文档库 最新最全的文档下载
当前位置:文档库 › 聚丙烯生产工艺流程参考图

聚丙烯生产工艺流程参考图

聚丙烯生产工艺流程参考图
聚丙烯生产工艺流程参考图

粘度

流程走势。。。。

D201—预接触罐(3.4Mpa,10度,夹套循环水—泵

R200—预聚合(3.4Mpa,20度,轴流泵,

R201—聚合(3.4Mpa,70度,轴流泵p201..,氢气浓度通过在线分析控制

D201—预接触罐(3.4Mpa,10度,夹套循环水—泵

R200—预聚合(3.4Mpa,20度,轴流泵,

R201—聚合(3.4Mpa,70度,轴流泵p201..,氢气浓度通过在线分析控制

D301—闪蒸罐(1.8Mpa

--

五大聚丙烯生产工艺

5大聚丙烯生产工艺(二) 本体法-气相法组合工艺主要包括巴塞尔公司的Spheripol工艺、日本三井化学公司的Hypol工艺、北欧化工公司的Borstar工艺等。 (1)Spheripol工艺。Spheripol工艺由巴塞尔(Basell)聚烯烃公司开发成功。该技术自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。Spheripol工艺是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,工艺采用高效催化剂,生成的PP粉料粒度其催化剂生产的粉料呈园球形,颗粒大而均匀,分布可以调节,既可宽又可窄。可以生产全范围、多用途的各种产品。其均聚和无规共聚产品的特点是净度高,光学性能好,无异味。Spheripol工艺采用的液相环管反应器具有以下优点: (a)有很高的反应器时-空产率(可达400kgPP/h.m3),反应器的容积较小,投资少; (b)反应器结构简单,材质要求低,可用低温碳{TodayHot}钢,设计制造简单,由于管径小(DN500或DN600),即使压力较高,管壁也较薄; (c)带夹套的反应器直腿部分可作为反应器框架的支柱,这种结构设计降低了投资; (d)由于反应器容积小,停留时间短,产品切换快,过渡料少; (e)聚合物颗粒悬浮于丙烯液体中,聚合物与丙烯之间有很好的热传递。采用冷却夹套撤出反应热单位体积的传热面积大,传热系数大,环管反应器的总体传热系数高达1600W/(m2.℃); (f)环管反应器内的浆液用轴流泵高速循环,流体流速高达7m/s,因此可以使聚合物淤浆搅拌均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控制得很精确,产品质量均一,不容易产生热点,不容易粘壁,轴流泵的能耗也较低; (g)反应器内聚合物浆液浓度高(质量分数大于50%),反应器的单程转化率高,均聚的丙烯单程转化率为50%-60%。以上这些特点使环管反应器很适宜生产均聚物和无规共聚物。Spheripol工艺一开始使用GF-2A、FT-4S、UCD-104等高效催化剂,催化剂活性达到40kgPP/gcat,产品等规度为90%-99%,可不脱灰、不脱无规物。 目前该技术已经发展到第二代。与采用单环管反应器的第一代技术相比,第二代技术使用双环管反应器,操作压力和温度都明显提高,可生产双峰聚丙烯。催化剂体系采用第四代或第五代Z-N高效催化剂,增加了氢气分离和回收单元,改进了聚合物的高压和低压脱气设备,汽蒸、干燥和丙烯事故排放单元也有所改进,增加了操作灵活性,提高了效率,原料单体和各项公用工程消耗也显著下降。所得产品颗粒度更加均匀,产品的熔体流动指数范围更宽(从0.3-1600.0g/10min),可生产高刚性、高结晶度和低热封温度的新PP牌号。Spheripol工艺的抗冲共聚反应采用气相法生产,反应器是一个或两个串联的密相流化床反应器{HotTag}。反应器采用气相法密相流化床。采用一个气相反应器系统可以生产乙烯含量在 8%-12%(质量分数)的抗冲共聚物,如果需要生产橡胶相含量更高且可能具有一个以上分散相的特殊抗冲共聚物(如低应力发白产品),则需要设计两个气相反应能够器系统,保持两个气相反应器系统中的气相组成和操作条件独立,可以获得两种不同的共聚物添加到均聚物中。 采用汽蒸和干燥两步法处理聚合物,可以很容易将汽蒸尾气中的蒸气冷凝而分离出纯烃类单体,能够完全回收利用尾气中的烃类,降低单体的消耗。闭路氮气干燥系统也降低了装置的氮气消耗量。此外,Spheripol 工艺采用模块化设计方式,可以满足不同用户的要求,易于分步建设(如先上均聚物生产系统,在适时增加气相反应系统),装置的生产能力也容易扩大。Spheripol工艺有严格完善的安全系统设计,使装置有很高的操作稳定性和安全性。新一代Spheripol工艺采用纯的添加剂加入系统,使产品质量更加均一稳定,

聚丙烯装置简介和重点部位及设备(通用版)

聚丙烯装置简介和重点部位及 设备(通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0357

聚丙烯装置简介和重点部位及设备(通用 版) 一、装置简介 (一)装置的发展及类型 1.装置发展 聚丙烯(Polypropylene,缩写为PIP)是以丙烯为单体聚合而成的聚合物,是通用塑料中的一个重要品种,结构式为: 1953年德国Ziegler等采用R3Al—TiCl4 催化体系制得高密度聚乙烯后,曾试图用R3 Al—TiCl4 为催化剂制取PP,但是只得到了无定形PP,并无工业使用价值。意大利的Natta教授继Ziegler之后对丙烯聚合进行了深入的研究,于1954年3月用改进的齐格勒催化剂紫色TiCl3和烷基铝成功地将

丙烯聚合成为具有高度立体规整性的聚丙烯。 1957年Montecatini公司利用Natta的成果在意大利Ferrara 建成了6000t/a的生产装置,这是世界上第一套PP生产装置,使PP实现了工业化生产。同年Hercules公司在美国Parlin也建成了9000t/a的生产装置,这是北美第一套PP生产装置。到1962年德国、日本、法国等国家也纷纷建厂,相继实现了PP的工业化生产。 2.装置的主要类型 50多年来已有二十几种生产聚丙烯的工艺技术路线,各种工艺技术按生产工艺的发展和年代划分,可分为第一代工艺,生产过程包括脱灰和脱无规物,工艺过程复杂,主要是70年代以前的生产工艺,采用第一代催化剂;70年代开发的第二代催化剂使生产工艺中取消了脱灰过程,称为第二代工艺;80年代以后,随着高活性、高等规度(HY/HS)载体催化剂的开发成功和应用,生产工艺中取消了脱灰和脱无规物,称为第三代工艺;按照聚合类型可分为溶液法、浆液法(也称溶剂法)、本体法、本体和气相组合法、气相法生产工艺。

陶瓷纤维毯的主要生产方法和工艺流程(特选参考)

陶瓷纤维毯的主要生产方法和工艺流程 陶瓷纤维毯的主要生产方法和工艺流程散状纤维坯送入针刺机针刺时,"针刺制毯"借鉴无纺针刺工艺技术开发而成。由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的抗拉强度及抗风蚀性能。主要生产方法主要有电阻炉和电弧炉两种。纤维的成形方法分为喷吹法、甩丝法和甩丝-喷吹法等。硅酸铝纤维原料的熔融一般采用电炉作为熔化设备。工艺流程电弧法喷吹成纤、湿法制毡工艺:形成流股,合格配合原料加入电弧炉中熔融。流股经压缩空气或蒸汽喷吹后成为纤维,经过除渣器除渣后,集棉形成废品纤维。废品纤维被送入搅拌槽旋涡除渣后,被送至贮料槽,施加粘接剂后形成浆料。浆料经压机模压或真空吸滤,干燥形成陶瓷纤维毯。 电阻法喷吹(或甩丝)成纤、 干法针刺制毯工艺:根据其成纤方法不同,陶瓷纤维毯有两种生产工艺; 电阻法喷吹(包括平吹和立吹)成纤、 干法针刺制毯工艺;"针刺制毯"是借鉴无纺针刺工艺技术开发而成,散状纤维坯 送入针刺机针刺时,由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的 抗拉强度及抗风蚀性能。 针刺机利用具有三角形或其他形状的截面,且在棱边上带有刺钩的刺针对纤维网反

复进行穿刺。由交叉成网或气流成网机下机的纤网,在喂入针刺机时十分蓬松,只是由纤维与纤维之间的抱合力而产生一定的强力,但强力很差,当多枚刺针刺入纤网时,刺针上的刺钩就会带动纤网表面及次表面的纤维,由纤网的平面方向向纤网的垂直方向运动,使纤维产生上下移位,而产生上下移位的纤维对纤网就产生一定挤压,使纤网中纤维靠拢而被压缩。当刺针达到一定的深度后,刺针开始回升,由于刺钩顺向的缘故,产生 移位的纤维脱离刺钩而以几乎垂状态留在纤网中,犹如许多的纤维束“销钉”钉入了纤网,从而使纤网产生的压缩不能恢复,如果在每平方厘米的纤网上经数十或上百次的反复穿刺,就把相当数量纤维束刺入了纤网,纤网内纤维与纤维之间的摩擦力加大,纤网强度升高,密度加大,纤网形成了具有一定强力、密度、弹性等性能的非织造品。 针刺非织造材料的主要应用有地毯、装饰用毡、运动垫、褥垫、家具垫、鞋帽用呢、肩垫、合成革基布、涂层底布、熨烫用垫、伤口敷料、人造血管、热导管套、过滤材料、土工织物、造纸毛毯、油毡基布、隔音隔热材料以及车用装饰材料等。目前,针刺机在高温过滤产品的运用比较多。高温过滤产品的高性能纤维主要有玻璃纤维、Nomex纤维、P84纤维、PPS纤维、PETT纤维。由于前几种纤维自身的特性,使用范围受到了一定影响。玻璃纤维比较脆,Nomex纤维耐氧化性差,P84纤维易水解老化,PPS纤维使用温度较低。而PETT纤维耐化学腐蚀、耐高温,能在各种恶劣环境下使用并取得较好的效果,也比其他纤维制成的滤料有更长的使用寿命。 虽然PETT具有良好的耐温和耐化学腐蚀性能,但价格昂贵且过滤效率相对其它纤维制成滤料没有优势。为此,有些企业在其中加入适量的超细玻璃纤维,既不影响耐温性能,又能提高滤料的过滤效率和降低率料价格,也扩大了适用范围和延长使用寿命。 针刺机种类: 条纹针刺机、通用花纹针刺机、异式针刺机、环形针刺机、圆管型特殊针刺机、四板正位对刺针刺机、倒刺针刺机、双滚筒针刺机、双主轴针刺机、起绒针刺机、提花针刺机、高速针刺机、电脑自动跳跃针刺机、针刺水刺复合机等。 针刺机的主要组成部分: 1.针刺机主要由机架,送网机构、针刺机构、牵拉机构、花纹机构、传动机构 等组成,其中花纹机构仅花纹针刺机具有。(其中最重要的是针刺机构) 2.针刺非织造工艺形式有预刺、主刺、花纹针刺、环式针刺和管式针刺等。 (其中预刺和主刺是最普遍的。) 针刺法非织造工艺的特点: 1.适合各种纤维,机械缠结后不影响纤维原有特征。

聚丙烯环管法设计解析

高分子合成工艺学 课程设计 题目:年产10万吨聚丙烯(环管法)运行方案的设计学院名称:化学化工学院 指导教师: 班级:高材 091 学号: 学生姓名: 2012年5月20日

目录 设计内容及要求 (2) 1、聚丙烯合成工艺 (3) 1.1绪论 (3) 1.2多釜串联气液组合生产聚丙烯的仿真实验 (6) 1.3环管法气液组合聚合工艺的介绍 (7) 1.4多釜串联与环管法两种工艺的评价 (8) 2、环管法生产聚丙烯运行方案的设计 (9) 2.1密度控制范围 (9) 2.2原料进料量 (11) 2.3实验装置图 (12) 2.4聚丙烯生产开车方案 (13) 2.5装置正常操作 (15) 2.6装置正常停工过程 (15) 3、参考文献 (15)

设计内容及要求: 一、设计目的 让学生所学的聚丙烯合成工艺理论与聚丙烯的生产实际相联系,使学生得到动手操作能力、故障处理能力、工艺协调及工艺管理能力的综合训练。 二、设计任务 1、设计项目:聚丙烯生产运行方案的设计; 2、设计工艺:环管法液相本体聚合工艺; 3、设计产能:年产10万吨; 4、设计范围:生产工艺的正常开车,正常运行,正常停车。 三、设计工艺条件 进料比R200:R201=1:10 预聚釜R200:T=18℃,P=3.5MPa 环管高H=9m,体积V=0.46m3, 物料流速=4m/s,停留时间=4min。 聚合釜R201:T=70℃,P=3.2MPa 环管高H=30m,体积V=45m3, 物料流速=78m/s,停留时间=1.5h, 终点用密度控制射线检测,转化率55%-65%。 四、设计内容 1、聚丙烯的合成工艺 1.1概述; 1.2多釜串联气液组合生产聚丙烯的仿真实验; 1.3环管法气液组合聚合工艺的介绍; 1.4多釜串联与环管法两种工艺的评价。 2、环管法生产聚丙烯运行方案的设计 2.1设计重点密度控制范围; 2.2设计原料的进料量; 2.3设计聚丙烯生产开车、停车方案; 2.4设计聚丙烯生产运行方案。 五、设计要求 1、给出聚合工艺的历史、现状及发展史; 2、给出多釜串联与环管法聚合工艺的差异及优缺点; 3、给出环管法聚合工艺流程及终点控制、原料流量等工艺参数; 4、给出完整的开机方案、运行方案及停机方案。 指导教师:年月日

离心玻璃棉絮状纤维的生产方法与制作流程

本技术公开了一种离心玻璃棉絮状的生产方法,本技术采用石英砂、正长石、石灰石、碎玻璃、纯碱、硼砂等材料,以合理配比混合后,经炉窑高温熔融进行物理化学反应制得玻璃液,再经高速离心喷吹甩出得短玻纤维棉絮聚集物。本技术所生产的材料具有密度小,热导率低,吸声系数高,抗燃,抗冻,不蛀的特点,是保温绝热的理想材料,主要用于建筑物围栏结构,工业设备,管网的绝热处理,建筑物的防火等方面,还可用作吸声消声的消声器,吸声屏障,吸声墙面等方面。 权利要求书 1.一种离心玻璃棉絮状纤维的生产方法,其特征在于至少包括如下工艺步骤:选料,配料,送炉熔融,玻璃棉絮成形,具体分述如下: 一、选料:选择主料和辅料 选择主料:选择的主料为石英砂、白云石、石灰石、正长石和纯碱,各主料具体的成分要求如下, 所述的石英砂的成分要求为: SiO2≥98.5%±0.1% Al2O3≤0.5%±0.05% Fe2O3≤0.01% Cr2O3<0.001% 以上颗粒要求0.6-0.4mm; 所述的白云石成分要求为:

Cao>30.5%±0.3% Fe2O3<0.1%±0.09 Mgo>20%±0.3 Al2O3<0.3%±0.1% 以上颗粒要求0.6-0.4mm; 所述的石灰石成分要求为: Cao>54%±0.3% Mgo>0.5%±0.3% Al2O3<0.3%±0.1% Fe2O3<0.1%±0.05% 以上颗粒要求0.6-0.4mm; 所述的正长石成分要求为: Al2O3>16%±0.3% Fe2O3<0.1%±0.01% 以上颗粒要求0.6-0.4mm 所述的纯碱成分要求为: Na2CO3 99%±0.1%; 上述各成分要求中的百分含量为重量百分比; 选择辅料,选择的辅料包括碎玻璃、硼酸、芒硝和碳粉,这四种辅料的具体要求如下,

世界5大类聚丙烯生产工艺概述

世界5大类聚丙烯生产工艺概述 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减

少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2 溶液法工艺 溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。该工艺采用一种特殊改进的催化剂体系-锂化合物(如氢化锂铝)来适应高的溶液聚合温度。催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。额外补充溶剂来降低溶液的粘度,并过滤除去残留催化剂。溶剂通过多个蒸发器而浓缩,再通过一台能够除去挥发物的挤压机而形成固体聚合物。固体聚合物用庚烷或类似的烃萃取进一步提纯,同时也除去了无定形聚丙烯,取消了使用乙醇和多步蒸馏的过程,主要用于生产一些与浆液法产品相比模量更低、韧性更高的特殊牌号产品。该方法工艺流程复杂,且成本较高,聚合温度高,加上由于采用特殊的高温催化剂使产品应用范围有限,目前已经不再用于生产结晶聚丙烯。 3 本体法工艺 本体法工艺的研究开发始于20世纪60年代,1964年美国Dart公司采用釜式反应器建成了世界上第一套工业化本体法聚丙烯生产装置。1970年以后,日本住友、Phillips、美国

Spheripol聚丙烯工艺巴塞尔Basell聚烯烃公司

S p h e r i p o l聚丙烯工艺巴塞尔B a s e l l聚烯烃 公司 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

Spheripol工艺由巴塞尔(Basell)聚烯烃公司开发成功。该技术自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。Spheripol工艺是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,工艺采用高效催化剂,生成的PP粉料粒度其催化剂生产的粉料呈园球形,颗粒大而均匀,分布可以调节,既可宽又可窄。可以生产全范围、多用途的各种产品。其均聚和无规共聚产品的特点是净度高,光学性能好,无异味。 Spheripol工艺采用的液相环管反应器具有以下优点: (a)有很高的反应器时-空产率(可达400kgPP/h.m3),反应器的容积较小,投资少; (b)反应器结构简单,材质要求低,可用低温碳{TodayHot}钢,设计制造简单,由于管径小(DN500或DN600),即使压力较高,管壁也较薄; (c)带夹套的反应器直腿部分可作为反应器框架的支柱,这种结构设计降低了投资; (d)由于反应器容积小,停留时间短,产品切换快,过渡料少; (e)聚合物颗粒悬浮于丙烯液体中,聚合物与丙烯之间有很好的热传递。采用冷却夹套撤出反应热单位体积的传热面积大,传热系数大,环管反应器的总体传热系数高达1600W/(m2.℃); (f)环管反应器内的浆液用轴流泵高速循环,流体流速高达7m/s,因此可以使聚合物淤浆搅拌均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控

制得很精确,产品质量均一,不容易产生热点,不容易粘壁,轴流泵的能耗也较低; (g)反应器内聚合物浆液浓度高(质量分数大于50%),反应器的单程转化率高,均聚的丙烯单程转化率为50%-60%。以上这些特点使环管反应器很适宜生产均聚物和无规共聚物。Spheripol工艺一开始使用GF-2A、FT-4S、UCD-104等高效催化剂,催化剂活性达到40kgPP/gcat,产品等规度为90%-99%,可不脱灰、不脱无规物。 目前该技术已经发展到第二代。与采用单环管反应器的第一代技术相比,第二代技术使用双环管反应器,操作压力和温度都明显提高,可生产双峰聚丙烯。催化剂体系采用第四代或第五代Z-N高效催化剂,增加了氢气分离和回收单元,改进了聚合物的高压和低压脱气设备,汽蒸、干燥和丙烯事故排放单元也有所改进,增加了操作灵活性,提高了效率,原料单体和各项公用工程消耗也显着下降。所得产品颗粒度更加均匀,产品的熔体流动指数范围更宽(从0.3-1600.0g/10min),可生产高刚性、高结晶度和低热封温度的新PP牌号。Spheripol工艺的抗冲共聚反应采用气相法生产,反应器是一个或两个串联的密相流化床反应器{HotTag}。反应器采用气相法密相流化床。采用一个气相反应器系统可以生产乙烯含量在8%-12%(质量分数)的抗冲共聚物,如果需要生产橡胶相含量更高且可能具有一个以上分散相的特殊抗冲共聚物(如低应力发白产品),则需要设计两个气相反应能够器系统,保持两个气相反应器系统中的气相组成和操作条件独立,可以获得两种不同的共聚物添加到均聚物中。

聚丙烯合成工艺

聚丙烯的性能和应用 聚丙烯是与我们日常生活密切相关的通用树脂,是丙烯最重要的下游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯。聚丙烯是世界上增长最快的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯。1998年世界聚丙烯产能为2925万吨,1997年世界聚丙烯的总产量约2390万吨,产值约为210亿美元。从1991年始世界产量增长约年均9%,在通用树脂中增长速度仅次于LLDPE。 和其它通用树脂一样,亚洲金融危机对聚丙烯需求也有很大影响,即使在调低的预测水平下,与其它树脂相比,聚丙烯仍保持较强劲的增长速度。新的预测表明,1997年到2002年世界聚丙烯需求年均增长率为7.1%,而同期聚乙烯为5.2%,PVC为5.0%,聚苯乙烯为4.1%。聚丙烯需求增长快的原因可简单归纳为以下几点,即便宜、轻、良好的加工性和用途广,催化剂和新工艺的开发进一步促进了应用领域的扩大,如汽车和食品包装等新用途的开发进一步促进了需求的增长,过去没有这么多的聚丙烯用于汽车工业,过去聚丙烯也很少用于吹塑和热成型加工。有人说:“只要有一种产品的材料被塑料替代,那么这种产品就有使用聚丙烯的潜力”。 2.生产工艺简述--气相法和本体法工艺在逐渐替代浆液法工艺 根据反应介质和反应器构形,聚合工艺可大致分为三种基本类型: (1)本体工艺,聚合在液体丙烯中进行。反应器可为液体釜式反应器,如Exxon、三井(现为宏伟聚合物公司)和住友的工艺;也可以是环管反应器,如Montell 、Hoechst(现在是Targor 的一部分)、Phillips和Solvay 工艺。 (2)浆液法工艺,在该工艺中丙烯溶解在丁烷、戊烷、己烷、庚烷或壬烷等烃类稀释剂中,反应器可以是连续搅拌槽式反应器,如Amoco、Montell、Hoechst(现是Tagor)、三井(现是宏伟聚合物);间歇搅拌槽反应器(如三井)、环管反应器(如Solvay)和在沸腾丁烷中的反应(该工艺被亨茨曼在Woodbury使用,该装置1987年前属于壳牌公司)。 (3)气相法工艺,在该工艺中丙烯直接聚合生成固体聚合物,所用反应器有:流化床(如UCC 和住友);卧式搅拌床(如Amoco/智素)和立式搅拌床(如BASF,现在是Targor)。 从技术上看,本体聚合也是一种浆液聚合,但工业上对任何用丙烯作稀释剂的工艺用“本体”这个术语,而将用非丙烯作稀释剂的工艺称之为浆液聚合。 目前世界约55%的装置能力是本体法,25%是气相法,浆液法占其余的份额。从1990年起世界上浆液法生产装置的数目就一直在下降,让位于本体法和气相法技术。这种情况在北美、西欧和日本尤为明显。由于世界新增能力和扩建能力基本上使用气相法和本体法,因

聚丙烯酰胺生产工艺设计

聚丙烯酰胺(PAM)生产工艺设计 石油工业是国民经济的支柱产业,石油是经济发展的重要保证之一。我国石油资源相对较少,三次采油是我国保障石油供应的重要措施。进行聚丙烯酰生产工艺设计的研究,目的是使我国聚丙烯酰胺生产工艺技术、产品质量、及生产规模均提升到一个较高水平,以满足三次采油对聚丙烯酰胺质和量的要求,避免引进产品带来的风险,保证三次采油技术的顺利实施最终以满足国民经济发展对石油供应的要求,并获得最大经济效益。与此同时,进行聚丙烯酰生产工艺设计的研究,可满足随着三次采油工艺技术的不断提高而对聚丙烯酰胺各项性能不断改进的要求。 PAM最有价值的性能是分子量很高,水溶性强,可以制作出亲水而水不溶性的凝胶,可以引进各种离子基团并调节分子量以得到特定的性能,对许多固体表面和溶解物质有良好的粘附力。由于这些性能,使得PAM被广泛应用于增稠、絮凝、稳定胶体、减阻、粘结,成膜、阻垢、凝胶及生物医学材料等许多方面。PAM的最大用途是在水处理、造纸、采油、冶矿等领域。 此外,聚丙烯酰胺在水处理行业具有广阔的应用前景和巨大的潜在市场。随着环境意识的不断加强,聚丙烯酰胺在城市污水处理方面的应用将会越来越受到重视。聚丙烯酰胺生产工艺技术的研究,也将对城市污水处理工艺技术的提高起到推动作用。 目前PAM生产的工艺路线一般从丙烯腈(AN)为原料开始,经AM装置生产出AM 水溶液,再以AM为原料在PAM装置生产出PAM产品。AM生产工艺主要有以骨架铜为主体的重金属类为催化剂的化学法和以生物酶为催化剂的生物法,其技术的关键在于催化剂,依催化剂的不同生产工艺有较大差异。PAM的生产工艺方法较多,依PAM产品性能要求不同及生产过程采用的引发剂不同,生产工艺方法有较大的差异,其中引发剂是技术关键,属各公司的技术秘密。对PAM生产工艺技术的研究主要体现在引发体系和与PAM生产相关的专用设备上。

玻璃纤维的生产工艺及应用

摘要 在广义范围来说,我们对于玻璃纤维的认识一直停留在它是一种无机非金属材料,可是随着研究的深入,我们知道实际上的玻璃纤维的种类有很多,而且性能优异,有很多突出的优点。比如说它的机械强度就特别高还有抗热、抗腐蚀效果也特别好。诚然,任何材料都不是完美的,玻璃纤维也有它自己无法令人忽视的缺点,就是它不耐磨而且容易发生脆裂。所以实际应用时我们要扬长避短。 玻璃纤维的原料获取简单,主要是废弃的旧玻璃或者玻璃制品,玻璃纤维特别细,20多根玻璃单丝组在一起才相当于一根头发的粗细。玻璃纤维通常可以在复合材料中作为增强材料来使用,由于近些年来人们对玻璃纤维研究逐渐加深,使得它在我们生产生活中扮演了越来越重要的角色。本文主要研究玻璃纤维的生产工艺及应用,介绍了玻璃纤维纤维的性质、主要成分、主要特点、材料分类、生产工艺、安全防护、主要用途、安全防护、产业现状、发展前景。 关键字:特点;生产工艺;应用;发展前景 abstract In broad scope, our understanding of the glass fiber has been stuck in it is a kind of inorganic nonmetal material, but with the deepening of the research, we know that in fact there are a lot of the kinds of glass fiber, and excellent performance, there are many outstanding advantages. Like it is really better than high mechanical strength and heat-resistant, corrosion effect is also very good. True, any material is not perfect, the glass fiber has not ignore its own shortcomings, is it not embrittlement resistant and easy to occur. So we should foster strengths and circumvent weaknesses in actual applications. Glass fiber raw material for simple, mainly abandoned old glass or glass products, glass fiber is particularly fine, more than 20 with glass monofilament group to the thickness of equivalent of a human hair. Glass fiber can usually be used as reinforced material in the composite material, because in recent years, people gradually deepening research on glass fiber, make it in our production has played an increasingly important role in the life. This paper mainly studies the production technology and application of glass fiber, this paper introduces the properties of fiber glass fiber, main component, main characteristics, material USES, safety protection, industry present situation, development prospect. Key words: characteristic; The production process; Application; Prospects for development 绪论 1.1玻璃纤维性质 熔点:680℃ 分子结构:

PP生产工艺

PP生产工艺 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2 气相法工艺 气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF 公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套2.5万吨/年气相聚丙烯工业装置,命名为Novolen工艺。

聚丙烯生产工艺

聚丙烯生产工艺 聚丙烯:英文名称:Polypropylene 分子式:C3H6nCAS 简称:PP,由丙烯聚合而制得的一种热塑性树脂,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法、气相法、本体法-气相法组合工艺五大类。 一、溶液法工艺 溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。该工艺采用一种特殊改进的催化剂体系:锂化合物(如氢化锂铝)来适应高的溶液聚合温度。催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。额外补充溶剂来降低溶液的粘度,并过滤除去残留催化剂。溶剂通过多个蒸发器而浓缩,再通过一台能够除去挥发物的挤压机而形成固体聚合物。固体聚合物用庚烷或类似的烃萃取进一步提纯,同时也除去了无定形聚丙烯,取消了使用乙醇和多步蒸馏的过程,主要用于生产一些与浆液法产品相比模量更低、韧性更高的特殊牌号产品。溶液法工艺流程复杂,且成本较高,聚合温度高,加上由于采用特殊的高温催化剂使产品应用范围有限,目前已经不再用于生产结晶聚丙烯。 二、淤浆法工艺 淤浆法又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco 工艺、日本三井油化工艺以及索维尔工艺等。 这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。 近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 三、本体法工艺 本体法工艺按聚合工艺流程,可以分为间歇式聚合工艺和连续式聚合工艺两种。 1、间歇本体法工艺:间歇本体法聚丙烯聚合技术是我国自行研制开发成功的生产技术。 间歇本体法工艺优点:生产工艺技术可靠,对原料丙烯质量要求不是很高,所需催化剂国内有保证,流程简单,投资省、收效快,操作简单,产品牌号转换灵活、三废少,适合中国国情等。 间歇本体法工艺缺点:生产规模小,难以产生规模效益;装置手工操作较多,间歇生产,自动化控制水平低,产品质量不稳定;原料的消耗定额较高;产品的品种牌号少,档次不高,用途较窄。

聚丙烯工艺图

学习情境二聚乙烯装置操作与控制的学习总结 通过24学时的学习,首先对聚丙烯有了更深入的了解,PP-B是在单一的丙烯聚合后除去未反应的丙烯,再与乙烯聚合而得到的,实际上是由聚丙烯、聚乙烯和末端嵌段共聚物组成的混合物,它既保持了一定程度的刚性又提高了聚丙烯的抗冲击性能,特别是低温抗冲击性能,但透明度和光泽度下降明显。以及目前聚丙烯工艺技术按聚合物类型可以分:溶液法,溶剂法,本体法,气相法,本体气相组合法这样五种,还有通过查阅资料了解聚丙烯在我们生活中的应用。 当然学习过程难免有困难,但通过老师指导,同学的帮助所有困难都一一克服了。今后在学习中再接再厉,相信自己会学到更多东西。

学习情境二聚丙烯装置操作与控制的学习计划 1 、掌握丙烯聚合的基本原理 2、掌握理解间歇式聚丙烯釜式反应器的结构和特点 3、查阅资料梳理本章知识,看看聚丙烯在我们生活中的应用 4、查阅资料了解目前聚丙烯的发展情 5、理解聚丙烯装置工艺流程图 6、通过CAD绘图技术,要会画聚丙烯装置工艺流程图

六种聚丙烯生产典型技术介绍 ﹡巴塞尔公司工艺:采用Spheripol生产技术,是一种运用液相预聚合与液相均聚和气相共聚相结合的聚合生产工艺。液体丙烯在环管反应器中进行均聚和无规共聚,多相抗冲共聚物在一个串联的气相反应器中完成,无需出除催化剂残渣和无定形聚合物。该工艺具有投资和操作费用较低,产品收率高和质量好等优点。等规度在90%-99%之间。同时该工艺也可用于生产各种聚丙烯产品,包括均聚体聚丙烯、无规共聚体和三聚体,多种抗冲和特种抗冲(可组合质量分数高达25%的乙烯)共聚体以及高增强、高透明的共聚体。 ﹡BP公司工艺(Innovene工艺):该气相法工艺采用第四代催化剂生产聚丙烯均聚物,无规共聚物和抗冲共聚物。催化剂为矿油淤浆,采用卧式搅拌床反应器。该工艺均聚产品的韧性好,无规共聚产品中乙烯含量可到7-8%。抗冲共聚产品产品的乙烯含量可到5-17%,抗冲产品的抗冲击性能和刚性之间的平衡性好。 ﹡窒素公司工艺:在卧式活塞流搅拌式反应器中进行气相聚合,可生产均聚物PP和乙烯-丙烯无规共聚物及抗冲共聚物。

岩棉生产工艺

岩棉、矿渣棉生产线 2007-05-22 14:59:51 (已经被浏览2628次) 规格: 包装: 价格: 矿渣棉是以工业矿渣如高炉矿渣、磷矿渣、粉煤灰等为主要原料,经过重熔、纤维化而制成的一种无机质纤维。岩棉是以天然岩石如玄武岩、辉绿岩、安山岩等为基本原料,经熔化、纤维化而制成的一种无机质纤维。上述纤维经过加工,可制成板、管、毡、带、纸等优质耐高温绝热吸声材料,可用于建筑和工业装备、管道、容器及各种窑炉的绝热、防火、吸声、抗震。 矿渣棉和岩棉制品的特点是原料易得,可就地取材化害为利,再加上生产能耗少,成本低,可称为耐高温、廉价、长效优秀保温、隔热、吸声材料,故在保温材料的产销过程中,它们的产量最大,市场占有率最广,具有综合优势。不过,它们虽属于同一类型产品,但在性能上则略有差异。矿渣棉的最高使用温度为600~650℃,纤维较短、较脆;岩棉的最高使用温度可达820~870℃,纤维长,化学耐久性和耐水性能也较矿渣棉为好。 熔制方法: ⑴火焰池窑熔制: 火焰池窑熔制岩原料来生产岩棉多以重油或天然气为燃料,其生产过程为:原料经粉碎混合,用喂料机送入池窑的熔化部,经由喷嘴喷入的雾化石油或天然气燃烧后所产生的高温(1500℃左右),将原料熔化并获得熔体。这种熔制方法的优点是熔体质量高,化学组成和温度均匀并且易于控制,可以制得高质量的岩棉。但采用火焰池窑熔制矿渣和岩石时,对燃料和窑炉耐火材料要求严格,设备投资大,窑炉寿命短,燃料费贵,折旧费高,因而熔制成本比冲天炉高得多,目前大多改用冲天炉。 ⑵冲天炉熔制 冲天炉设备投资小,使用寿命长,而且冲天炉的热效率比火焰法池窑熔化高得多。 岩棉、矿渣棉保温板生产工艺流程图: 冲天炉熔制法生产工艺流程图

生产工艺流程及简述

生产工艺流程及简述 表面毡、短切毡无碱玻璃纤维浸胶 胶液配置→制衬→浸胶→螺旋、环向缠绕及夹砂→固化→修整→脱模→检验→成品 玻璃钢管道缠绕操作程序 1. 准备工作:将模具表面处理干净,做到光洁无毛刺、无伤害,装到制衬机上。配树脂:将促进剂(锌酸钴)按工艺配置1—2%与不饱和聚酯树脂混合搅拌1 小时左右,然后静置消除气泡,冬季可适当增加促进剂的用量。 2. 制衬:内衬层是制品直接与介质接触的内表层,它的主要作用是防腐、防渗漏、耐温,要求内衬材料有优良的气密性、耐腐蚀性和耐一定温度等。 3. 缠聚酯薄膜:开动制衬机,将薄膜滚架上的聚酯薄膜缠到模具上,缠时薄膜的第一圈与第二圈之间一定要搭界1—2cm,以保证内衬不泄露。 4. 缠表面毡:开动树脂泵,将以配置好的引发剂(过氧化甲乙酮)1—2%(冬季可加至4%左右),加到喷枪泵中混合后,通过树脂管道淋到已缠好的聚酯薄膜上,在淋树脂的同时将表面毡(如无纺布的形状,是细纤维连接成的,宽度为220mm)带状缠绕1 层,此层主要是防渗漏,需要注意的是,缠表面毡时,气泡一定要处理彻底,同时表面毡在缠绕的过程中,同缠绕聚酯布一样,必须搭界1—2cm 的叠合接口。 5. 缠短切毡:缠表面毡的作用是增加强度、增加防渗漏性,短切毡是根据管子的设计可缠1—2 层。短切毡是用粗纤维纺织成的强筋毡,边缠边淋树脂,再缠绕的同时必须用条状的压滚将气泡赶出。 6. 缠网格布:主要作用是赶走气泡,进一步增加强度。种类有玻璃纤维网格布、涤纶纤维网格布。网格布的方法与网格毡的方法一样,网格布缠好后,必须将气泡处理干净。

7. 固化:内衬层制好后,将缠在模具轴上的内衬层吊到固化机上进行固化,固化的时间以加入引发剂剂量及固化温度而定,(在制衬时加入引发剂的树脂一定要充分混合好才能使用与制衬,否则将形成带状固化。) 8. 缠结构层:结构层又称增强层,它的作用是保证制品在受力的作用下,具有足够的强度、刚度和稳定性,而增强材料玻璃纤维是主要的承载体,树脂是对纤维起均衡载荷的作用,采用夹层结构(加石英砂)纤维缠绕可有效的提高玻璃钢管的刚度。夹层管材的强度、刚度大、重量轻、造价低,使用寿命长、耐腐蚀、无毒无味等特点,石英加砂管也越来越体现出来。

聚丙烯合成工艺的研究

聚丙烯合成工艺的研究 摘要中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局,本文主要介绍了世界5大类聚丙烯生产工艺,着重介绍了液相本体法聚丙烯工艺流程及控制条件。 Abstract Industrial production of polypropylene in China began in the 20th century, 70's, after 30 years of development, has been basically formed a solvent, liquid bulk - Gas Law, intermittent liquid bulk, gas phase, and other production processes simultaneously,the coexistence of large and small scale production patterns, the paper introduces the world's five major categories of polypropylene production process, focusing on the liquid flow Polypropylene and control conditions 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,已经基本上形成了溶剂法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。现在中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。 聚丙烯,英文名称:Polypropylene,日文名称:ポリプロピレン分子式:C3H6nCAS 简称:PP由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaeticPolyProlene)、无规聚丙烯(atacticPolyPropylene)和间规聚丙烯(syndiotatic PolyPropylene)三种。目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo气相工艺、Basell公司 的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 世界5大类聚丙烯生产工艺概述 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要

相关文档