机: 1.机组保护具备跳闸条件而保护拒动。 2.机组范围发生火灾,直接威胁机组的安全运行。 3.机组的运行已经危及人身安全,必须停机才可避免发生人身事故时。 4.主给水、主蒸汽、再热蒸汽管道发生爆破,不能维持汽包正常水位。 5.炉管爆破,威胁人身或设备安全时。 6.机前压力在过高运行超时或机前压力超压时。 7.主、再热蒸汽温度过高,连续运行超过时 8.高压,低压缸排汽温度过大。 9.汽轮机抗燃油压降低,保护拒动时。 10.机组真空低,循环水中断不能立即恢复时。 11.汽轮机重要运行监视仪表,尤其是转速表,显示不正确或失效,在 无任何有效监视手段的情况时。 12.机组无蒸汽运行时间超过 13.热工仪表电源中断、控制电源中断、热控系统故障、空压机及系统 故障造成控制汽源压力低或消失,电源及汽源无法及时恢复,机组无法 维持原运行状态时。 14.当热控DCS系统全部操作员站出现故障(所有上位机“黑屏”或“死 机”),且无可靠的后备操作监视手段时。 15.涉及到机炉保护的控制器故障,且恢复失败时。 16.机组热工保护装置故障,在限时内未恢复时。

转子弯曲事故案例分析

华能汕头电厂操作检查不到位2号汽轮机高压转子弯曲事故 (1999年) [序]1999年4月12日,华能汕头电厂2号机组在大修后的启动过程中,因漏掉对高压缸法兰加热左右侧回汽门的检查,左侧汽门实际开度很少,使高压缸左右法兰温差严重超限,监盘又较长时间没有发现,造成高压转子大轴弯曲事故。造成这起事故的直接原因是运行人员责任心不强,严重失职,运行管理薄弱与规章制度不健全也是造成事故的重要原因。这种因左右法兰加热不均导致高压缸转子弯曲事故近年来还是第一次发生。华能国际公司汕头电厂对这起事故的调查处理是严肃认真的,及时查明了原因,分清了责任。为共同吸取事故教训,现将华能汕头电厂“设备事故调查报告书”(摘要)转发,希望各单位认真结合本单位的实际情况,加强对职工的职业素养与岗位责任的教育,健全规章制度,使各项工作规范化、制度化、同时,加强对运行的管理;杜绝工作中的不负责任、疏忽大意的行为,维护各项规章制度的严肃性,防止类似事故重复发生。 【事故经过】 4月11日,#2机组B级检修结束后,经过一系列准备与检查后,#2机于4月12日15时55分开始冲转,15时57分机组冲转至500rpm,初步检查无异常。16时08分,升速至1200rpm,中速暖机,检查无异常。16时15分,开启高压缸倒暖电动门,高压缸进行暖缸。16时18分,机长吴X令副值班员庄XX开高压缸法兰加热进汽手动门,令巡检员黄X开高、中压缸法兰加热疏水门,操作完后报告了机长。16时22分,高压缸差胀由16时的2.32mm 上升2.6lmm,机长开启高压缸法兰加热电动门,投入高压缸法兰加热。1 6时25分,发现中压缸下部金属温度高于上部金属温度55℃,机长安排人就地检查中压缸及本体疏水门,无异常,经分析认为温度测点有问题,联系热工处理。17时13分,热工人员将测点处理完毕,此时中压缸上下缸温度恢复正常。17时27分,投中压缸法兰加热装置。17时57分,主值余XX在盘上发现#2机#2瓦水平振动及大轴偏心率增大,报告值长。13时02分,经就地人员测量,#2瓦振动达140μm,就地明显异音,#2。机手动打闸,破坏真空停机。18时08分,#2机转速到零,投盘车,此时转子偏心率超出500μm,指示到头,#2机停炉,汽机闷缸,电动盘车连续运行。18时18分至24分,转子偏心率降至40—70μm后,又逐渐增大到300μm并趋向稳定,电动盘车继续运行。

汽轮机常见事故及其处理方法

锡林郭勒职业学院 ( 二 〇 一一 年 四 月 毕业论文 题 目:汽轮机的常见故障及其处理方法 学生姓名:张超 系 别:机械与电力工程系 专 业:电厂设备运行与维护 班 级:热电08(4) 指导教师:史志慧 讲师

【摘要】 汽轮机是电厂的主要设备,汽轮机是否安全运行是保证电厂安全的基础,下面就汽轮机的主要部件常见的事故加以分析论述。 汽轮机大轴弯曲是汽轮机恶性事故最典型的一种,这种事故多出现在高参数大容量的汽轮机中,破坏性极其严重,对这一事故的防治尤其重要。汽轮机真空的高低,直接影响到机组的安全性和经济性。汽轮机真空下降 ,将导致排汽压力升高,可用焓减小,同时机组出力降低;排汽缸及轴承座受热膨胀,轴承负荷分配发生变化,机组产生振动;凝汽器铜管受热膨胀产生松弛、变形,甚至断裂;若保持负荷不变,将使轴向推力增大以及叶片过负荷,排汽的容积流量减少,末级要产生脱流及旋流;同时还会在叶片的某一部位产生较大的激振力,有可能损伤叶片。 【关键词】:汽轮机事故轴弯曲推力轴承轴向位移定位 目录 一、凝结器真空下降的现象及处理 (1) 1.1凝结器真空下降的主要特征 (1) 1.2凝结器真空急剧下降的原因 (1) 1.5凝结器真空缓慢下降的处理 (1) 1.3凝结器真空急剧下降的处理 (1) 1.4凝结器真空缓慢下降的原因 (1) 二、主蒸汽温度下降 (2) 2.1主蒸汽温度下降的影响 (2) 2.2主蒸汽温度下降的处理 (3) 三、汽轮机轴向位移增大 (3) 3.1影响汽轮机轴向位移增大的原因 (3) 3.2轴向位移大的处理 (4) 四、汽轮机大轴弯曲事故 (4)

相关文档