文档库 最新最全的文档下载
当前位置:文档库 › 2018年高中数学圆锥曲线与方程2.1曲线与方程学案新人教A版

2018年高中数学圆锥曲线与方程2.1曲线与方程学案新人教A版

2018年高中数学圆锥曲线与方程2.1曲线与方程学案新人教A版
2018年高中数学圆锥曲线与方程2.1曲线与方程学案新人教A版

2.1 曲线与方程

2.1.1&2.1.2 曲线与方程求曲线的方程

预习课本P34~36,思考并完成以下问题

1.曲线的方程、方程的曲线的定义分别是什么?

2.求曲线方程的一般步骤是什么?

[新知初探]

1.曲线的方程、方程的曲线

在直角坐标系中,如果某曲线C (看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:

①曲线上点的坐标都是这个方程的解; ②以这个方程的解为坐标的点都是曲线上的点.

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求曲线的方程的步骤

[小试身手]

1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)过点P (x 0,y 0)斜率为k 的直线的方程是

y -y 0

x -y 0

=k ( ) (2)若点P (x 0,y 0)在曲线C 上,则有f (x 0,y 0)=0( )

(3)以A (0,1),B (1,0),C (-1,0)为顶点的△ABC 的BC 边上中线的方程是x =0( ) 答案:(1)× (2)√ (3)×

2.下列各组方程中表示相同曲线的是( )

A .x 2

+y =0与xy =0 B .x +y =0与x 2

-y 2

=0

C .y =x 与y =x 2

x

D .x -y =0与y =lg 10x

答案:D

3.动点P 到点(1,-2)的距离为3,则动点P 的轨迹方程为( ) A .(x +1)2

+(y -2)2

=9 B .(x -1)2

+(y +2)2

=9 C .(x +1)2

+(y -2)2

=3 D .(x -1)2+(y +2)2

=3

答案:B

4.若点P (2,-3)在曲线x 2

-ky 2

=1上,则实数k =________.

答案:13

曲线的方程与方程的曲线的概念

[(1)过点A (2,0)平行于y 轴的直线与方程|x |=2之间的关系; (2)与两坐标轴的距离的积等于5的点与方程xy =5之间的关系; (3)第二、四象限两轴夹角平分线上的点与方程x +y =0之间的关系.

[解] (1)过点A (2,0)平行于y 轴的直线上的点的坐标都是方程|x |=2的解;但以方程|x |=2的解为坐标的点不一定都在过点A (2,0)且平行于y 轴的直线上.因此,|x |=2不是过点A (2,0)平行于y 轴的直线的方程.

(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy =5;但以方程xy =5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy =5.

(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.

这类题目主要是考查“曲线的方程与方程的曲线”的定义中所列的两个条件,正好组成两个集合相等的充要条件,二者缺一不可.这就是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.

[活学活用]

命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( )

A .方程f (x ,y )=0的曲线是C

B .方程f (x ,y )=0的曲线不一定是

C C .f (x ,y )=0是曲线C 的方程

D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上

解析:选B “曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.

曲线与方程的判定问题

[典例] (1)(x +y -1)x -1=0;

(2)2x 2+y 2

-4x +2y +3=0.

[解] (1)由方程(x +y -1)x -1=0可得

?

??

??

x -1≥0,x +y -1=0或?

??

??

x -1≥0,

x -1=0,

即x +y -1=0(x ≥1)或x =1.

故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1. (2)对方程左边配方得2(x -1)2

+(y +1)2

=0. ∵2(x -1)2

≥0,(y +1)2

≥0,

∴?

???

?

x -2

=0,

y +

2

=0,

解得???

?

?

x =1,y =-1.

从而方程表示的图形是一个点(1,-1).

判断方程表示什么曲线,常需对方程进行变形,如配方、因式分解或利用符号法则、基本常识转化为熟悉的形式,然后根据化简后的特点判断.特别注意,方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线.另外,当方程中含有绝对值时,常采用分类讨论的思想.

[活学活用]

已知方程x 2

+(y -1)2

=10.

(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;

(2)若点M ? ??

??m

2,-m 在此方程表示的曲线上,求m 的值.

解:(1)∵12

+(-2-1)2

=10,(2)2

+(3-1)2

=6≠10, ∴点P 在方程x 2

+(y -1)2

=10表示的曲线上, 点Q 不在方程x 2

+(y -1)2

=10表示的曲线上. (2)因为x =m

2

,y =-m 适合方程x 2+(y -1)2

=10, 即? ????m 22+(-m -1)2

=10,解得m =2或m =-185.所以m 的值为2或-185.

求曲线的方程

[典例] 已知圆C :x 2

+(y -3)2

=9,过原点作圆C 的弦OP ,求OP 的中点Q 的轨迹方程.

[解] [法一 直接法]

如图所示,连接QC ,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得 |OQ |2

+|QC |2

=|OC |2

, 即x 2

+y 2

+x 2

+(y -3)2

=9,

所以OP 的中点Q 的轨迹方程为x 2

+? ????y -322=94

(去掉原点).

[法二 定义法]

如图所示,因为Q 是OP 的中点,

所以∠OQC =90°,则Q 在以OC 为直径的圆上.

故Q 点的轨迹方程为x 2

+? ????y -322=94

(去掉原点).

[法三 代入法] 设P (x 1,y 1),Q (x ,y ),

由题意得?????

x =x 12

,y =y

1

2,

即?

??

??

x 1=2x ,

y 1=2y ,

又因为x 21+(y 1-3)2=9,所以4x 2

+4? ????y -322=9,

即x 2

+? ????y -322=94

(去掉原点).

直接法、定义法、代入法是求轨迹方程(或轨迹)的常用方法,对于此类问题,在解题过程中,最容易出错的环节是求轨迹方程中自变量的取值范围,一定要慎重分析和高度重视.

[活学活用]

过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.

解:法一:设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点.

∴A 点坐标是(2x,0),B 点坐标是(0,2y ).

∵l 1,l 2均过点P (2,4),且l 1⊥l 2, ∴PA ⊥PB ,当x ≠1时,k PA ·k PB =-1. 而k PA =4-02-2x =21-x ,k PB =4-2y 2-0=2-y

1,

21-x ·2-y 1

=-1, 整理,得x +2y -5=0(x ≠1).

当x =1时,A ,B 点的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0, 综上所述,点M 的轨迹方程是x +2y -5=0.

法二:设M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ),连接PM . ∵l 1⊥l 2,∴2|PM |=|AB |. 而|PM |=x -

2

+y -

2

,|AB |=

x

2

+y

2

∴2

x -2

+y -2

= 4x 2

+4y 2

化简,得x +2y -5=0,即为所求轨迹方程.

层级一 学业水平达标

1.已知直线l :x +y -3=0及曲线C :(x -3)2

+(y -2)2

=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上

解析:选B 将点M (2,1)的坐标代入方程知M ∈l ,M ∈C . 2.方程xy 2

-x 2

y =2x 所表示的曲线( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称

D .关于x -y =0对称

解析:选C 同时以-x 代替x ,以-y 代替y ,方程不变,所以方程xy 2

-x 2

y =2x 所表示的曲线关于原点对称.

3.方程x +|y -1|=0表示的曲线是( )

解析:选B 方程x +|y -1|=0可化为|y -1|=-x ≥0,则x ≤0,因此选B .

4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足+

0,则动点P (x ,y )的轨迹方程为( )

A .y 2

=8x B .y 2

=-8x

C .y 2=4x

D .y 2

=-4x

解析:选B 设点P 的坐标为(x ,y ),则MN =(4,0),MP (x +2,y )(x -2,y ),

∴=4,=x +

2

+y 2

4(x -2).

根据已知条件得4

x +2

+y 2

=4(2-x ).

整理得y 2

=-8x .∴点P 的轨迹方程为y 2

=-8x .

5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是

y -04-0=x +1

2+1

,即4x -3y +4=0, 线段AB 的长度|AB |=+

2

+42

=5.

设C 的坐标为(x ,y ), 则12×5×|4x -3y +4|5

=10, 即4x -3y -16=0或4x -3y +24=0.

6.方程x 2

+2y 2

-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2

+2(y +2)2

=0.

∵(x -2)2≥0,2(y +2)2

≥0,

∴?

????

x -2

=0,

y +

2

=0,

解得???

??

x =2,

y =-2.

从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2)

7.已知两点M (-2,0),N (2,0),点P 12,则点P 的轨迹方程为________________.

解析:设P (x ,y )(-2-x ,-y )(2-x ,-y ).

(-2-x )(2-x )+y 2

=12,

化简得x 2+y 2

=16,此即为所求点P 的轨迹方程.

答案:x 2

+y 2

=16

8.已知点A (0,-1),当点B 在曲线y =2x 2

+1上运动时,线段AB 的中点M 的轨迹方程是________________.

解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 2

0+1. 又M 为AB 的中点,所以?????

x =0+x

02,

y =y 0

-1

2,

即?

??

??

x 0=2x ,

y 0=2y +1,

将其代入y 0=2x 2

0+1得,2y +1=2×(2x )2+1,即y =4x 2

. 答案:y =4x 2

9.在平面直角坐标系中,已知动点P (x ,y ),PM ⊥y 轴,垂足为M ,点N 与点P 关于x

4,求动点P 的轨迹方程.

解:由已知得M (0,y ),N (x ,-y )(x ,-2y ),

(x ,y )·(x ,-2y )=x 2

-2y 2

依题意知,x 2-2y 2

=4,

因此动点P 的轨迹方程为x 2

-2y 2

=4.

10.已知圆C 的方程为x 2

+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m

与y 轴的交点为N Q 的轨迹.

解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0).

即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),

则x 0=x ,y 0=y

2

又点M 在圆C 上,所以x 20+y 2

0=4, 即x 2

+y 2

4

=4(y ≠0).

所以动点Q 的轨迹方程是x 24+y 2

16

=1(y ≠0).

层级二 应试能力达标

1.已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则点P 的轨迹方程是( ) A .8x 2

+8y 2

+2x -4y -5=0 B .8x 2

+8y 2

-2x -4y -5=0 C .8x 2

+8y 2

+2x +4y -5=0 D .8x 2

+8y 2

-2x +4y -5=0 解析:选A 设动点P (x ,y ), 则由|PA |=3|PO |,得

x -

2

y +

2

=3x 2+y 2

化简,得8x 2

+8y 2

+2x -4y -5=0.故选A . 2.下列四组方程表示同一条曲线的是( ) A .y 2

=x 与y =x B .y =lg x 2

与y =2lg x C .

y +1

x -2

=1与lg(y +1)=lg(x -2) D .x 2

+y 2

=1与|y |=1-x 2

解析:选D 根据每一组曲线方程中x 和y 的取值范围,不难发现A 、B 、C 中各组曲线对应的x 或y 的取值范围不一致;而D 中两曲线的x 与y 的取值范围都是[-1,1],且化简后的解析式相同,所以D 正确.故选D .

3.方程y =-4-x 2

对应的曲线是( )

解析:选A 将y =-4-x 2

平方得x 2

+y 2

=4(y ≤0),它表示的曲线是圆心在原点,半径为2的圆的下半部分,故选A .

4.已知0≤α≤2π,点P (cos α,sin α)在曲线(x -2)2

+y 2

=3上,则α的值为( ) A .π3 B .5π3 C .π3或5π3 D .π3或π6

解析:选C 将点P 的坐标代入曲线(x -2)2

+y 2

=3中,得(cos α-2)2

+sin 2

α=3,

解得cos α=12.又0≤α<2π,所以α=π3或5π

3

.故选C .

5.方程|x -1|+|y -1|=1表示的曲线所围成的图形的面积是________.

解析:方程|x -1|+|y -1|=1可写成????

?

x >1,y ≥1,

x +y =3或????

?

x >1,y <1,x -y =1

????

?

x ≤1,y ≥1,y -x =1

或????

?

x ≤1,y <1,x +y =1,

其图形如图所示,它是边长为2的正方形,其面

积为2.

答案:2

6.给出下列结论: ①方程

y

x -2

=1表示斜率为1,在y 轴上的截距为-2的直线;

②到x 轴距离为2的点的轨迹方程为y =-2; ③方程(x 2

-4)2

+(y 2

-4)2

=0表示四个点. 其中正确结论的序号是________. 解析:对于①,方程

y

x -2

=1表示斜率为1,在y 轴上的截距为-2的直线且除掉点(2,0),

所以①错误;对于②,到x 轴距离为2的点的轨迹方程为y =-2或y =2,所以②错误;对于③,方程(x 2

-4)2

+(y -4)2

=0表示点(-2,2),(-2,-2),(2,-2),(2,2)四个点,所以③正确.故填③.

答案:③

7.已知A 为定点,线段BC 在定直线l 上滑动,|BC |=4,点A 到直线l 的距离为3,求△ABC 外心的轨迹方程.

解:建立平面直角坐标系,使x 轴与l 重合,点A 在y 轴上(如图所示),则A (0,3).

设△ABC 的外心为P (x ,y ), 因为点P 在线段BC 的垂直平分线上,

所以不妨令B (x +2,0),C (x -2,0).又点P 在线段AB 的垂直平分线上,所以|PA |=|PB |, 即x 2

+y -

2

=22+y 2,化简得x 2

-6y +5=0.

于是△ABC 外心的轨迹方程为x 2

-6y +5=0.

8.已知两点P (-2,2),Q (0,2)以及一条直线l :y =x ,设长为2的线段AB 在直线l

上移动,求直线PA 和QB 的交点M 的轨迹方程.

解:设A (m ,m ),B (m +1,m +1),

当m ≠-2且m ≠-1时,直线PA 和QB 的方程分别为y =m -2m +2(x +2)+2和y =m -1

m +1

x +2.

由?????

y =m -2

m +2x ++2,

y =m -1

m +1x +2

消去m ,得x 2-y 2

+2x -2y +8=0.

当m =-2时,直线PA 和QB 的方程分别为x =-2和y =3x +2,其交点为(-2,-4),满足方程x 2

-y 2

+2x -2y +8=0.

当m =-1时,直线PA 和QB 的方程分别为y =-3x -4和x =0,其交点为(0,-4),满足方程x 2

-y 2

+2x -2y +8=0.

综上,可知所求交点M 的轨迹方程为x 2

-y 2

+2x -2y +8=0.

苏教版数学高二-湖南省邵阳市选修2-1学案 曲线与方程(2)

【学习目标】 1.理解曲线的方程、方程的曲线; 2.求曲线的方程. 【自主学习】(认真自学课本P34-P36例2) 新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间, 如果具有以下两个关系: 1.曲线C 上的点的坐标,都是 的解; 2.以方程(,)0F x y =的解为坐标的点,都是 的点, 那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线 注意:1. 如果……,那么……; 2. “点”与“解”的两个关系,缺一不可; 3. 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法; 4. 曲线与方程的这种对应关系,是通过坐标平面建立的. 试试: 1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ . 2.曲线220x xy by +-=上有点(1,2)Q ,则b = . 【合作探究】 例1::(教材P35例1)证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±. 例2(教材P35例2)设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.

小结:求曲线的方程的步骤: ①建立适当的坐标系,用(,) M x y表示曲线上的任意一点的坐标; ②写出适合条件P的点M的集合{|()} P M p M =; ③用坐标表示条件P,列出方程(,)0 f x y=; ④将方程(,)0 f x y=化为最简形式; ⑤说明以化简后的方程的解为坐标的点都在曲线上. 【目标检测】 1. 与曲线y x =相同的曲线方程是(). A. 2 x y x =B .y=C .y=D.2log 2x y= 2. 已知方程222 ax by +=的曲线经过点 5 (0,) 3 A和点(1,1) B,则a= ,b= . 3. 已知两定点(1,0) A-,(2,0) B,动点p满足 1 2 PA PB =,则点p的轨迹方程是. 4. 求和点(0,0) O,(,0) A c距离的平方差为常数c的点的轨迹方程. 【作业布置】 任课教师自定

人教版高中数学选修2-1第二章圆锥曲线与方程---椭圆教案

椭圆 【学习目标】 1.能 正熟练使用直接法、待定系数法、定义法求椭圆的方程; 2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题; 3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题. 【知识网络】 【要点梳理】 要点一、椭圆的定义及其标准方程 椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(21212F F a PF PF >=+),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 椭圆的标准方程: 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 要点诠释:求椭圆的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设椭圆方程的具体形式;“定量”是指用定义法或待定系数法确定a,b 的值. 要点二、椭圆的几何性质 焦点在x 轴上 焦点在y 轴上 标准方程 22 221(0)x y a b a b +=>> 22 221(0)x y a b b a +=>> 椭圆 椭圆的定义与标准 方程方程 椭圆的几何性质 直线与椭圆的位置关系 椭圆的综合问题 最大(小)值问题 椭圆的弦问题 椭圆离心率及离心率的范围问题

(,0)F c -,(,0)F c (0,)F c -,(0,)F c 直线与椭圆的位置关系 将直线的方程y kx b =+与椭圆的方程22 221x y a b +=(0)a b >>联立成方程组,消元转化为关于x 或y 的一 元二次方程,其判别式为Δ. ①Δ>0?直线和椭圆相交?直线和椭圆有两个交点(或两个公共点); ②Δ=0?直线和椭圆相切?直线和椭圆有一个切点(或一个公共点); ③Δ<0?直线和椭圆相离?直线和椭圆无公共点. 直线与椭圆的相交弦 设直线y kx b =+交椭圆22 221x y a b +=(0)a b >>于点111222(,),(,),P x y P x y 两点,则 12||PP 12|x x - 同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:

20182019高中数学第2章圆锥曲线与方程疑难规律方法学案苏教版选修21

第2章 圆锥曲线与方程 1 利用椭圆的定义解题 椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值 例1 线段AB =4,PA +PB =6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是________. 解析 由于PA +PB =6>4=AB ,故由椭圆定义知P 点的轨迹是以M 为原点,A ,B 为焦点的椭圆,且a =3,c =2,∴b =a 2 -c 2 = 5.于是PM 的长度的最小值是b = 5. 答案 5 2.求动点坐标 例2 椭圆x 29+y 2 25=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________. 解析 设椭圆上的动点为P ,由椭圆的定义可知 PF 1+PF 2=2a =10, 所以PF 1·PF 2≤? ????PF 1+PF 222=? ?? ? ?1022=25, 当且仅当PF 1=PF 2时取等号. 由? ?? ?? PF 1+PF 2=10,PF 1=PF 2,解得PF 1=PF 2=5=a , 此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0) 点评 由椭圆的定义可得“PF 1+PF 2=10”,即两个正数PF 1,PF 2的和为定值,结合基本不等式可求PF 1,PF 2乘积的最大值,结合图形可得所求点P 的坐标. 3.求焦点三角形面积 例3 如图所示,已知椭圆的方程为x 24+y 2 3 =1,若点P 在第二象限,且∠PF 1F 2=120°,求

北师版数学高二《 曲线与方程》同步学案 北师大

3.4.1 曲线与方程 学习目标:曲线的方程和方程的曲线是解析几何的最基本的概念,是坐标法的基础,理解曲线与方程之间的一一对应关系。 学习重点:曲线与方程的一一对应关系。 学习难点:常见的几何模型与代数模型的转换。 学习过程: 一、复习: 同角三角函数之间的关系我们在初中就已经学过,只不过当时应用不是很多,那么到底有哪些?它们成立的条件是什么?学习实践中,你还发现了哪些关系?今天这节课,我们就来讨论这些问题。 一、新旧知识连接: 复习直线、圆、圆锥曲线的标准方程与曲线的一一对应关系。 二、我能自学: 1.认识角的概念: 一般地,在直角直角坐标系中,如果某曲线C 上的点与一个二元方程 F (x , y )=0的实数解建立了如下的关系 (1)曲线上的点的坐标都是这个方程 的解 (2)以这个方程的解为坐标的点都是曲线上的点 那么曲线C 叫做方程F (x , y )=0的曲线;方程F (x , y )=0叫做曲线C 的方程 曲线的方程常称为满足某种条件的动点的轨迹方程 三、巩固训练 1.22 :(3,4),5(3)(4)25,M x y -+-=证明圆心为半径为的圆的方程 (1,0),(1,0),(1,2)O A B --并判断点是否在这个圆上. 2.求直角坐标系下一三象限的角分线方程,下列方法是否正确? 3. 求证:与两条坐标轴的距离的积等于1的点的轨迹方程是|xy |=1 例4. 甲:“曲线C 上的点的坐标都是方程 f (x ,y )=0 的解”,乙:“曲线C 是方程 f (x ,y )=0 的曲线”,则甲是乙的( )

(A) 充分非必要条件(B) 必要非充分条件(C) 充要条件(D) 非充分也非必要条件

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

2.4.2 抛物线的几何性质 [学习目标] 1.掌握抛物线的几何性质.2.会用抛物线的标准方程和几何性质处理一些简单的实际问题. [知识链接] 类比椭圆、双曲线的几何性质,结合图象,说出抛物线y 2=2px (p >0)的范围、对称性、顶点、离心率.怎样用方程验证? 答:(1)范围:x ≥0,y ∈R ; (2)对称性:抛物线y 2=2px (p >0)关于x 轴对称; (3)顶点:抛物线的顶点是坐标原点; (4)离心率:抛物线上的点M 到焦点的距离和它到准线的距离的比叫抛物线的离心率.用e 表示,由定义可知e =1. [预习导引] 1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) 图形 性质 范围 x ≥0,y ∈R x ≤0,y ∈R x ∈R ,y ≥0 x ∈R ,y ≤0 对称轴 x 轴 x 轴 y 轴 y 轴 顶点 (0,0) 离心率 e =1 直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,AF =x 1+p 2,BF =x 2+p 2,故AB =x 1+x 2+p . 3.直线与抛物线的位置关系 直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程k 2x 2+2(kb -p )x +b 2=0的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;当Δ=0时,直线与抛物线有一个公共点;当Δ<0时,直线与抛物线没有公共点.当k =0时,直线与抛物线的对

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

高二数学 曲线与方程的概念导学案导学案 文

高二数学曲线与方程的概念导学案导学案文 一、预习导航 1、探究:下列表示平面直角坐标系下求一三象限角平分线的方程,你认为哪些是正确的?(1)(2)(3) 2、结论(1)你能说明不正确的理由是什么吗?(2)你能据此总结出曲线的方程和方程的曲线满足的两个条件吗? 二、牛刀小试判断下列曲线与方程的关系,若所给出的方程不是曲线的方程,是因为不满足两个条件中的哪一条?(1)曲线C:过点(2,0)且与y轴的距离等于2的点的轨迹方程为(2)曲线C:到两个坐标轴的距离相等的点的轨迹方程为。(3)曲线C:以y轴为对称轴的等腰三角形底边上的中线的方程:。 三、展示自我 1、判断正误:(1)已知一个三角形的三个顶点是A(2,3)、B(0,0)、C(4,0),它的BC边上的中线AM的方程是;(2)如图,MA和MB分别是动点M(x,y)与两定点A(-1,0)B(1,0)的连线,使为直角的动点M的轨迹方程是:; 2、如果方程的曲线通过点A(0,-2)和B(),求a,b的值。3、求直线l:x+4y+7=0与曲线C:的公共点的坐标。 四、巩固提高已知两圆,,想一想:及应该满足的条件?方程(1)时,该方程表示:

_______________________________________________(2)时,该方程表示: _______________________________________________练习:求通过两圆,的交点和点(2,1)的源的方程? 五、小结你认为通过自己的学习,本节课有哪些知识没有掌握? _________________________________________________________ ______________________ _________________________________________________________ ______________________

学案导学 备课精选高中数学 2.6.1曲线与方程同步练习(含解析)苏教版选修21

§2.6 曲线与方程 2.6.1 曲线与方程 课时目标 结合学过的曲线及其方程的实例,了解曲线与方程的对应关系,会求两条曲线的交点的坐标,表示经过两曲线的交点的曲线. 1.一般地,在直角坐标系中,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立如下关系: (1)__________________________都是方程f(x ,y)=0的解; (2)以方程f(x ,y)=0的解为坐标的点都在曲线C 上. 那么,方程f(x ,y)=0叫做________________,曲线C 叫做__________________. 2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x 0,y 0),则①点P 在曲线C 上?______________;②点P 不在曲线C 上?________________. 一、填空题 1.已知直线l 的方程是f(x ,y)=0,点M(x 0,y 0)不在l 上,则方程f(x ,y)-f(x 0,y 0)=0表示的曲线是__________________. 2.已知圆C 的方程f(x ,y)=0,点A(x 0,y 0)在圆外,点B(x′,y′)在圆上,则f(x ,y)-f(x 0,y 0)+f(x′,y′)=0表示的曲线是________________. 3.下列各组方程中表示相同曲线的是________. ①y=x ,y x =1; ②y=x ,y =x 2 ; ③|y|=|x|,y =x ; ④|y|=|x|,y 2=x 2. 4.“以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点”是“曲线C 的方程是f(x ,y)=0”的____________条件. 5.求方程|x|+|y|=1所表示的曲线C 围成的平面区域的面积为________. 6.到直线4x +3y -5=0的距离为1的点的轨迹方程为_____________________. 7.若方程ax 2+by =4的曲线经过点A(0,2)和B ? ?? ??12,3,则a =________,b =________. 8.如果曲线C 上的点的坐标满足方程F(x ,y)=0,则下列说法正确的是________.(写出所有正确的序号) ①曲线C 的方程是F(x ,y)=0; ②方程F(x ,y)=0的曲线是C ; ③坐标不满足方程F(x ,y)=0的点都不在曲线C 上; ④坐标满足方程F(x ,y)=0的点都在曲线C 上. 二、解答题 9.(1)过P(0,-1)且平行于x 轴的直线l 的方程是|y|=1吗?为什么? (2)设A(2,0),B(0,2),能否说线段AB 的方程是x +y -2=0?为什么?

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

2.3 双曲线 2.3.1 双曲线的标准方程 [学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理简单的实际问题. [知识链接] 1.与椭圆类比,能否将双曲线定义中“动点M 到两定点F 1、F 2距离之差的绝对值为定值2a ”中,“绝对值”三个字去掉. 答:不能.否则所得轨迹仅是双曲线一支. 2.如何判断双曲线x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2 b 2=1(a >0,b >0)的焦点位置? 答:x 2系数是正的焦点在x 轴上,否则焦点在y 轴上. [预习导引] 1.双曲线的定义 把平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程 焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2 b 2 =1(a >0,b >0) y 2a 2-x 2 b 2 =1(a >0,b >0) 焦点 F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) 焦距 F 1F 2=2c ,c 2=a 2+b 2 要点一 求双曲线的标准方程 例1 根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-16 3,5); (2)c =6,经过点(-5,2),焦点在x 轴上.

解 (1)方法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2 b 2=1(a >0,b >0), ∴点P (3,154)和Q (-16 3 ,5)在双曲线上, ∴??? 9a 2-22516b 2 =1,2569a 2 -25 b 2 =1, 解得? ???? a 2=-16, b 2=-9. (舍去) 若焦点在y 轴上,设双曲线的方程为 y 2a 2-x 2 b 2 =1(a >0,b >0), 将P 、Q 两点坐标代入可得??? 22516a 2-9 b 2 =1,25a 2 -256 9b 2 =1, 解之得? ???? a 2=9, b 2=16, ∴双曲线的标准方程为y 29-x 2 16 =1. 方法二 设双曲线方程为x 2m +y 2 n =1(mn <0). ∵P 、Q 两点在双曲线上, ∴??? 9m +225 16n =1,2569m +25 n =1, 解得? ???? m =-16,n =9. ∴所求双曲线的标准方程为y 29-x 2 16 =1. (2)方法一 依题意可设双曲线方程为x 2a 2-y 2 b 2=1(a >0,b >0). 依题设有????? a 2+ b 2=6,25a 2-4b 2 =1,解得????? a 2=5, b 2=1, ∴所求双曲线的标准方程为x 25-y 2 =1. 方法二 ∵焦点在x 轴上,c =6, ∴设所求双曲线方程为x 2λ-y 2 6-λ =1(其中0<λ<6).

圆锥曲线与方程导学案(整理版)

曲线与方程 1.理解曲线的方程、方程的曲线; 2.求曲线的方程. 复习1:画出函数22y x = (12)x -≤≤的图象. 复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程. 二、新课导学 ※ 学习探究 探究任务一: 到两坐标轴距离相等的点的集合是什么?写出它的方程. 问题:能否写成y x =,为什么? 新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间, 如果具有以下两个关系: 1.曲线C 上的点的坐标,都是 的解; 2.以方程(,)0F x y =的解为坐标的点,都是 的点, 那么,方程(,)0F x y =叫做这条曲线C 的方程; 曲线C 叫做这个方程(,)0F x y =的曲线. 注意:1? 如果……,那么……; 2? “点”与“解”的两个关系,缺一不可; 3? 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法; 4? 曲线与方程的这种对应关系,是通过坐标平面建立的. 试试: 1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ . 2.曲线220x xy by +-=上有点(1,2)Q ,则b = . 新知:根据已知条件,求出表示曲线的方程. ※ 典型例题 例1 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±. 变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗? 例2设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程. 变式:已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为原点)所在直线的方程是0x =吗?为什么? 反思:BC 边的中线的方程是0x =吗? 小结:求曲线的方程的步骤: ①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标; ②写出适合条件P 的点M 的集合{|()}P M p M =; ③用坐标表示条件P ,列出方程(,)0f x y =; ④将方程(,)0f x y =化为最简形式; ⑤说明以化简后的方程的解为坐标的点都在曲线上. ※ 动手试试 练1.下列方程的曲线分别是什么? (1) 2x y x = (2) 22 2x y x x -=- (3) log a x y a = 练2.离原点距离为2的点的轨迹是什么?它的方程是什么?为什么? ※ 当堂检测

创新设计高中数学苏教选修21习题:第2章 圆锥曲线与方程 21

§2.2椭圆 2.2.1 椭圆的标准方程 课时目标 1.经历从具体情境中抽象出椭圆模型的过程.2.理解椭圆的定义,明确焦点、焦距的概念. 3.能由椭圆定义推导椭圆的方程,初步学会求简单的椭圆的标准方程. 4.会求与椭圆有关的点的轨迹和方程. 椭圆的标准方程:焦点在x 轴上的椭圆的标准方程为________________ (a>b>0),焦点坐 标为________________,焦距为________;焦点在y 轴上的椭圆的标准方程为________________ (a>b>0). 注:(1)以上方程中a ,b 的大小为a>b>0,其中c 2=________; (2)椭圆x 2m +y 2 n =1 (m>0,n>0,m ≠n),当m>n 时表示焦点在______轴上的椭圆;当m

平远高中数学第二章圆锥曲线与方程222双曲线的几何性质一2教案新人教A版选修11

2.2.2双曲线的几何性质(一) ☆要点强化☆ 1.双曲线的范围、对称性、顶点和渐近线; 2.双曲线的渐近线的概念。 ☆当堂检测☆ 1. 07宁夏理 已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 2. 求双曲线的标准方程: ⑴实轴的长是10,虚轴长是8,焦点在x 轴上; ⑵焦距是10,虚轴长是8,焦点在y 轴上; ⑶离心率e =()5,3M -; ⑷两条渐近线的方程是23y x =±,经过点9,12M ??- ??? 。 (选作题) 已知双曲线的中心在坐标原点,焦点12,F F 在坐标轴上,离心率为 ,且过点 (4,, (1)求双曲线方程; (2)若点(3,)M m 在双曲线上,求证:12MF MF ⊥; (3)求12F MF ?的面积。 ●教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. ●教学重点 双曲线的几何性质 ●教学难点 双曲线的渐近线 ●教学方法

学导式 ●教具准备 幻灯片、三角板 ●教学过程 I.复习回顾: 师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称,这时,坐标轴是双曲 线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双 曲线中心. 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;线段B 1B 2叫双曲线的虚轴,它的长等于2b , b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=±x a b 叫做双曲线的渐近线; ②从图8—16可以看出,双曲线122 22=-b y a x 的各支向外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明: 先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为 y =x a x a b (22->a ). 设M (x ,y )是它上面的点,N (x ,y )是直线y=x a b 上与M 有相同横坐标的点,则Y =x a b .

双曲线及其标准方程--导学案

双曲线及其标准方程 学习目标:掌握双曲线的定义及标准方程,进一步理解坐标法的思想; 学习重点:了解双曲线的定义; 学习难点:双曲线标准方程的推导过程; 学习过程: 一、复习与问题: 1、复习:椭圆的定义 椭圆的标准方程: 2、问题:平面内与两定点的距离的和等于常数(大于两定点之间的距离)的点的轨迹叫做椭圆,平面内与两定点的距离的差为非零常数的点的轨迹是怎样的曲线呢? 二、双曲线的定义: 双曲线的定义:把平面内 的点的轨迹叫做双曲线。 这两个定点叫做双曲线的 ,两焦点间的距离叫做双曲线的 合作探究:试说明在下列条件下动点M 的轨迹各是什么图形? ),,2,2,(212121都为正常数是两定点,c a c F F a MF MF F F ==- (1)当21MF MF -=2a 时,点M 的轨迹 (2)当12MF MF -=2a 时,点M 的轨迹 (3)当2a =2c 时,动点M 的轨迹 (4)当2a >2c 时,动点M 的轨迹

(5)当2a =0时,动点M 的是轨迹 三、双曲线的标准方程: 1、焦点在x 轴上的双曲线的标准方程 建系: 设点: 若焦距为2c (c >0),则1F ,2F ,又设点M 与两焦点的距离差的绝对值等于常数2a ,由双曲线的定义得: (整理过程) 由曲线与方程的关系知所求方程为双曲线的标准方程, 双曲线的标准方程 它所表示的双曲线的焦点在 ,焦点坐标为 2、焦点在y 轴上的双曲线的标准方程 焦点在y 轴上的双曲线的标准方程为 ,

它所表示的双曲线的焦点在 ,焦点坐标为 思考:如何根据双曲线的标准方程确定焦点的位置? 四、典例剖析 例1、已知双曲线的焦点为F1(-5,0), F2(5,0),双曲线上一点到焦点的距离差的绝对值等于8,则求双曲线的标准方程. 变式1、已知双曲线的焦点为F1(0,-5), F2(0,5),双曲线上一点P 到F1、F2的距离的差等于6,求双曲线的方程. 例2、求适合下列条件的双曲线的标准方程 1、焦点为(0,--6),(0,6),且经过点(2,5) 2、焦点在x 轴上, 3、经过两点 ),(),, (372B 267A --), (经过点25A ,52-=a

相关文档
相关文档 最新文档