文档库 最新最全的文档下载
当前位置:文档库 › MATALAB三维曲面拟合及其数学建模模型、案例参考

MATALAB三维曲面拟合及其数学建模模型、案例参考

MATALAB三维曲面拟合及其数学建模模型、案例参考
MATALAB三维曲面拟合及其数学建模模型、案例参考

三维曲线(非线性)拟合步骤

1 设定目标函数. (M函数书写)% 可以是任意的

例如:

function f=mydata(a,data) %y的值目标函数值或者是第三维的,a=[a(1) ,a(2)] 列向量

x=data(1,:); %data 是一2维数组,x=x1

y=data(2,:); %data 是一2维数组,x=x2

f=a(1)*x+a(2)*x.*y; %这里的a(1),a(2)为目标函数的系数值。f的值相当于ydata的值

2 然后给出数据xdata和ydata的数据和拟合函数lsqcurvefit

例如:

x1=[1.0500 1.0520 1.0530 1.0900 1.0990 1.1020 1.1240 1.1420...

1.1490 1.0500 1.0520 1.0530 1.0900 1.0990 1.1020 1.1240 1.1420 1.1490];

x2=[3.8500 1.6500 2.7500 5.5000 7.7000 3.3000 4.9500 8.2500 11.5500...

1.6500

2.7500

3.8500 7.7000 3.3000 5.5000 8.2500 11.5500

4.9500];

ydata=[56.2000 62.8000 62.2000 40.8000 61.4000 57.5000 44.5000 54.8000...

53.9000 64.2000 62.9000 64.1000 63.0000 62.2000 64.2000 63.6000...

52.5000 62.0000];

data=[x1;x2]; %类似于将x1 x2整合成一个2维数组。

a0= [-0.0014,0.07];

option=optimset('MaxFunEvals',5000);

format long;

[a,resnorm]=lsqcurvefit(@mydata,a0,data,ydata,[],[],option);

yy=mydata(a,data);

result=[ydata' yy' (yy-ydata)']

% a的值为拟合的目标函数的参数值利用lsqcurvefit进行拟合的它完整的语法形式是:% [x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)

二维曲线(非线性)拟合步骤

1.function F = myfun(x,xdata)

F = x(1)*xdata.^2 + x(2)*sin(xdata) + x(3)*xdata.^3; % 可以是任意的

2.然后给出数据xdata和ydata

>>xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];

>>ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325.0 54.3];

>>x0 = [10, 10, 10]; %初始估计值

>>[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

搜狐博客> 豆豆快乐吧> 日志2009-09-01 | Matlab画三维图的方法

Matlab画三维图的方法

Tags: Matlab.

三维曲线的画法

三维空间曲线要用到plot3函数,这个和plot类似。plot3函数有三个参数,x,y和z轴,比如下面的例子:

>> T = -2:0.01:2;

>> plot3(cos(2*pi*T),sin(2*pi*T),T)

如果安装了Symbolic Math Toolbox的话也可以用下面ezlpot3函数的方法:

>> ezplot3('cos(2*pi*T)','sin(2*pi*T)','T',[-2 2])

三维曲面的画法

有mesh何surf两种命令来画三维曲面,它们使用的场合不同。前者是当z轴是x和y的显式函数时,后者是x,y,z中某个为其他2个的函数。

mesh函数

>> [X Y]=meshgrid(-2:.1:2, -2:.1:2);

>> Z = X.^2 - Y.^2;

>> mesh(X, Y, Z)

同理用Symbolic Math Toolbox可以直接执行

>> ezmesh('X.^2 - Y.^2', [-2 2], [-2 2])

surf函数

在函数不能表示成z = f(x, y)时,需要用surf函数。比如x2+y2+z2=1.

先需要用柱面坐标或者球坐标来表示。这里用柱面坐标表示为r2+z2=1

x = sqrt(1-z2)cosθ, x = sqrt(1-z2)sinθ;

执行matlab指令:

>> [theta, Z] = meshgrid((0:0.1:2)*pi, (-1:0.1:1));

>> X =sqrt(1 - Z.^2).*cos(theta);

>> Y =sqrt(1 - Z.^2).*sin(theta);

>> surf(X, Y, Z); axis square

同理用Symbolic Math Toolbox可以直接执行

>> ezsurf('sqrt(1-s^2)*cos(t)','sqrt(1-s^2)*sin(t)', 's', [-1, 1, 0, 2*pi]); axis equa

常用的一些插值命令

命令1 interp1

功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。

x:原始数据点

Y:原始数据点

xi:插值点

Yi:插值点

格式yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。

若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。

yi = interp1(Y,xi) %假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。

yi = interp1(x,Y,xi,method) %用指定的算法计算插值:

’nearest’:最近邻点插值,直接完成计算;

’linear’:线性插值(缺省方式),直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函

数。命令spline 用它们执行三次样条函数插值;

’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与

数据的外形;

’cubic’:与’pchip’操作相同;

’v5cubic’:在MATLAB 5.0 中的三次插值。

对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。

yi = interp1(x,Y,xi,method,'extrap') %对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。

yi = interp1(x,Y,xi,method,extrapval) %确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。

例1

>>x = 0:10; y = x.*sin(x);

>>xx = 0:.25:10; yy = interp1(x,y,xx);

>>plot(x,y,'kd',xx,yy)

例2

>> year = 1900:10:2010;

>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 256.344 267.893 ];

>>p1995 = interp1(year,product,1995)

>>x = 1900:1:2010;

>>y = interp1(year,product,x,'pchip');

>>plot(year,product,'o',x,y)

插值结果为:

p1995 =

252.9885

命令2 interp2

功能二维数据内插值(表格查找)

格式ZI = interp2(X,Y,Z,XI,YI) %返回矩阵ZI,其元素包含对应于参量XI 与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j) ←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi 与Yi,此时,输出向量Zi 与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y 与Z 确定的二维函数Z=f(X,Y)。参量X 与Y 必须是单调的,且相同的划分格式,就像由命令meshgrid 生成的一样。若Xi

与Yi 中有在X 与Y范围之外的点,则相应地返回nan(Not a Number)。

ZI = interp2(Z,XI,YI) %缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。

ZI = interp2(Z,n) %作n 次递归计算,在Z 的每两个元素之间插入它们的二维插值,这样,Z 的阶数将不断增加。

interp2(Z)等价于interp2(z,1)。

ZI = interp2(X,Y,Z,XI,YI,method) %用指定的算法method 计算二维插值:

’linear’:双线性插值算法(缺省算法);

’nearest’:最临近插值;

’spline’:三次样条插值;

’cubic’:双三次插值。

例3:

>>[X,Y] = meshgrid(-3:.25:3);

>>Z = peaks(X,Y);

>>[XI,YI] = meshgrid(-3:.125:3);

>>ZZ = interp2(X,Y,Z,XI,YI);

>>surfl(X,Y,Z);hold on;

>>surfl(XI,YI,ZZ+15)

>>axis([-3 3 -3 3 -5 20]);shading flat

>>hold off

例4

>>years = 1950:10:1990;

>>service = 10:10:30;

>>wage = [150.697 199.592 187.625

179.323 195.072 250.287

203.212 179.092 322.767

226.505 153.706 426.730

249.633 120.281 598.243];

>>w = interp2(service,years,wage,15,1975)

插值结果为:

w =

190.6288

命令3 interp3

功能三维数据插值(查表)

格式VI = interp3(X,Y,Z,V,XI,YI,ZI) %找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参量XI,YI,ZI 是同型阵列或向量。若向量

参量XI,YI,ZI 是不同长度,不同方向(行或列)的向量,这时输出参量VI 与Y1,Y2,Y3 为同型矩阵。其中Y1,Y2,Y3 为用命令meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点

(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。

VI = interp3(V,XI,YI,ZI) %缺省地,X=1:N ,Y=1:M,Z=1:P ,其中,[M,N,P]=size(V),再按上面的情形计算。

VI = interp3(V,n) %作n 次递归计算,在V 的每两个元素之间插入它们的三维插值。这样,V 的阶数将不断增加。

interp3(V)等价于interp3(V,1)。

VI = interp3(?,method) %用指定的算法method 作插值计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值;

‘nearest’:最邻近插值。

说明在所有的算法中,都要求X,Y,Z 是单调且有相同的格点形式。当X,Y,Z 是等距且

单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例5

>>[x,y,z,v] = flow(20);

>>[xx,yy,zz] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);

>>vv = interp3(x,y,z,v,xx,yy,zz);

>>slice(xx,yy,zz,vv,[6 9.5],[1 2],[-2 .2]); shading interp;colormap cool

命令4 interpft

功能用快速Fourier 算法作一维插值

格式y = interpft(x,n) %返回包含周期函数x 在重采样的n 个等距的点的插值y。若length(x)=m,且x 有采样间隔dx,则新的y 的采样间隔

dy=dx*m/n。注意的是必须n≥m。若x 为一矩阵,则按x 的列进行计算。返回的矩阵y 有与x 相同的列数,但有n 行。

y = interpft(x,n,dim) %沿着指定的方向dim 进行计算

命令5 griddata

功能数据格点

格式ZI = griddata(x,y,z,XI,YI) %用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。griddata 将返回曲面z 在点(XI,YI)处的插值。曲面

总是经过这些数据点(x,y,z)的。输入参量(XI,YI)通常是规则的格点(像用命令meshgrid 生成的一样)。XI 可以是一行向量,这时XI 指定一有常数列向量的矩阵。类似地,YI 可以

是一列向量,它指定一有常数行向量的矩阵。

[XI,YI,ZI] = griddata(x,y,z,xi,yi) %返回的矩阵ZI 含义同上,同时,返回的矩阵XI,YI 是由行向量xi 与列向量yi 用命令meshgrid 生成的。

[?] = griddata(?,method) %用指定的算法method 计算:

‘linear’:基于三角形的线性插值(缺省算法);

‘cubic’:基于三角形的三次插值;

‘nearest’:最邻近插值法;

‘v4’:MA TLAB 4 中的griddata 算法。

命令6 spline

功能三次样条数据插值

格式yy = spline(x,y,xx) %对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式y = p(x) ,以逼近每对数据(x,y)点间的曲线。过两点(xi, yi) 和(xi+1, yi+1) 只能确定一条直线,而通过一点的三次多项式曲线有无穷多条。为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件

(因为三次多项式有4 个系数):

1.三次多项式在点(xi, yi) 处有:p¢i(xi) = p¢i(xi) ;

2.三次多项式在点(xi+1, yi+1) 处有:p¢i(xi+1) = pi¢(xi+1) ;

3.p(x)在点(xi, yi) 处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);4.p(x)在点(xi, yi) 处的曲率是连续的;

对于第一个和最后一个多项式,人为地规定如下条件:

①.p¢1¢(x) = p¢2¢(x)

②.p¢n¢(x) = p¢n¢-1(x)

上述两个条件称为非结点(not-a-knot)条件。综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:

? ??

? ?í

ì

££

££

££

=

n n n+1

2 2 3

1 1 2

p (x) x x x

p (x) x x x

p (x) x x x

p(x)

L L L L

,其中每段pi(x) 都是三次多项式。

该命令用三次样条插值计算出由向量x 与y 确定的一元函数y=f(x)在点xx 处的值。若参量y 是一矩阵,则以y 的每一列和x 配对,再分别计算由它们确定的函数在点xx 处的值。则yy 是一阶数为

length(xx)*size(y,2)的矩阵。

pp = spline(x,y) %返回由向量x 与y 确定的分段样条多项式的系数矩阵pp,它可用于命令ppval、unmkpp 的计算。

例6

对离散地分布在y=exp(x)sin(x)函数曲线上的数据点进行样条插值计算:

>>x = [0 2 4 5 8 12 12.8 17.2 19.9 20]; y = exp(x).*sin(x);

>>xx = 0:.25:20;

>>yy = spline(x,y,xx);

>>plot(x,y,'o',xx,yy)

命令7 interpn

功能n 维数据插值(查表)

格式VI = interpn(X1,X2,,?,Xn,V,Y1,Y2,?,Yn) %返回由参量X1,X2,…,Xn,V 确定的n 元函数V=V(X1,X2,…,Xn)在点(Y1,Y2,…,Yn)处的插值。参量Y1,Y2,…,Yn 是同型的矩阵或向量。若Y1,Y2,…,Yn 是向量,则可以

是不同长度,不同方向(行或列)的向量。它们将通过命令ndgrid生成同型的矩阵,再作

计算。若点(Y1,Y2,…,Yn) 中有位于点(X1,X2,…,Xn)之外的点,则相应地返回特殊变量NaN。

VI = interpn(V,Y1,Y2,?,Yn) %缺省地,X1=1:size(V,1),X2=1:size(V,2),…,

Xn=1:size(V,n),再按上面的情形计算。

VI = interpn(V,ntimes) %作ntimes 次递归计算,在V 的每两个元素之间插入它们的n 维插值。这样,V 的阶数将不断增加。interpn(V)

等价于interpn(V, 1)。

VI = interpn(?,method) %用指定的算法method 计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值法;

‘nearest’:最邻近插值算法。

命令8 meshgrid

功能生成用于画三维图形的矩阵数据。

格式[X,Y] = meshgrid(x,y) 将由向量x,y(可以是不同方向的)指定的区域[min(x),max(x) ,min(y) ,max(y)] 用直线x=x(i),y=y(j) (i=1,2,…,length(x) ,j=1,2,…,length(y))进行划分。这样,得到了length(x)*length(y)个点,

这些点的横坐标用矩阵X 表示,X 的每个行向量与向量x 相同;这些点的纵坐标用矩阵Y 表示,Y 的每个列向量与向量y 相同。其中X,Y可用于计算二元函数z=f(x,y)与三维图形中xy 平面矩形定义域的划分或

曲面作图。

[X,Y] = meshgrid(x) %等价于[X,Y]=meshgrid(x,x)。

[X,Y,Z] = meshgrid(x,y,z) %生成三维阵列X,Y,Z,用于计算三元函数v=f(x,y,z)或三维容积图。例7

[X,Y] = meshgrid(1:3,10:14)

计算结果为:

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

命令9 ndgrid

功能生成用于多维函数计算或多维插值用的阵列

格式[X1,X2,…,Xn] = ndgrid(x1,x2,…,xn) %把通过向量x1,x2,x3…,xn 指定的区域转换为数组x1,x2,x3,…,xn 。这样,得到了length(x1)*length(x2)*…*length(xn)个点,这些点的第一

维坐标用矩阵X1 表

示,X1 的每个第一维向量与向量x1 相同;这些点的第二维坐标用矩阵X2 表示,X2 的每个第二维向量与向量x2 相同;如此等等。

其中X1,X2,...,Xn 可用于计算多元函数y=f(x1,x2,...,xn)以及多维插值命令用到的阵列。[X1,X2,...,Xn] = ndgrid(x) %等价于[X1,X2,...,Xn] = ndgrid(x,x, (x)

命令10 table1

功能一维查表

格式Y = table1(TAB,X0) %返回用表格矩阵TAB 中的行线性插值元素,对X0(TAB的第一列查找X0)进行线性插值得到的结果Y。矩阵TAB 是第一列包含

关键值,而其他列包含数据的矩阵。X0 中的每一元素将相应地返回一线性插值行向量。矩阵TAB 的第一列必须是单调的。

例8

>>tab = [(1:4)' hilb(4)]

>>y = table1(tab,[1 2.3 3.6 4])

查表结果为:

tab =

1.0000 1.0000 0.5000 0.3333 0.2500

2.0000 0.5000 0.3333 0.2500 0.2000

3.0000 0.3333 0.2500 0.2000 0.1667

4.0000 0.2500 0.2000 0.1667 0.1429

Warning: TABLE1 is obsolete and will be removed in future versions. Use INTERP1 or INTERP1Q

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

数学建模实验 ——曲线拟合与回归分析

曲线拟合与回归分析 1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1)说明两变量之间的相关方向; (2)建立直线回归方程; (3)计算估计标准误差; (4)估计生产性固定资产(自变量)为1100万元时的总资产 (因变量)的可能值。 解: (1)工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用spss回归 (2)spss回归可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示: .0+ y =x 896 . 395 567 (3)spss回归知标准误差为80.216(万元)。 (4)当固定资产为1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216) 即(1301.0~146.4)这个范围内的某个值。 MATLAB程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0.05); display(b); display(stats); x1 = [300:10:1250]; y1 = b(1) + b(2)*x1; figure;plot(x,y,'ro',x1,y1,'g-');

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学建模拟合与差分习题答案

第一题 解:由题意可设 2 123()s t a t a t a =++ 中的A=(1a ,2a ,3a )使得: 2 6 1 [()]i i i s t s =-∑最小 用多项式拟合的命令 输入以下命令: 输出结果:A = 2.2488 11.0814 -0.5834 2() 2.2488t 11.0814t 0.5834f x =+- 第二题 输入以下命令: >> x=[19 25 31 38 44]; >> y=[19.0 32.3 49.0 73.3 97.8]; >> A=polyfit(x,y,2)

>> z=polyval(A,x); >> plot(x,y,'k+',x,z,'r') 输出结果:A = 0.0497 0.0193 0.6882 =x x (2+ f ) x + .0 6882 .0 0193 .0 0497 因为2 6882 .0 ) = .0 f+ x (x f+ ) b 0497 (x a =,所以2 x 草图 >> x=1200:400:4000; >> y=1200:400:3600; >> height=[1130 1250 1280 1230 1040 900 500 700; 1320 1450 1420 1400 1300 700 900 850; 1390 1500 1500 1400 900 1100 1060 950; 1500 1200 1100 1350 1450 1200 1150 1010; 1500 1200 1100 1550 1600 1550 1380 1070; 1500 1550 1600 1550 1600 1600 1600 1550; 1480 1500 1550 1510 1430 1300 1200 980]; >> mesh(x,y,height) >>

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模插值及拟合详解

插值和拟合 实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。 实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。 实验内容: 一、插值 1.插值的基本思想 ·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生; ·构造一个相对简单的函数y=P(x); ·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ; ·用P (x)作为函数f ( x )的近似。 2.用MA TLAB作一维插值计算 yi=interp1(x,y,xi,'method') 注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 练习1:机床加工问题 每一刀只能沿x方向和y方向走非常小的一步。 表3-1给出了下轮廓线上的部分数据 但工艺要求铣床沿x方向每次只能移动0.1单位. 这时需求出当x坐标每改变0.1单位时的y坐标。 试完成加工所需的数据,画出曲线. 步骤1:用x0,y0两向量表示插值节点; 步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步骤3:plot(x0,y0,'k+',x,y,'r') grid on 答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15; y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (48)

第11章第2题 摘要 本题分析4 种化肥和3 个小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,可视为两因素方差分析,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。 试验的目的是分析化肥的四个不同水平以及小麦品种的三个不同水平对小麦产量有无显着性影响。 关键词:方差分析显着性化肥种类小麦品种

一.问题重述 为了分析4 种化肥和3 个小麦品种对小麦产量的影响,把一块试验田等分成36个小块,分别对3种种子和四种化肥的每一种组合种植3 小块田,产量如表1所示(单位公斤),问不同品种、不同种类的化肥及二者的交互作用对小麦产量有无显着影响。 二.问题分析 本题意在分析四种化肥和三种小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,为两因素方差分析问题,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。通过对这两种因素的不同水平及交互作用的分析,从而分析 4 种化肥和3 个小麦品种对小麦产量的影响。 三.模型假设 1.假设只有化肥种类和小麦品种两个因素,其他因素对试验结果不构成影响。 2.假设不存在数据记录错误。 3.假设每一块试验田本身各项指标相同,不会影响结果。 四.符号说明 数字1,2,3,4——不同的化肥种类 数字1,2,3——不同的小麦品种 五.模型建立 将化肥种类和小麦品种视为两个因素,四种化肥种类看作是化肥种类的四个不同水平,三个小麦品种看作是小麦品种的三个不同水平,将表1的数据进行整理,如表2所示。

六.模型求解 将表2数据导入到spss软件中,进行两因素方差检验,得到结果如下:表3

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学建模模型

五邑大学 数学建模 课程考核论文 2010-2011 学年度第 2 学期 010 20 30 40 50 60 70 8090 第一季度第三季度 东部西部北部 论文题目 抑制物价快速上涨问题 得分 学号 姓名(打印) 姓名(手写) ap0808221 林加海 ap0808204 陈荣昌 指导老师—邹祥福

——2011.6.20 抑制物价快速上涨问题 摘要 本文通过一个多元线性回归模型较好地解决了影响物价因素的问题。使我国经济快速发展的同时,使百姓得到真的实惠,又保证了经济的长远的发展。 物价问题比较复杂。在本次实验中我们参阅大量资料把影响物价的的因素主要概括括需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。 总结出原先物价计算方法的不足之处,需要建立一种新的计算和预测的方法。首先,为了确定物价和影响因素之间的关系我们用了多元线性回归,从国家统计局找到相关数据经过挑选,建立了函数关系,为了使函数更具有说服力我们进一步用了残差分析,检验所得到的结果的合理性 。本文利用matlab 软件实现了拟合出多元线性回归函数y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5,置信度95%,且20.932609896853743,_R F ==检验值8.30338450288840>,但是显著性概率.α=005相关的0.055839341752489056>0.p =。再利用逐步回归的方法,拟合出Y=94.4958+0.00771506*x1+5.8917e-007*x2+0.00250019*x3+1.90595e-006*x4+ 6.62396e-005*x5.93269896853743R =200,修正的R 2值.R α =20897797,F_检验值=26.3535,与显著性概率相关的p 值=..<000106754005,残差均方RMSE =0.204517,以上指标值都很好,说明回归效果比较理想。通过对物价形成及演化问题的讨论,提出以量化分析为基础的调节物价的方法,深入分析找出影响物价的主要因素,并就此分析现在物价的上涨情况,根据《关于稳定消费价格总水平保障群众基本生活的通知》,根据模型分析给出抑制物价的政策建议,并对未来的形势走向根据模型给出预测。 关键字:物价,逐步回归分析,上涨因素,预测,多元回归分析

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

数学建模——传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去, 直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。 步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干

数学建模曲线拟合

曲线拟合 摘要 根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。 问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中t lsqcurvefi函数在最小二乘法原理下拟合出所求直线。 问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。 问题四拟合的曲线为二阶多项式,方法同前三问类似。 问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。经试验发现高阶多项式的阶数越高拟和效果最好。 ) 关键词:函数拟合最小二乘法线性规划 | < ¥

一、问题的重述 已知一个量y 依赖于另一个量x ,现收集有数据如下: (1)求拟合以上数据的直线a bx y +=。目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。 (2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。 (3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。 (4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。 } (5)试一试其它的曲线,可否找出最好的? 二、问题的分析 对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。 对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。 对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。 ~

数学建模100个模型

《数学建模》题库 为了培养想象力、洞察力和判断力,考察对象时除了从正面分析,还常常需要从侧面或反面思考,尽可能迅速的回答1-5题。 1. 某人早上8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留 宿。次日早8:00沿同一路径下山,下午5:00回到旅馆。则此人必在两天中同一时刻经过路径中的同一地点,为什么? 2. 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队的胜者以及轮空者 进入下一轮,直到比赛结束,问共需进行多少场比赛,共需进行多少轮比赛? 3. 甲乙两站之间有电车相通,每隔十分钟甲乙两站相互发一趟车,但发车时刻 不一定相同。甲乙之间有一中间站丙,某人每天在随机时刻到达兵站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站。问开往甲乙两站的电车经过丙站的时刻表是如何安排的? 4. 某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻 子驾车准时到车站接他回家。一日他提前下班,搭乘早一班火车于5:30抵达T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了十分钟。问他步行了多长时间? 5. 一男孩和一女孩分别在离家2千米和1千米且方向相反的两所学校上学,每天 同时放学后分别以4千米/小时和2千米/小时的速度步行回家。一小狗以6千米/小时的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返只至回到家中,问小狗奔波了多少路程? 6. 任意拿出黑白两种颜色的棋子共8个,排成如图一所示的一个圆圈,然后在两 颗颜色相同棋子中间放一颗黑棋子,在两颗颜色不同的棋子中间放一颗白棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复下去棋子的颜色会发生怎样的变化? 图一

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

相关文档
相关文档 最新文档