文档库 最新最全的文档下载
当前位置:文档库 › 电力拖动自动控制系统实验

电力拖动自动控制系统实验

电力拖动自动控制系统实验
电力拖动自动控制系统实验

电力拖动自动控制系统实验指导书

实验一晶闸管直流调速系统环节特性的测定实验

一、实验目的

掌握晶闸管直流调速系统环节特性的测定方法

二、实验内容

1、测定晶闸管触发电路及整流装置特性Ud=f(Ug)或Ud=f(Uct);

2、测定测速发电机特性U TG=f(n);

四、实验原理及接线图

实验接线原理图

1、测定出晶闸管整流电路输出电压Ud、移相控制电压Uct,便可得到晶闸管触发及整流特性

Ud=f(Ug)或Ud=f(Uct);

2、测定出测速发电机的输出U TG,电动机的转速n,即可得到测速发电机特性U TG=f(n);

3、由Ud=f(Ug)或Ud=f(Uct)曲线可求得晶闸管整流装置的放大倍数曲线Ks=f(Ug),求Ks可

用公式Ks =

Ug

Ud

??求得。 五、实验方法与步骤

将电动机加额定励磁,使其空载运行,逐渐增加控制电压Ug(Uct),分别读取对应的Ug 、U TG 、Ud 、n 的数值若干组,即可描绘出特性曲线Ud =f (Ug )及U TG =f (n ),由Ud =f (Ug )或Ud =f (Uct )曲线可求得晶闸管整流装置的放大倍数曲线Ks =f(Ug),求Ks 可用公式Ks =

Ug

Ud

??求得。 六、数据记录与处理

将数据记录于下表,并绘出Ud =f (Ug )、U TG =f (n )、Ks =f(Ug)三条曲线;

七、注意事项

1、给定单元的RP1从最小值处调起,每次停机前将RP1调回到最小值;

2、由于电动机电枢回路、励磁回路未串接电阻,不要接短路;

3、因U TG 、Ug(Uct)的数值较小,用万用表的直流电压10V 或50V 档测量。

4、由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。 八、思考题

比较三条曲线,各曲线有什么特点,为什么?

实验二 晶闸管直流调速系统主要单元的测试

一、实验目的

熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求,学会按要求调试各单元 二、实验内容

1、速度调节器的调试;

2、电流调节器的调试;

3、“零电平检测”及“转矩极性鉴别”单元的调试; 4 、反号器的调试;

5、逻辑控制单元的调试; 三、实验所需挂件及附件

四、实验原理及接线图

在直流调速系统中,往往采用闭环控制,需要对电流、转速等信号进行反馈,以便稳速和限流,需要用到速度调节器和电流调节器,在可逆调速系统中,在电动机改变转向时,要对电枢电流、转矩极性进行鉴别,通过逻辑控制电路控制正、反桥电路的切换,以防止正、反桥同时工作,避免正、反桥之间出现环流,损坏电源,故要将“零电平检测”、“转矩极性鉴别”、“反号器”、“逻辑控制单元”状态调节好。

各单元原理图如下:

速度调节器原理图

电流调节器原理图

零电平检测单元原理图

转矩极性鉴别单元原理图

转矩极性鉴别输入输出特性零电平检测输入输出特性

速度变换单元

反号器原理图

电压给定原理图

电流反馈与过流保护原理图

五、实验方法与步骤

将DJDK04挂件的十芯电源线与控制屏连接,打开电源,即可开始实验。

1、速度调节器的调试;

(1)调节器调零

将DJDK04中的“速度调节器”单元的所有输入端(1、2、3脚)接地,用导线将“5”、“6”

脚短接,使“速度调节器”成为P(比例)调节器,调节面板上的调零电位器RP1,用万用表的毫伏档(若无,用0.25V档)测量速度调节器“6”端的输出,使调节器的输出电压尽可能接近于零。

(2)调整输出正、负限幅值

把“5”、“6”短接线去掉,使调节器成为PI(比例积分)调节器,然后将DJDK04的给定输出端Ug接到速度调节器的“3”端,当加一定的正给定时,调整负限幅电位器RP3,观察输出电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP2,观察调节器输出正电压的变化;

(3)测定输入输出特性

再将反馈网络中的电容短接(将“5”、“6”端短接),使速度调节器成为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压测出相应的电压,直至输出达到限幅值,并画出曲线。

(4)观察PI特性

拆除“5”、“6”短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。

2电流调节器的调节

(1)调节器调零

将DJDK04中的“电流调节器”单元的所有输入端(1~7脚)接地,用导线将“9”、“10”

脚短接,使“电流调节器”成为P(比例)调节器,调节面板上的调零电位器RP4,用万用表的毫伏档(若无,用0.25V档)测量速度调节器“10”端的输出,使调节器的输出电压尽可能接近于零。

(2)调整输出正、负限幅值

把“9”、“10”短接线去掉,使调节器成为PI(比例积分)调节器,然后将DJDK04的给定输出端Ug 接到电流调节器的“4”端,当加一定的正给定时,调整负限幅电位器RP2,观察输出电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP1,观察调节器输出正电压的变化;

(3)测定输入输出特性

再将反馈网络中的电容短接(将“9”、“10”端短接),使速度调节器成为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压测出相应的电压,直至输出达到限幅值,并画出曲线。

(4)观察PI特性

拆除“9”、“10”短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律。

3、“零电平检测”单元的调试

测定“零电平检测”单元的环宽,要求其环宽为0.4~0.6V;调节RP1,使回环沿纵坐标右侧偏离0.2V,即环从0.4到0.6V。

“零电平检测”单元的具体调试方法

(1)调节给定Ug,使“零电平检测”单元的“1”脚约加0.6V电压,调节电位器RP1,恰好使“2”端输出从“1”跃变为“0”。

(2)慢慢减小给定,当“零电平检测”的“2”端从“0”跃变为“1”时,检测“零电平检测”的“1”端应为0.2V左右,否则应调整电位器。

(3)根据测得的数据,画出“零电平检测”单元的输入输出特性(回环)

4、“转矩极性鉴别”单元的调试

测定“转矩极性鉴别”单元的环宽,要求环宽为0.4~0.6V,记录高电平值,调节单元中的RP1使特性满足要求。“转矩极性鉴别”要求的环宽从-0.25到0.25V。

“转矩极性鉴别”单元的具体调试方法

(1)调节给定Ug,使“转矩极性鉴别”的“1”脚得到约0.25V电压,调节电位器RP1,恰好使“2”端从“高电平”跃变为“低电平”。

(2)调节负给定从0V调起,当转矩极性鉴别器的“2”从“低电平”跃变为“高电平”时,检测转矩极性鉴别器的“1”端应为-0.25V左右,否则应调整电位器,使“2”端电平变化时,“1”端的输入正、负电压的绝对值基本相等。

5、反号器的调试

测定输入输出比例,输入端加入+5V电压,调节RP1使输出端输出为-5V。

六、实验报告

1、画出“速度调节器”、“电流调节器”、“零电平检测”、“转矩极性鉴别”的输入输出特性曲线。

2、简述各控制单元的调试要点。

实验三转速单闭环不可逆直流调速系统实验

一、实验目的

1、了解单闭环直流调速系统的原理组成及个主要部件的原理;

2、掌握晶闸管直流调速系统的基本特性;

3、认识闭环反馈控制系统的基本特性。

二、实验内容

1、Uct不变时直流电动机开环特性的测定;

2、转速单闭环直流调速系统特性的测定。

三、实验所需挂件及附件

四、实验原理及接线图

转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压Uct,控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。

实验接线原理图

五、实验方法与步骤

1、Uct不变时的直流电动机开环外特性的测定

(1)按接线图分别接好主回路和控制回路,Ug直接接Uct,直流发电机接D42上的负载电阻R,Ld =200mH,将给定的输出调到零。

(2)电动机加励磁、起动,Ug从0V起逐渐增加,使n=1200rpm。

(3)改变负载电阻R,使Id从Ied到空载即可测出Uct不变时,n=f(Id)的外特性。通过调节

R和Ug,将电动机转速调为1200rpm,电枢电流调为1.2A(额定值),随后保持Uct不变,逐渐增大R,电枢电流将下降,转速上升,每调节一次,记录Id、n于下表中

2、转速单闭环直流调速系统

(1)转速反馈系数的整定

Ug接Uct,Ld=200mH,调节Ug为0,加励磁、起动,Ug从0V调起,使n=1500rpm,调“速度变换”单元上的RP1,使得该转速时,1、3端电压Ufn=6V,则2、3端电压为 1.3V,

α。

1500

=

.0

3.1=

/

rpm

V

rpm

V/

009

(2)将给定输出Ug接速度调节器3端,“速度变换”输出接“速度调节器”2端,速度调节器输出Usc接Uct,此时转速反馈应为正电压,发电机接R,调Ug为零。

(3)发电机先轻载,Ug从0V调起,使n=1200rpm。

(4)调节R,使Id从小到大,直至Ied,测出Id、n,即可测出系统静态特性曲线n=f(Id),并记录数据于下表:

六、实验报告

根据所测数据分别作出Uct、Ud不变时,电动机开环外特性曲线及转速闭环调速系统静态特性曲线

七、注意事项

1、Ug接Uct,给定为正电压。

2、发电机所接电阻R应将D42上每组两个900Ω电阻并联使用。

3、调节R时,要慢慢旋转调节旋钮,特别是电动机电枢电流接近Ied时,这时,R已很小,防止用力过大,将R调到0造成发电机电枢短路。

4、注意电动机的转向,应使转速输出信号,红色插孔为正极,黑色插孔为负极,与“转速变换”上插孔连接时,应“红”接“红”、“黑”接“黑”。

八、思考题

1、P调节器和PI调节器在直流调速系统中的作用有什么不同?

2、实验中,如何确定转速反馈的极性并把转速反馈正确地接入系统中?

3、改变“速度调节器”的电阻、电容参数,对系统有什么影响?

实验四电流单闭环不可逆直流调速系统

一、实验目的

1、了解电流单闭环直流调速系统的原理、组成及各主要单元部件的原理;

2、掌握晶闸管直流调速系统的一般调试过程;

3、认识闭环反馈控制系统的基本特性。

二、实验内容

1、电流反馈系数的整定;

2、电流单闭环调速系统静态特性的测定;

三、实验所需挂件及附件

四、实验原理及接线图

电流单闭环实验是将反映电流变化的电流互感器输出信号经整流在采样电阻上得到的电压信号作为反馈信号,加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压Uct,控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了电流负反馈闭环系统。

实验接线原理图

五、实验方法与步骤

1、电流反馈系数的整定

(1)直接将“给定”Ug接DJK02上的Uct,整流桥输出端接电阻负载R,负载电阻放在最大值,Ug 调到零。

(2)启动,Ug从0V调起,使Ud升高至220V,减小R的值,调节“电流反馈与过流保护”单元上的电位器RP1,使Id=1.3A时,2端I f的电流反馈电压Ufi=6V,这时的电流反馈系数β=Ufi/Id=4.615V/A。

2、电流单闭环直流调速系统静态特性的测定;

(1)按图接线,Ug为负给定,电流反馈为正电压,将“电流调节器”接成PI调节器,直流发电机接负载电阻R,Ld用DJK02的200mH,将给定输出调到零。

(2)直流发电机先轻载,从零开始逐渐调大“给定”电压Ug,使电动机转速接近1200rpm。

(3)调节发电机负载电阻,使阻值从大到小,直至n=500rpm,即可测出系统静态特性,曲线

n=f(Id)。

数据记录

六、实验报告

在试验报告上作出系统静态特性曲线。

七、注意事项

1、注意给电机加励磁;

2、当可变电阻R阻值已调到较小时,要调的慢一些;

3、电枢电流值不要超过额定值。

八、思考题

1、电流反馈信号缺失对系统有什么影响?

2、电流反馈信号过大或过小会出现什么现象?

实验五双闭环晶闸管不可逆直流调速系统实验

一、实验目的

1、了解双闭环不可逆直流调速系统的原理、组成;

2、掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

二、实验内容

1、各控制单元调试;

2、整定电流反馈系数β,转速反馈系数α;

3、测定高转速时系统闭环静态特性n=f(Id);

4、闭环控制特性n=f(Ug)的测定;

四、实验原理与接线图

双闭环直流调速系统是由电流和转速两个调节器进行综合调节,可获得良好的静\动态性能(两个调节器均采用PI调节器),由于调整系统的主要参数为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网扰动对转速的影响,从而实现比较理想的调速效果。

实验接线原理图

五、实验方法与步骤

1、速度调节器调试

(1)速度调节器调零将速度调节器所有输入端端接并接地,用万用表毫伏档测其输出,调节本单元的电位器RP1,

将输出调为零。

(2)在速度调节器3端输入+5V,调节本单元电位器RP3,将输出调为-6V;

2、电流调节器调试

(1)电流调节器调零将电流调节器所有输入端短接接地,用万用表毫伏档测量其输出,调节电流调节器上的电位器RP4,将输出调为零。

(2)在电流调节器4端输入-6V,调节其上的电位器RP1将输出调为+9V;

3、调节电流反馈系数,晶闸管桥路输出电流为1.3A时,调节本单元的电位器RP1使“电流反馈与过流保护”单元2端输出电压为+6V;

4、调节转速反馈系数,在n=1500rpm时,调节转速变换单元上的RP1,使3端输出U fn=-2V(2、3端之间电压);

5、特性测试

(1)按图接线,Ug为正给定,转速反馈信号为负电压,电流反馈信号U If为正电压,将电机先轻载,调Ug使电机转速n=1200rpm,然后调节发电机负载电阻R,增大Id直至Ied,记录n、Id记录于下表,根据所测数据作静态曲线n=f(Id)

(3)调节Ug及R,使Id=Ied,n=1200rpm,逐渐降低Ug,记录Ug和n,测出该调速系统的控制特性n=f(Ug)

六、实验报告

1、在实验报告上根据所测数据作出调速系统在n=1200rpm的静态曲线n=f(Id);

2、作出起始条件为Id=Ied,N=1200rpm的控制特性曲线n=f(Ug)

七、注意事项

1、转速反馈为负反馈,应将转速信号接成负电压信号;

2、电流反馈为负反馈,应将电流反馈信号接为正电压信号;

3、电流调节器限幅值应根据不同实验台调节,若输出+9V过大,可降低输出;

4、调节R时,要慢慢旋转,特别当R值较小时,跟要慢些。

八、思考题

1、为什么双闭环直流调速系统中使用的调节器均为PI调节器?

2、转速负反馈的极性如果接反会产生什么现象?

3、双闭环直流调速系统中哪些参数的变化会引起电动机转速的改变?哪些参数的变化会引起电动机最大电流的变化?

实验六开环三相异步电动机调压调速系统实验

一、实验目的

1、了解并熟悉开环三相异步电动机调压调速系统的原理及组成;

二、实验内容

1、测定三相绕线式异步电动机转子串电阻时的机械特性;

四、实验原理与接线图

对于三相转子绕线式异步电动机,在转子中串入适当电阻后可使机械特性变软其调速范围有所扩大,但在负载或电网电压波动的情况下,其转速波动严重,所以在异步电动机调压调速电路中采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路有三相晶闸管交流调压器及三相绕线式异步电动机组成。控制部分有“电流调节器”、“速度变换”、“触发电路”、“正桥功放”等组成。整个调速系统采用了速度、电流两个反馈控制环。

实验接线原理图

五、实验方法与步骤 1、机械特性的测定

(1)给定Ug 直接接Uct 。

(2)电机先轻载,调Ug 使电动机定子相电压为Ue =220V ,然后调节R ,记录U G 、I G 、n ,计算

n p R I U I T a G G G /)(55.902

++=,记录数据于下表:

六、实验报告

1、画出调速系统的开环机械特性曲线; 七、注意事项

1、发电机电枢电阻Ω=21a R ,机组空载损耗50=p W ;

2、电动机转子引出线与转子附加电阻箱引出线要对应相接。 八、思考题

1、若电动机反转如何解决?

2、如果有一路触发脉冲不正常,电动机能正常运行吗?

实验七 双闭环三相异步电动机调压调速系统实验

一、实验目的

1、了解转子串电阻三相绕线式电动机在调节定子电压时的机械特性; 二、实验内容

1、测定双闭环交流调压调速系统的静态特性;

对于三相转子绕线式异步电动机,在转子中串入适当电阻后可使机械特性变软其调速范围有所扩大,但在负载或电网电压波动的情况下,其转速波动严重,所以在异步电动机调压调速电路中采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路有三相晶闸管交流调压器及三相绕线式异步电动机组成。控制部分有“电流调节器”、“速度变换”、“触发电路”、“正桥功放”等组成。整个调速系统采用了速度、电流两个反馈控制环。

实验接线原理图

五、实验方法与步骤 1、单元调试

(1)速度调节器调零;调整正、负限幅值,要求输入U i =±5V ,输出U 0=±6V 。 (2)电流调节器调零;调整正、负限幅值,要求输入U i =±6V ,输出U 0=±9V 。 (3)电流反馈系数整定,要求电机定子相电流Ie =1A ,电流反馈信号U If =6V 。

(4)转速反馈系数整定,要求电机转速n =1300rpm 时,转速变换3端输出U fn =—2V 。

2、系统调试 将系统接成闭环调速电路,加给定、减给定;加、减负载,观察系统运行是否正常。

3、系统闭环特性的测定

(1)调节Ug ,是n =1200rpm ,I G 从轻载调到I G =1.1A ,记录U G 、I G 、n ,测静态特性n =f (T ) 数据记录

1、画出闭环调速系统的静态特性曲线; 七、注意事项

1、转速反馈、电流反馈均为负反馈;

2、发电机电枢电阻Ω=21a R ,机组空载损耗50=p W ;

3、电动机转子引出线与转子附加电阻箱引出线要对应相接。 八、思考题

1、调节Ug ,能将电动机转速提高到1500rpm 以上吗?为什么? 第四次作业 教材第95页2-5题、2-7题2-8题。 教材第95页2-5题、2-7题2-8题。

电力拖动实验参考

第三部分 异步电机 实验二 三相异步电动机的起动与调速 一、 实验目的 通过实验掌握异步电动机的起动和调速的方法。 二、 预习要点 1. 复习异步电动机有哪些起动方法和起动技术指标。 2. 复习异步电动机的调速方法。 三、 实验项目 1. 直接起动 2. 星形-三角形(Y -⊿)起动。 3. 自耦变压器法起动。 4. 绕线式异步电动机转子绕组串入可变电阻器起动。 5. 绕线式异步电动机转子绕组串入可变电阻器调速。 四、 实验线路及操作步骤 1. 三相鼠笼式异步电机直接起动试验 电机选21D ,电流表选用42D ,电压表选用43D 。电流表量程选A 5,电压表量程选V 300。 安装电机使电机和测功机同轴联接,旋紧固定螺丝。按图3-5接线,电机绕组为⊿接法。 图3-5 异步电动机直接起动 实验前先把交流调压器退到零位,然后接通电源。旋动三相可调电源旋钮使惦记起动旋转。观察电机旋转方向。调整电机相序,使电机旋转方向符合测功机的要求。调整相序时,必须切断电源。 按下电机试验台的起动开关,调节试验控制屏的调压器,使输出电压达电机额定电压220伏,按下试验台的停止开关,等电机完全停止旋转后,再按下惦记树眼控制台起动开关,使电机全压起

动,电流表受起动电流冲击而偏转,电流表的最大偏转虽不能完全代表起动电流的读数,但用它可和下面几种起动方法的起动电流作定性的比较。 按下电机试验台的停止开关,将试验控制屏调压器退到零位,用销钉将测功机定、转子销住,按下电机试验台的起动开关,调节试验控制屏调压器,使电机电流达到2~3倍额定电流,读取电压值K U 、电流值K I 、转矩值K M ,试验时通电时间不应超过10秒,以免绕组过热。按下电机试验台停止开关,拔出销钉。 对应于额定电压时的起动转矩st M 和起动电流st I 按下式计算: K K st st M I I M 2 )( = 式中 K I --起动试验时的电流值,A ; K M --起动试验时的转矩值,m N ?。 K K N st I U U I )( = 式中 K U --起动试验时的电压值,V ; N U --电机额定电压,V 。 2.星形--三角形(Y -⊿)起动 除了实验1项所用设备外,再增加Y -⊿起动设备,编号为63D 。 实验线路原理图如图3-6。为了定性地和1试验补角,量程不变。 把控制屏的调压器退到零位,按下电机试验台的起动开关,调节控制屏的调压器时逐渐升至电机额定电压220伏,按下63D 起动按钮,使电机成Y 接法起动,经一定时间的延迟自动切换成⊿接法正常运行,整个起动过程结束。延迟时间可自由调节。观察起动过程中电流表的偏转角度以及其它起动方法作定性比较。

电力拖动实验室安全操作规程

电力拖动实验室安全操作规程 1、由于实验室设备大多为用电设备,因而由于操作不慎可能导致人身安全与设备安全受到损害。为了保证实验工作的顺利展开,为公司工程部创造一个良好的、安全的实验环境,在本实验室操作者都必须遵守以下的安全操作规程: 2、不准穿拖鞋进入实验室,注意保持实验室的清洁卫生。 3、实验室内不准使用明火。 4、要以严肃认真的态度对待实验,严守操作规程,注意安全。对未了解其使用方法的设备,不进行操作。 5、实验前明确实验目的及实验内容。 6、在实验时不得大声喧哗,不乱丢纸屑,不随地吐痰,不嬉耍。 7、严格的按照仪器操作规程,正确操作仪器。 8、仪器不准频繁开、关电源开关,一次关机后应等3分钟才能再开机。

9、实验时,应注意仪器、设备整齐地摆放到恰当的位置上,以利于实验进行;各实验小组人员应作分工,轮流负责担任接线、记录、操作仪器等工作。 10、禁止带电安装实验线路,实验电路接线完成后,需要通电时,必须经检查无误后,方能接通电源进行实验,实验过程中;如需改接线路,连接线路时一定要切断电源。实验通电调试时,若发现仪器设备出现故障或异常情况(如:有异味、冒烟等)时,应立即关闭电源开关,拨掉电源插头。 11、每次合闸通电前,必须告知全组人员。测量数据和操作仪器设备时要认真细致,不要接触带电的裸露部分。注意人身和设备的安全,在实验过程中,如发现异常声响,气味或其他危险迹象时,应立即切断电源,切勿惊慌失措。 12、读、测数据和调整仪器要认真细致,注意人身安全,爱护仪器,仪器上的开头和旋钮要小心扳动,切勿用力过猛。 13、测量电流和电压时,要注意表笔的极性不能接反,否则将损坏表头。

电力拖动基础课后题

第二章电力拖动系统的动力学 选择以下各题的正确答案。 (1) 电动机经过速比j =5的减速器拖动工作机构, 工作机构的实际转矩为20N·m, 飞轮矩为1N·m,不计传动机构损耗, 折算到电动机轴上的工作机构转矩与飞轮矩依次为。 A. 20N·m,5N·m B. 4N·m,1N·m C. 4N·m,·m D. 4N·m,·m E. ·m,·m F. 100N·m,25N·m (2) 恒速运行的电力拖动系统中, 已知电动机电磁转矩为80N·m,忽略空载转矩, 传动机效率为, 速比为10, 未折算前实际负载转矩应为。 A. 8N·m B. 64N·m C. 80N·m D. 640N·m E. 800N·m F. 1000N·m (3) 电力拖动系统中已知电动机转速为1000r/ min, 工作机构转速为100r/ min, 传动效率为, 工作机构未折算的实际转矩为120N·m, 电动机电磁转矩为20N·m, 忽略电动机空载转矩, 该系统肯定运行于。( ) A. 加速过程 B. 恒速 C. 减速过程 答 (1) 选择D。因为转矩折算应根据功率守恒原则。折算到电动机轴上的工作机构转矩等于工作机构实际转矩除以速比,为4N·m;飞轮矩折算应根据动能守恒原则, 折算到电动机轴上的工作机构飞轮矩等于工作机构实际飞轮矩除以速比的平方, 为·m。 (2) 选择D。因为电力拖动系统处于恒速运行, 所以电动机轴上的负载转矩与电磁转矩相平衡,为80N·m, 根据功率守恒原则,实际负载转矩为80N·m××10=640N·m (3) 选择A。因为工作机构折算到电动机轴上的转矩为120N·m /×100(r/ min)/1000(r/ min)=40/3N·m小于电动机电磁转矩,故电力拖动系统处于加速运行过程。 电动机拖动金属切削机床切削金属时, 传动机构的损耗由电动机负担还是由负载负担? 答电动机拖动金属切削机床切削金属时, 传动机构的损耗由电动机负担,传动机构损耗转矩ΔT与切削转矩对电动机来讲是同一方向的, 恒速时, 电动机输出转矩T2 应等于它们二者之和。 起重机提升重物与下放重物时, 传动机构损耗由电动机负担还是由重物负担?提升或下放同一重物时,传动机构损耗的转矩一样大吗?传动机构的效率一样高吗? 答起重机提升重物时, 传动机构损耗转矩ΔT由电动机负担;下放重物时,由于系统各轴转向相反, 性质为摩擦转矩的ΔT方向改变了,而电动机电磁转矩T及重物形成的负载转矩方向都没变,因此ΔT由重物负担。提升或下放同一重物时,可以认为传动机构损耗转矩的大小ΔT是相等的。若把损耗ΔT的作用用效率来表示,提升重物时为η, 下放重物时为η′, 由于提升重物与下放重物时ΔT分别由电动机和负载负担, 因此使η≠η′, 二者之间的关系为η′=2-1/η。 表所列生产机械在电动机拖动下稳定运行时的部分数据,根据表中所给数据, 忽电动机的空载转矩, 计算表内未知数据并填入表中。 如图所示,已知切削力F=2000N,工件的直径d=150mm,电动机转速n=1450r/min,减速箱的三级速比j1 =2,j2 =,j3 =2, 各转轴的飞轮矩为GDa =·m(指电动机轴), GDb =2N·m, GDc =·m, GDd =9N·m, 各级传动效率都是η=, 求: (1) 切削功率;(2) 电动机输出功率;(3) 系统总飞轮矩;(4) 忽略电动机空载转矩时, 电动机电磁转矩;(5) 车床开车但未切削时,若电动机加速度dn/dt=800r/ (min·s),忽略电动机空载转矩但不忽略传动机构的转矩损耗, 求电动机电磁转矩 解 (1) 切削功率。切削负载转矩Tf = F·d/2= 2000×2= 150N·m 负载转速nf =n/j1j2j3=1450/(2××2)= min

《电力拖动自动控制系统》参考问题详解

《电力拖动自动控制系统》参考答案: 第一章 一、填空题: 1.答案:静止可控整流器直流斩波器 2.答案:调速围静差率. 3.答案:恒转矩、恒功率 4.答案:脉冲宽度调制 二、判断题: 答案:1.×、2. √、 三、问答题: 1.答案:生产机械的转速n与其对应的负载转矩T L的关系。1.阻转矩负载特性; 2.位转矩负载特性; 3.转矩随转速变化而改变的负载特性,通风机型、恒功率、转矩与转速成比例; 4.转矩随位置变化的负载特性。 2.答案:放大器的放大系数K p,供电电网电压,参数变化时系统有调节作用。电压负反馈系统实际上只是一个自动调压系统,只有被反馈环包围部分参数变化时有调节作用。 3.答案:U d减少,转速n不变、U d增加。 4.答案:生产机械要求电动机提供的最高转速和最低转速之比叫做调速围。当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落与理想空载转速之比,称作转差率。静态速降值一定,如果对静差率要求越严,值越小时,允许的调速围就越小。 5.答案:反馈控制系统的作用是:抵抗扰动,服从给定。系统能有效地抑制一切被负反馈环所包围的前向通道上的扰动作用。但完全服从给定作用。反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。可见,测速发电机的励磁量发生变化时,系统无能为力。 6.答案:采用比例积分调节器的闭环调速系统是无静差调速系统。积分控制可以使系统在无静差的情况下保持恒速运行,原因是积分调节器的输出包含了输入偏差量的全部历史。可以实现无静差调速。 四、计算题: 1.答案:开环系统的稳态速降:354.33r/min;满足调速要求所允许的稳态速降:8.33r/min;闭环系统的开环放大系数:41.54 2.答案:42.5N?M, 3.41N?M 3.答案:T=62.92N?M,n=920r/min,cosФ=0.78 4.答案:α=0。时n0=2119r/min, α=30。时n0=1824r/min,α=31.1。,cosФ=0.82,s=0.0395。 5.答案:D=4.44,s=0.048,Δn=5.3r/min。 6.答案:系统允许的稳态速降:3.06r/min,开环放大系数:31.7 7.答案:系统的开环放大系数从4.7变为17.9 8.答案:s=0.86,Δn cl=5.56r/min,K p=27.8,α=0.0067V?min/r。 9.答案:调速围D=10,允许静差率s=10%。 10.答案:允许的静态速降Δn cl=3.06r/min,闭环系统的开环放大系数K=31.7。 第二章 一、填空题: 1.跟随抗扰环ACR 外环ASR 2.典型Ⅰ型典型Ⅱ型

电力拖动自动控制系统实验报告

电力拖动自动控制系统实验报告 实验一双闭环可逆直流脉宽调速系统 一,实验目的: 1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。 2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。 3.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数整定。 二,实验内容: 1.PWM控制器SG3525的性能测试。 2.控制单元调试。 3.测定开环和闭环机械特性n=f(Id)。

4.闭环控制特性n=f(Ug)的测定。 三.实验系统的组成和工作原理 图6—10 双闭环脉宽调速系统的原理图 在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。 双闭环脉宽调速系统的原理框图如图6—10所示。图中可逆PWM变换器主电路系采用MOSFET 所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节,GD为MOS管的栅极驱动电路,FA为瞬时动作的过流保护。 脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—10组件或MCL—10A组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。 7.直流电动机M03。

《电力拖动基础》练习册答案.doc

电力拖动基础复习题答案 L简答题 1、什么是电力拖动? 2、为什么说他励直流电动机具有硬特性?2额定速降较小,直线的斜率 较小 3、画出电力拖动系统的示意图。3 4、电力拖动系统由哪几部分组成? 5、画出反抗性恒转矩负载的特性。 6、画出位能恒转矩负裁的特性,并举例说明。 7、画出通风机负载的负载特性。 8、固有机械特性的条件是什么? 9、要改变一台他励电动机的旋转方向都有哪些措施?改变电枢电流方向或 者励磁电流方向 10、为什么他励直流电动机与串励宜流电动机相比,串励直流电动机牵引电 机使用时更具有优势?10,申励直流电动机具有软特性 11、他励直流电动机电阻起动时,切换电流I 2越大越好吗?11为什么? 不是,L越大起动的级数越多,设备越复杂 12、他励直流电动机电阻起动时,山一条特性曲线转换到另外- ?条曲线 上,在转换的瞬间,转速,电枢电流都发生什么变化?12转速不变, 电枢电流突变 13、为什么实际的电力拖动系统通常是一个多轴系统?把多轴系统折算为单 轴系统时,哪些量需要进行折算?13工作机构需要的转矩和转速不能够和电动机达到一致,所以需要传动机构,转矩和飞轮矩的折算 14、一般要求电动机的机械特性是向下倾斜还是向上翘的?向下

15、为什么申励直流电动机不允许过分轻载运行?15转速大大高于额定转 速 16、他励宜流电动机的调速都有哪几种方式?16调压,电枢PI路串电阻和 削弱磁通 17、他励直流电动机的理想空载转速和负载时的转速降各与哪些因素有关 17?电压,磁通以及电机常数 18、他励宜流电动机制动运行分为哪几种方式? 19、什么是三相异步电动机的固有机械特性? 20、请你说明三相异步电动机能耗制动的工作原理?20 21、三相异步电动机调速都有哪儿种方法? 22、三相绕线转子异步电动机申级调速都有哪些优缺点? 23、三相异步电动机定子调压调速都有哪些有缺点? 24、三相异步电动机的制动都有哪几种方式?24 25、什么是三相异步电动机的回馈(再生)制动? 26、对三相异步电动机起动的要求是什么?26起动电流小,起动转巨大 27、他励直流电动机电枢申电阻的人为机械特性会有什么特点? 28、改变他励宜流电动机电源电压时的人为机械特性有什么特点? 29、削弱改变他励直流电动机磁场时的人为机械特性有什么特? 30、他励直?流电动机起动时,起动电流的确定要考虑哪些因素? 31、什么是三相绕线转子异步电动机转子申接电阻起动?91逐段切除电阻 的转子串电阻的分级起动 32、容量较大的他励直流电动机为何不能采取直接起动的方式进行起 动?32 33、在要求有较大的起动转矩和较小的起动电流的场合,为何采用深 槽式和双笼型双笼异步电动?33

电力拖动自动控制系统论文

A C 1 异步电机的矢量控制理论 本章首先阐述异步电动机的三相坐标系下的数学模型,然后根据坐标变换理论,得到了它在两相静止坐标系下和两相同步坐标系下的数学方程,在此基础之上介绍了异步电机的矢量控制原理【14】。 1.1 异步电机的数学模型 由于异步电机矢量控制调速系统的控制方式比较复杂,要确定最佳的方式,必须对系统动静态特性进行充分的研究。异步电机本质上是一个高阶、非线性、强耦合的多变量系统,为了便于研究,一般进行如下假设: (1)三相定子绕组和转子绕组在空间均分布,即在空间互差所产生的磁动势沿气隙圆周按正弦分布,并忽略空间谐波; (2)各相绕组的自感和互感都是线性的,即忽略磁路饱和的影响; (3)不考虑频率和温度变化对电阻的影响; (4)忽略铁耗的影响。 无论三相异步电动机转子绕组为绕线型还是笼型,均将它等效为绕线转子,并将转子参数换算到定子侧,换算后的每相绕组匝数都相等。这样异步电机数模型等效电路如图1.1所示。 120o

A A A s A s A B B B s B s B C C C s C s C d u i R i R p dt d u i R i R p dt d u i R i R p dt ψψψψψψ?=+=+???=+=+?? ? =+=+?? a a a r a r a b b b r b r b c c c r c r c d u i R i R p dt d u i R i R p dt d u i R i R p dt ψψψψψψ? =+=+?? ? =+=+?? ? =+=+?? /du dt 图1.1 异步电机的物理模型 图1.1中,定子三相对称绕组轴线A 、B, C 在空间上固定并且互差 , 转子对称绕组的轴线a 、b 、 c 随转子一起旋转。我们把定子A 相绕组的轴线作 为空间参考坐标轴,转子a 轴和定子A 轴间的角度作为空间角位移变量。规定各绕组相电压、电流及磁链的正方向符合电动机惯例和右手螺旋定则。这样,我们可以得到异步电机在三相静止坐标系下的电压方程、磁链方程、转矩方程和运动方程。 1.1.1 异步电机在三相静止坐标系下的数学模型 1、三相定子绕组的电压平衡方程为 (1-1) 式中以微分算子P 代替微分符号 相应地,三相转子绕组折算到定子侧的电压方程 (1-2) 式中:为定子和转子相电压的瞬时值; 为定子和转子相电流的瞬时值; 为定子和转子相磁链的瞬时值; 为定子和转子电阻。 将定子和转子电压方程写成矩阵形式: 120o θ,,,,,A B C a b c u u u u u u ,,,,,A B C a b c i i i i i i ,,,,,A B C a b c ψψψψψψ,s r R R

电力拖动自动控制系统实验报告

信息工程学院 电力拖动与控制系统课程设计报告书题目: 电力拖动与自动控制实验设计

信息工程学院课程设计任务书

目录 1 转速反馈控制直流调速系统的仿真 (3) 1.1实验目的 (3) 1.2转速反馈控制直流调速系统仿真 (3) 实验小结 (5) 2 转速、电流反馈控制直流调速系统仿真 (6) 1.1实验目的及内容 (7) 1.2双闭环直流调速系统两个调节器的作用 (7) 1.3电流环仿真模型设计 (7) 1.4转速环仿真模型设计 (7) 1.5转速环的系统仿真 (8) 实验小结 (9) 3 基于MATLAB的SIMULINK下的3/2变换 (11) 1.1根据步骤可得仿真图 (11) 实验小结 (13) 4双闭环晶闸管不可逆直流调速系统实验 (14) 1.1实验目的 (14) 1.2实验原理 (14) 1.3实验内容 (14) 1.4实验仿真 (15) 1.5系统的仿真、仿真结果和输出及结果分析 (16) 实验小结 (18) 5参考文献 (19)

1 转速反馈控制直流调速系统的仿真 1.1实验目的 (1)了解MA TLAB下SIMULINK软件的操作环境和使用方法。 (2)对转速反馈控制直流调速系统进行仿真和参数的调整。 1.2转速反馈控制直流调速系统仿真 根据课本的操作步骤可得到如下的仿真框图: 图 1 仿真框图 (1)运行仿真模型结果如下: 图2 电枢电流随时间变化的规律

图3 电机转速随时间变化的规律 (2)调节参数Kp=0.25 1/τ=3 系统转速的响应无超调但调节时间长 (3)调节参数Kp=0.8 1/τ=15 系统转速的响应的超调较大,但快速性较好

《电力拖动基础》复习要点

《电力拖动基础》复习要点 题型:填空题、判断题、简答题、分析题、计算题、设计题。 试题中,80%的题目来自课本和PPT 上的例题、习题。 1. 电力拖动系统的动力学基础 20’ 电力拖动系统的定义;典型电力拖动系统;电力拖动系统运动方程式的一般形式和实用形式,各数学符号的物理意义,GD 2和J 的区别与联系;多轴系统等效折算为单轴系统的意义,等效折算的原则;从运动方程式判断系统的工作状态(加速、减速、稳定、静止);负载转矩特性的定义;曲型的负载转矩特性,各负载转矩特性的特点。 例题1和例题2,独立完成,消化吸收相关知识点。 2. 直流电动机的电力拖动 20’ 机械特性的定义;他励直流电动机的电压平衡方程;机械特性方程;固有机械特性与人为机械特性;电力拖动系统的调速方法(机械调速、电气调速、电气—机械调速);直流电机的机械特性方程;直流电机的电气调速方法(电枢回路串电阻调速、降压调速、弱磁调速),各调速方法的特点; 采用电动机惯例的一台他励直流电动机的运行参数与运行状态的关系(分析为什么): (1)0a N U I <,0a a E I <;回馈制动,正转或反转 (2)0a E <,0a a E I >; 电动状态,反转 (3)0T >,0n <,N U U =;倒拉反接制动,反转 (4)0n <,N U U =-,0a I >;回馈制动,反转 (5)0T W <,10P =,0a E <;能耗制动,反转 例题1~例题4,独立完成,消化吸收相关知识点。 3. 闭环控制的直流调速系统 20’ 常用的可控直流电源;PWM 系统的优点;在V-M 系统中,抑制电流脉动的措施;V-M 系统的机械特性方程式;泵升电压产生的原因,泵升电压限制;建立拖动系统动态数学模型的基本步骤; 直流调速方法;直流调速电源;直流调速系统(系统组成、系统分析、静态性能、动态性能、系统设计:调节器的结构和参数设计)。 转速单闭环调速系统有哪些特点;无静差直流调速系统原稳定运行,突增负载后进入新的稳态,此时转速n 、整流装置输出电压C U 较之负载变化关系,分析原因。 例题1~例题5,独立完成,消化吸收相关知识点。

电力拖动自动控制系统-运动控制系统-课后题答案

第2章 三、思考题 2-1 直流电动机有哪几种调速方法?各有哪些特点? 答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。特点略。 2-2 简述直流PWM 变换器电路的基本结构。 答:直流PWM 变换器基本结构如图,包括IGBT 和续流二极管。三相交流电经过整流滤波后送往直流PWM 变换器,通过改变直流PWM 变换器中IGBT 的控制脉冲占空比,来调节直流PWM 变换器输出电压大小,二极管起续流作用。 2-3 直流PWM 变换器输出电压的特征是什么? 答:脉动直流电压。 2=4 为什么直流PWM 变换器-电动机系统比V-M 系统能够获得更好的动态性能? 答:直流PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。其中直流PWM 变换器的时间常数Ts 等于其IGBT 控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts 通常取其最大失控时间的一半(1/(2mf)。因fc 通常为kHz 级,而 f 通常为工频(50 或60Hz)为一周内),m 整流电压的脉波数,通常也不会超过20,故直流PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。 2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么? 答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM 变换器的输出。电枢回路中还有电流,因为电枢电压和电枢电阻的存在。 2-6 直流PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果? 答:为电动机提供续流通道。若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。 2-7 直流PWM 变换器的开关频率是否越高越好?为什么? 答:不是。因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。2=8 泵升电压是怎样产生的?对系统有何影响?如何抑制? 答:泵升电压是当电动机工作于回馈制动状态时,由于二极管整流器的单向导电性,使得电动机由动能转变为的电能不能通过整流装置反馈回交流电网,而只能向滤波电容充电,造成电容两端电压升高。泵升电压过大将导致电力电子开关器件被击穿。应合理选择滤波电容的容量,或采用泵升电压限制电路。 2-9 在晶闸管整流器-电动机开环调速系统中,为什么转速随负载增加而降低? 答:负载增加意味着负载转矩变大,电机减速,并且在减速过程中,反电动势减小,于是电枢电流增大,从而使电磁转矩增加,达到与负载转矩平衡,电机不再减速,保持稳定。故负载增加,稳态时,电机转速会较增加之前降低。 2-10 静差率和调速范围有何关系?静差率和机械特性硬度是一回事吗?举个例子。 答:D=(nN/△n)(s/(1-s)。静差率是用来衡量调速系统在负载变化下转速的稳定度的,)而机械特性硬度是用来衡量调速系统在负载变化下转速的降落的。 2-11 调速范围与静态速降和最小静差率之间有何关系?为什么必须同时提才有意义? 答:D=(nN/△n)(s/(1-s)。因为若只考虑减小最小静差率,则在一定静态速降下,允许) 允许的最小转差率又大得不能满足要求。因此必须同时提才有意义。 2=12 转速单闭环调速系统有哪些特点?改变给定电压能否改变电动机的转速?为什么?如

电力拖动自动控制系统论文

东华大学研究生课程论文封面 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人 亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名:洪豪 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

步 电 机 的 矢 量 控 制 理 论 本章首先阐述异步电动机的三相坐标系下的数学模型,然后根据坐标变换理论,得 到了它在两相静止坐标系下和两相同步坐标系下的数学方程,在此基础之上介绍了异步 电机的矢量控制原理【14 】。 1.1异步电机的数学模型 由于异步电机矢量控制调速系统的控制方式比较复杂,要确定最佳的方式,必须对 系统动静态特性进行充分的研究。异步电机本质上是一个高阶、非线性、强耦合的多变 量系统,为了便于研究,一般进行如下假设: (1) 三相定子绕组和转子绕组在空间均分布, 即在空间互差1200 所产生的磁动势沿 气隙圆周按正弦分布,并忽略空间谐波; (2) 各相绕组的自感和互感都是线性的,即忽略磁路饱和的影响 ; (3) 不考虑频率和温度变化对电阻的影响; (4) 忽略铁耗的影响。 无论三相异步电动机转子绕组为绕线型还是笼型,均将它等效为绕线转子,并将转 子参数换算到定子侧,换算后的每相绕组匝数都相等。这样异步电机数模型等效电路如 图1.1所示。 图1.1异步电机的物理模型 图1.1中,定子三相对称绕组轴线 A 、B, C 在空间上固定并且互差1200 ,转子对 称绕组的轴线 a 、 b 、 c 随转子一起旋转。我们把定子 A 相绕组的轴线作为空间参考坐标 轴,转子a 轴和定子A 轴间的角度,作为空间角位移变量。规定各绕组相电压、电流及 磁链的正方向符合电动机惯例和右手螺旋定则。这样,我们可以得到异步电机在三相静 止坐标系下的电压方程、磁链方程、转矩方程和运动方程。 1.1.1异步电机在三相静止坐标系下的数学模型 1、三相定子绕组的电压平衡方程为 (1-1) 式中以微分算子P 代替微分符号 相应地,三相转子绕组折算到定子侧的电压方程 (1-2) 式中:U A ,U B ,U C ,U a ,U b ,U c 为定子和转子相电压的瞬时值; iA ,iB ,i C ,ia ,ib ,ic 为定子和转子相电流的瞬时值; 屮 屮 屮 屮 屮 屮 A, B, C, a, b, c 为定子和转子相磁链的瞬时值; Rs,Rr 为定子和转子电阻。 将定子和转子电压方程写成矩阵形式:

电机与电力拖动实验指导书(2014教学版)

电机及电力拖动技术实验指导书 自动化实验室编 工程大学教务处 (二〇一四年)

目录 实验安全操作规程 0 预备实验直流电机认识实验 (1) 实验一直流电动机 (4) 实验二直流电动机各种运转状态的机械特性测试 (7) 实验三单相变压器实验 (11) 实验四三相异步电动机的起动与调速 (16) 实验安全操作规程 为顺利完成实验任务,确保人身安全与设备安全,实验者要遵守如下规定:1、接线、拆线或多处改接线路时要切断电源。实验中确需带电更改少量线路 时,可用一只手操作,一次拔插一根线,不可双手同时接触线路。任何时候人体都不得接触导线裸漏部分等可能带电的部件。 2、完成接线或改接线路后要经指导教师检查,并使周围同学注意后方可接通 电源。 3、实验中如发生事故,应立即切断电源,并妥善处理。 4、实验室总电源开关的闭合由实验指导人员操作,其他人员允许分闸但不得 合闸。 5、实验中电动机高速旋转,要谨防衣服、围巾和头发等卷入其中造成人身伤 害。

预备实验直流电机认识实验 一、实验目的 (1).进行电机实验的安全教育和明确实验的基本要求。 (2).认识在直流电机实验中所用的电机、仪表、变阻器等组件。 (3).学习他励电机(并励电机接他励方式)的接线、起动、改变电机转向以及调速的方 法。 二、预习要点 (1).直流电动机起动的基本要求。 (2).直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? (3).直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置?为什么? 三、实验项目 (1).了解实验装置中电机实验台的直流电机电枢电源、励磁电源、校正过的直流电机、 可调电阻器、智能直流电压电流表RTZN02、电动机RTDJ32的使用方法。 (2).直流他励电动机电枢串电阻起动。 (3).改变串入电枢回路电阻或改变串入励磁回路电阻时,观察电动机转速变化情况。 四、实验设备 (1).RTZN02或JPT01智能直流电压表、安培表,用2只 (2).JPZN12-1智能转矩、转速、功率表 (3).RTDJ09三相可调电阻器(90Ω) (4).RTDJ10三相可调电阻器(900Ω) (5).RTDJ32直流并励电动机 (6).JPDJ45校正过直流电机 (7).JPDJ47-1电机导轨、旋转编码器 (8).RTDJ12波形测试及开关板(可以不用开关,直接插拔实验线) 五、实验说明及操作步骤 1、由实验指导老师讲解电机实验的基本要求,安全操作和注意事项。介绍实验装置的使用方法。 2、仪表和三相可调电阻器的选择 仪表的量程是根据电机的额定值和实验中可能达到的最大值来选择。 (1).电压量程的选择 如测量电动机两端为220伏的直流电压,选用RTZN02或JPZN01的直流电压表,该电压表量程均为300V量程。 (2).电流量程的选择 因为额定电流为1.25A,测量电枢电流的电流表可选用RTZN02或JPZN01的直流安培表。额定励磁电流小于0.16A,电流表选用直流毫安表。

电力拖动自动控制知识点总结

第1章 绪论 1、电机的分类? ①发电机(其她能→电能)直流发电机与交流发电机 ②电动机(电能→其她能) 直流电动机:有换向器直流电动机(串励、并励、复励、她励)与 无换向器直流电动机(又属于一种特殊的同步电动机) 交流电动机:同步电动机 异步电动机:鼠笼式、绕线式、伺服电机 控制电机:旋转变压器 自整角机 力矩电机 测速电机 步进电机(反应式、永磁式、混合式) 2、根据直流电机转速方程 n — 转速(r/min); U — 电枢电压(V) I — 电枢电流(A); R — 电枢回路总电阻( Ω ); Φ — 励磁磁通(Wb);Ke — 由电机结构决定的电动势常数。 三种方法调节电动机的转速:(1)调节电枢供电电压 U ; (2)减弱励磁磁通 Φ;(3)改变电枢回路电阻 R 。 调压调速:调节电压供电电压进行调速,适应于:U ≤Unom,基频以下,在一定范围内无级平滑调速。 弱磁调速:无级,适用于Φ≤Φnom,一般只能配合调压调速方案,在基频以上(即电动机额定转速以上)作小范围的升速。 变电阻调速:有级调速。 问题3:请比较直流调速系统、交流调速系统的优缺点,并说明今后电力传动系统的发展的趋势。 * 直流电机调速系统 优点:调速范围广,易于实现平滑调速,起动、制动性能好,过载转矩大,可靠性高,动态性能良好。 缺点:有机械整流器与电刷,噪声大,维护困难;换向产生火花,使用环境受限;结构复杂,容量、转速、电压受限。 * 交流电机调速系统(正好与直流电机调速系统相反) 优点:异步电动机结构简单、坚固耐用、维护方便、造价低廉,使用环境广,运行可靠,便于制造大容量、高转速、高电压电机。大量被用来拖动转速基本不变的生产机械。 缺点:调速性能比直流电机差。 * 发展趋势:用直流调速方式控制交流调速系统,达到与直流调速系统相媲美的调速性能;或采用同步电机调速系统、 第2章 闭环控制的直流调速系统 1、常用的可控直流电源有以下三种 ? 旋转变流机组——用交流电动机与直流发电机组成机组,以获得可调的直流电压。 ? 相控整流器——把交流电源直接转换成可控的直流电源。 ? 直流斩波器或脉宽调制变换器——先用不可控整流交流电变换成直流电,然后用PWM 脉宽调制方式调节输出的直流电压。 2、由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 i f 即可改变其输出电压 U ,从而调节电动机的转速 n 。 这样的调速系统简称G-M 系统,国际上通称Ward-Leonard 系统。 3、晶闸管-电动机调速系统(简称V-M 系统,又称静止的Ward-Leonard 系统), 4、晶闸管触发与整流装置的放大系数与传递函数 在动态过程中,可把晶闸管触发与整流装置瞧成就是一个纯滞后环节,其滞后效应就是由晶闸管的 Φ-=e C IR U n

电力拖动自动控制系统试验报告

; 电力拖动自动控制系统实验报告 实验一双闭环可逆直流脉宽调速系统 一,实验目的: 1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。 2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。 3.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数整定。 二,实验内容: 1.PWM控制器SG3525的性能测试。 2.控制单元调试。 3.测定开环和闭环机械特性n=f(Id)。

4.闭环控制特性n=f(Ug)的测定。 三.实验系统的组成和工作原理 GM *U*. 'U00ASR GD PWM ACR DLD UPW ++UU i - ; 图6—10 双闭环脉宽调速系统的原理图 在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。 双闭环脉宽调速系统的原理框图如图6—10所示。图中可逆PWM变换器主电路系采用MOSFET 所构成的H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节,GD为MOS管的栅极驱动电路,FA为瞬时动作的过流保护。 脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—10组件或MCL—10A组件。

4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.系统开环连接时,不允许突加给定信号U起动电机。g5.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 8.实验时需要特别注意起动限流电路的继电器有否吸合,如该继电器未吸合,进行过流保护电路调试或进行加负载试验时,就会烧坏起动限流电阻。 六.实验方法 采用MCL—10组件 1.SG3525性能测试 分别连接“3”和“5”、“4”和“6”、“7”和“27”、“31”和“22”、“32”和“23”,然后. '. ; 打开面板右下角的电源开关。 (1)用示波器观察“25”端的电压波形,记录波形的周期,幅度(需记录S1开关拨向“通”和“断”两种情况) (2)S5开关打向“OV”, 用示波器观察“30”端电压波形,调节RP2电位器,使方波的占空比为50%。 S5开关打向“给定”分别调节RP3、RP4,记录“30”端输出波形的最大占空比和最小占空比。(分别记录S2打向“通”和“断”两种情况) 2.控制电路的测试 (1)逻辑延时时间的测试 S5开关打向“0V”,用示波器观察“33”和“34”端的输出波形。并记录延时时间。 t= d(2)同一桥臂上下管子驱动信号死区时间测试 分别连接“7”和“8”、“10”和“11”,“12”和“13”、“14”和“15”、“16”和“17”、“18”和“19”,用双踪示波器分别测量V和V以及V和V的死区时间。GSVT2VT4VT3GSVT1GSGS。。。。t= d.VT1.VT2 t= d.VT3.VT4注意,测试完毕后,需拆掉“7”和“8”以及“10”和“11”的连线。 3.开环系统调试 (1)速度反馈系数的调试 断开主电源,并逆时针调节调压器旋钮到底,断开“9”、“10”所接的电阻,接入直流电动机 M03,电机加上励磁。

电力拖动实训指导书

课题一低压电器、交流接触器、继电器的的识别、检测与拆装 一、实训地点维修电工实训室 二、实训目的 熟悉常用低压电器的外形、基本结构、作用,并能进行正确拆卸、组装及检修。熟悉常用低压电器的外形、基本结构、作用,并能进行正确拆卸、组装及检修。 三、实训设备器材 低压开关、熔断器、主令电器、交流接触器、继电器 四、实训步骤及内容 1、实验过程: (1)、在教师指导下,仔细观察各种不同种类、不同结构形式的电器,熟悉它们的外形、型号及主要技术参数的意义、功能、结构及工作原理等。 (2)、检测元件的内部结构,用万用表的电阻档测量各对触头间的接触情况。 (3)、在老师的指导下,拆卸各元件,仔细观察其内部结构。 (4)、按拆卸的逆顺序进行装配。 2、实验要求: (1)、拆卸时应备有盛放零件的容器,以免丢失零件。 (2)、拆装过程中不允许硬撬元件,以免损坏电器。装配辅助静触头时,要防止卡住动触头。 五、实训注意事项 (1)、在实验过程中,各组人员应不得随意窜组,不得高声喧哗。 (2)、严格遵守作息时间,不得迟到、早退。

(3)、在元件拆装过程中,正确使用工具,以免他人或自己受伤。 课题二具有过载保护的接触器自锁正转控制线路的安装 一、实训地点 维修电工实训室 二、实训目的 掌握具有过载保护的接触器自锁正转控制线路的正确安装,理解线路的自锁作用以及欠压和失压保护功能。 三、实训设备器材 断路器、熔断器、交流接触器、热继电器、按钮 四、实训步骤及内容 1、实训过程: 电路图:

步骤:(1)安装元件按布置图在控制板安装上元器件。 (2)布线按接线图的走线方法进行布线。 (3)检查布线根据上图所示电路图检查控制板布线的正确性。 (4)连接先连接电动机和保护接地线,然后连接电源、电动机等控制板外部的导线。 (5)自检用万用表的电阻档进行检查。 (6)通电试车 2、实训要求: (1)、各元件的安装位置应整齐、均匀、间距合理,便于元件的更换。 (2)、布线通道应尽可能少,同路并行导线按主、控电路分类集中。 (3)、同一平面的导线应高低一致,或前后一致,不能交叉。非交叉不可时,该导线应在接线端子引出时就水平架空跨越,且必须走线合理。 (4)、布线应横平竖直,分布均匀。变换走向时应垂直转向。 五、实训注意事项 (1)、在实训过程中,各组人员应不得随意窜组,不得高声喧哗。 (2)、严格遵守作息时间,不得迟到、早退。 (3)、在通电试车前,必须进行自检,通电时为了安全必须在老师监护下进行通电。

电力拖动基础(画题)课后题.

第二章电力拖动系统的动力学 2.1 选择以下各题的正确答案。 (1) 电动机经过速比j =5的减速器拖动工作机构, 工作机构的实际转矩为20N·m, 飞轮矩为1N·m,不计传动机构损耗, 折算到电动机轴上的工作机构转矩与飞轮矩依次为。 A. 20N·m,5N·m B. 4N·m,1N·m C. 4N·m,0.2N·m D. 4N·m,0.04N·m E. 0.8N·m,0.2N·m F. 100N·m,25N·m (2) 恒速运行的电力拖动系统中, 已知电动机电磁转矩为80N·m,忽略空载转矩, 传动机效率为0.8, 速比为10, 未折算前实际负载转矩应为。 A. 8N·m B. 64N·m C. 80N·m D. 640N·m E. 800N·m F. 1000N·m (3) 电力拖动系统中已知电动机转速为1000r/ min, 工作机构转速为100r/ min, 传动效率为0.9, 工作机构未折算的实际转矩为120N·m, 电动机电磁转矩为20N·m, 忽略电动机空载转矩, 该系统肯定运行于。( ) A. 加速过程 B. 恒速 C. 减速过程 答(1) 选择D。因为转矩折算应根据功率守恒原则。折算到电动机轴上的工作机构转矩等于工作机构实际转矩除以速比,为4N·m;飞轮矩折算应根据动能守恒原则, 折算到电动机轴上的工作机构飞轮矩等于工作机构实际飞轮矩除以速比的平方, 为0.04N·m。 (2) 选择D。因为电力拖动系统处于恒速运行, 所以电动机轴上的负载转矩与电磁转矩相平衡,为80N·m, 根据功率守恒原则,实际负载转矩为80N·m×0.8×10=640N·m (3) 选择A。因为工作机构折算到电动机轴上的转矩为120N·m /0.9×100(r/ min)/1000(r/ min)=40/3N·m小于电动机电磁转矩,故电力拖动系统处于加速运行过程。 2.2 电动机拖动金属切削机床切削金属时, 传动机构的损耗由电动机负担还是由负载负担? 答电动机拖动金属切削机床切削金属时, 传动机构的损耗由电动机负担,传动机构损耗转矩ΔT与切削转矩对电动机来讲是同一方向的, 恒速时, 电动机输出转矩T2 应等于它们二者之和。 2.3 起重机提升重物与下放重物时, 传动机构损耗由电动机负担还是由重物负担?提升或下放同一重物时,传动机构损耗的转矩一样大吗?传动机构的效率一样高吗? 答起重机提升重物时, 传动机构损耗转矩ΔT由电动机负担;下放重物时,由于系统各轴转向相反, 性质为摩擦转矩的ΔT方向改变了,而电动机电磁转矩T及重物形成的负载转矩方向都没变,因此ΔT由重物负担。提升或下放同一重物时,可以认为传动机构损耗转矩的大小ΔT是相等的。若把损耗ΔT的作用用效率来表示,提升重物时为η, 下放重物时为η′, 由于提升重物与下放重物时ΔT分别由电动机和负载负担, 因此使η≠η′, 二者之间的关系为η′=2-1/η。 2.5 表2.1所列生产机械在电动机拖动下稳定运行时的部分数据,根据表中所给数据, 忽电动机的空载转矩, 计算表内未知数据并填入表中。

相关文档
相关文档 最新文档