文档库 最新最全的文档下载
当前位置:文档库 › LNG储罐泄漏火灾爆炸事故后果定量分析

LNG储罐泄漏火灾爆炸事故后果定量分析

LNG储罐泄漏火灾爆炸事故后果定量分析
LNG储罐泄漏火灾爆炸事故后果定量分析

56

工业安全与环保2013年第39卷第8期

I ndust r i al Saf et y a nd Envi r onm e nt al Pr o t ect i on A ugust2013

L N G储罐泄漏火灾爆炸事故后果定量分析

魏彤彤

(中国人民武装警察部队学院消防工程系河北廊坊065000)

摘要分析了目前用于定量预测LN G储罐泄漏火灾爆炸事故后果的三种主要计算模型,并基于A LO.

H A软件对【N G储罐泄漏导致的火灾爆炸事故后果进行了定量评估,深入分析了风速、泄漏部位对【N G储罐

泄漏事故的影响。结果表明:①在蒸汽云爆炸模型条件下,可燃区域和爆炸冲击波伤害区域随风速的增大先

增大后减小,风速为7m/s时达到最大值;随泄漏点与储罐底部距离的增大而减小;②在池火模型条件下,热

辐射伤害区域随风速的增大先增大后减小,风速为10m/s时达到最大值;随泄漏点与储罐底部距离的增大而

减小;风速使该区域向下风向方向偏移,且偏移程度随风速增加而增加;③在沸腾液体扩展蒸气云爆炸模型条

件下,风速和泄漏源位置变化对热辐射伤害区域形状和面积定量计算结果没有影响。

关键词L N G泄漏定量评估火灾爆炸A L O H A

Q uanl i t a f i ve E va l ua t i on O n t he Fi r e and Expl osi on A eei dent ot L N G L eakage

W E I Tongt ong

(毋p口I伽删of F/r e竹咄硪叭E ng/neer/ng,Ch/nes e Peo pl e’s A r m ed蹦泌Form A cod em y Lal研ang,I-l ebei065000)

A,bar l缸.I l l l∞m司or f or ecast i ng m ode l s f or quant i t at i vdy e va l ua dng t he pot ent i al ha z ard of f i re a nd e,xpl osi on ac ci den t caus ed by t he l e akage0f LN G帅蚰al y剥.B y t he us e of A L O H A sof t w ar e,t he r ange s0f t l am m abl e r egl o.,bl ast,七gi o,l

硼!Id hea t i l ldi al Jon r e#o.a舶cal cul at ed f or a speci f i c L N G t a nke r l e akage a cci dent.F ur t he r m or e。t he int lue,ll煅of w i nd ve-

l oei t y a nd l e akage l ocat i on011t he s ha pe a nd ar e a of t he a bove t hr ee r e gi ons aI e st udi ed.T he∞l cI da£i J唱r es ul t s r evo al t hat

Ii xl∞uneor l6m ed、『'll pOr doud e,xpl osi on m odd.t he锄m of t l am:l abl e l=e.gi on a nd bl ast r eoon i ncr e as e fi_,st l y a nd t hen de-

cr e雠w i t h t he w i nd

vdoci t y.re ac hi ng t he

l ns豳um at7m/s w i nd

vel oci t y;t he abO V l e t W O r%i o.s decr e ase w i t h t he l I ei ght

0f k岫伊l ocati on.B as ed O n oo ol f i re m odel,t he ar∞of hea t r adi a t i on r egi∞i ncreas es t l m l y a nd t hen de cr ea se8w i t h t he

恼d vdoei t y,r e achi I I g t he m a xi m um at10m/s w i nd vel oci t y;t he a bove r eOo.de em№w i t h t he l lei出of l e akage l ocat i on;

t he exl s t eaA ee of w i n d w i l l cl姗|ge t he di sni l斌i on of t his r e gi on.Base d O lt l boi l i I lg li卿d嘲蛾vapor ext al舶i on m odd,t he w i n d vel oci t y a nd l e akage l ocat i on have D O i r d l uen ee O n t he di st r i but i on a nd ar鼬of heat r adi a t i on r egio..

1畸W or ds L N G l ea ka ge qua nt i t at i ve eval ua t i on f i re expl06i on A L O H A

0引言

液化天然气(U N G)在生产、储运和使用过程中极易发生泄漏,当处于爆炸极限的ⅢG蒸气云遇到点火源时,会发生蒸气云爆炸事故;若液池被蒸气云回火或其他火源点燃,将会发生池火火灾;若L N G 储罐因长期受到外部热辐射作用发生失效破裂,则发生后果更为严重的沸腾液体扩散爆炸事故[1J。事故统计数据表明L N G储罐泄漏导致的三种主要火灾爆炸事故严重程度与环境条件和泄漏点源性质有很大关系,所以有必要考虑风速、泄漏部位对L N G 泄漏事故危害程度定量评价结果的影响,从而准确评估LI、I G泄漏事故的警戒范围和破坏强度[2-4]。

1计算模型

可用于定量预测的重要模型包括无约束蒸气云爆炸(unconf i ned va por doud expl osion,U、,C E)模型、池火(pool f i r e,PL)模型和沸腾液体扩展蒸汽爆炸(boa.i Il g l i qui d expa ndi ng va por explosion,BI剧E)模型【5J o

1.1U V C E模型

设定可燃区域为L N G浓度大于60%爆炸下限(LE L)的区域,相对安全区域为LN G浓度小于10%爆炸下限(L E L)的区域。蒸气云的1N T当量为:

‰=等(1)

将冲击波危害区域分为建筑物严重破坏区域(冲击波超压大于O.055l V I Pa)、人员重伤区域(冲击波超压大于o.024胁)和玻璃破损区域(冲击波超压大于0.0069M Pa)。

1.2PL 模型

储罐池火灾计算法

可燃性液体泄漏后流到地面形成液池,或流到水面并覆盖水面,遇到引火源燃烧形成池火。 该厂储罐区的10000m 3乙二醇、1000m 3甲醇储罐为重大危险源,本章假设储罐发生泄漏起火事故,利用池火灾计算模型对事故的后果进行计算分析。 5.3.1燃烧速度的确定 当液池的可燃物的沸点高于周围环境温度时,液池表面上单位面积燃烧速 度 dt dm 为: H T T C H dt dm b p c +-=)(001.00――――――――① 式中: dt dm ——单位表面积燃烧速度,kg/m 2?s ; c H ——液体燃烧热,J/kg ; p C ——液体的比定压热容,J/kg ·K ; b T ——液体沸点,K ; 0T ——环境温度,K ; H ——液体蒸发热,J/kg 。 当液池中液体的沸点低于环境温度时,如加压液化或冷冻液化气,液池表面 上单位面积的燃烧速度dt dm 为 H H dt dm c 001.0= ―――――――――② 式中符号意义同前。 乙二醇液池的沸点高于周围环境温度,故使用式①进行计算。 查得各个数据c H =281.9 kJ/mol =4.54×106 J/kg p C =2.35×103J/kg ·K b T =470.65K 0T =279.15K H =799.14×103 J/kg

燃烧速度可算得 dt dm =0.00363kg ·m 2 /s 同时,燃烧速度也可手册查得,下表5-8列出了一些可燃液体的燃烧速度。 表5-8 查表1-1可知甲醇的燃烧速度 dt =0.0576kg ·m 2/s 5.3.2火焰高度的计算 设池火为一半径为r 的圆池子,其火焰高度可按下式计算: 6 .02/10)2(/84? ? ????=gr dt dm r h ρ―――――――③ 式中:h ——火焰高度,m ; r ——液池半径,m ; 0ρ——周围空气密度,0ρ=2.93 kg/m 3; g ——重力加速度,g =9.8m/s 2 ; dt dm ——燃烧速度,kg/m 2 .s 。 乙二醇池面积=4850 m 2,折算半径=39.3 m 甲醇池面积=2150 m 2,折算半径=26.2 m 将已知数据代入公式得: 乙二醇火焰高度h =8.0879m 甲醇火焰高度 h =32.029m 。 5.3.3热辐射通量 当液池燃烧时放出得总热辐射通量为: ]172 [)2(61 .02 ++=dt dm H dt dm rh r Q c ηππ――――④ Q ——总热辐射通量。W ; η——效率因子,可取0.13~0.35。其它符号意义同前。 η取决于物质的饱和蒸汽压,

储油罐火灾爆炸的原因辨识(正式版)

文件编号:TP-AR-L3952 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 储油罐火灾爆炸的原因 辨识(正式版)

储油罐火灾爆炸的原因辨识(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计,如何辨识储油罐爆炸火灾的危险性,安全有效地加强管理,提高储油罐的安全可靠性,是安全管理工作所面临的一个重大课题。 1 明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物

未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。 2 静电 所谓静电火灾是指静电放电火花引燃可燃气体、可燃液体、蒸汽等易燃易爆物而造成的火灾或爆炸事故。 静电的实质是存在剩余电荷。当两种不同物体接触或摩擦时,物体之间就发生电子得失,在一定条件下,物体所带电荷不能流失而发生积聚,这就会产生很高的静电压,当带有不同电荷的两个物体分离或接触时,物体之间就会出现火花,产生静电放电(ESD) 静电放电的能量和带电体的性质及放电形式有关。静电放电的形式有电晕放电、刷形放电、火花放电等。其中火花放电能量较大,危险性最大。

火灾爆炸热辐射后果影响预测(池火灾计算)

火灾热辐射后果预测(池火灾计算) 燃烧速度/火焰高度/热辐射强度及后果 对航空煤油(以下简称航煤)进行池火模拟,模拟热灼烧后果。 (1)液池直径 本项目隔堤围成的面积为2677m 2,则液池半径r=29.2m 。 (2)燃烧速度 液体表面单位面积的燃烧速度dm/dt 为: H T T c Hc dt dm O b p +-= )(001.0/ 式中: dm/dt ——单位表面积燃烧速度,)/(2 s m kg ?; c H ——液体燃烧热;航煤为43070000 kg J /; p c ——液体的定压比热容;航煤为2000)/(K kg J ?; b T ——液体的沸点;取航煤的最小沸点为473K ; o T ——环境温度;取25℃即298K ; H ——液体的汽化热;航煤为280000kg J /。 通过计算可知航煤的燃烧速度为)/(068.02s m kg ? (3)火焰高度 火焰高度计算公式为: 6 .02 1 0])2(/[ 84gr dt dm r h ρ= 式中,h ——火焰高度;m ; r ——液池半径;29.2m ; 0ρ——周围空气密度,ρ0=1.293kg/m 3 ;(标准状态); g ——重力加速度,2 /8.9s m ; m h 66.58])2.298.92(293.10.068[2.29846 .02 1 =???= 因此,航煤储罐发生池火事故时火焰高度为58.66m 。

(4)热辐射通量 当液池燃烧时放出的总热辐射通量为: ()()[ ] 172/261 .02+??+=dt dm c dt dm H rh r Q ηππ 式中,Q ——总热辐射通量;W ; η——效率因子;可取0.13~0.35,取其平均值0.24; 其余符号意义同前。 计算得热辐射通量Q=6.3x108瓦。 (5)目标入射热辐射强度及后果 假设全部辐射热量由液池中心点的小球面辐射出来,则在距离池中心某一距离(X )处的入射热辐射强度为: 2 4X Qt I c π= 式中,I ——入射通量;2/m W ; Q ——总热辐射通量;W ; c t ——热传导系数,在无相对理想的数据时,可取值为1; X ——目标点到液池中心距离;m 。 当入射通量一定时,可以求出目标点到液池中心距离X : 当2 /5.37m kW I =时,m I Qt X c 57.36105.3714.341 106.343 8=?????==π 当2/25m kW I =时,X=44.79m 当2/5.12m kW I =时,X=63.35m 当2/0.4m kW I =时,x=111.98m 当2/6.1m kW I =时,X=177.06m 火灾通过热辐射的方式影响周围环境,当火灾产生的热辐射强度足够大时,可造成周围设施受损甚至人员伤亡。不同入射通量造成的损失如下表:

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

蒸汽云爆炸池火灾计算方法

附件4定量分析危险、有害程度的过程 附件4.1固有危险程度定量分析 1、具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量 附表4.7.1 相关数据 1、爆炸空间物质量计算 W f=VLmρ 式中:V-爆炸空间的体积大小m3, Lm-最易爆炸浓度 ρ-可燃气体的密度 1)二硫化碳 IS90车间的晾晒厂房24*15*8=2880m3 二硫化碳的密度为3.17kg/m3 最易发生爆炸的总量W f=VLmρ=2880*7.5%*3.17=685kg 上限发生爆炸的总量W f=VLmρ=2880*44%*3.17=4020kg 2)氨

制冷车间厂房20*15*8=2400m3 氨的密度为0.71kg/m3 最易发生爆炸的总量W f=VLmρ=2400*17%*0.71=290kg 上限发生爆炸的总量W f=VLmρ=2400*25%*0.71=426kg 3)硫磺粉尘 IS60车间的粉碎厂房24*15*8=2880m3 硫磺的最易爆炸浓度为70g/m3=0.07kg/m3 W f=VLm=2880*0.07=202kg 硫磺的发生爆炸的上限浓度为1400g/m3=1.4kg/m3 W f=VLm=2880*1.4=4032kg 2、TNT当量计算 蒸汽云爆炸的TNT当量计算公式:W TNT=AW f Q f/Q TNT 式中 A-蒸汽云的TNT当量系数,取4%; W TNT-蒸汽云的TNT当量,Kg; W f-蒸汽云中燃料总质量,Kg; Q f-燃料的燃烧热,MJ/Kg; Q TNT-TNT的爆热, Q TNT=4520 kJ/kg; 1)二硫化碳蒸汽云爆炸的TNT当量计算: W TNT1=AW f Q f/Q TNT=0.04×685×1000/76.14×1030.8/4520=82.1kg W TNT2=AW f Q f/Q TNT=0.04×4020×1000/76.14×1030.8/4520=482kg

CNG储气瓶泄漏事故后果模拟分析评价

CNG储气瓶泄漏事故后果模拟分析评价 摘要:CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸。本文即对CNG储气瓶泄漏后导致爆炸事故进行事故后果模拟分析,计算其爆炸冲击波的伤害范围。 关键词:CNG储气瓶泄漏事故后果 一、引言 随着天然气在汽车能源中所占比重的增大,越来越多的加气站被建立,压缩天然气(CompressedNaturalGas,简称CNG)加气站是常见的一类,在各种CNG 加气站里,通过压缩机加压压缩,强行将天然气储存在特制容器内,专供汽车加气的备用装置或系统,称为储气装置或储气技术[1]。CNG储气瓶是加气站常用的储气装置,该装置一般具有25~30MPa的高压,其储存的压缩天然气的主要成分是甲烷,属一级可燃气体,甲类火灾危险性,爆炸极限为5%~15%,最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高,对空气的比重为0.55,扩散系数为0.196,极易燃烧,爆炸,并且扩散能力强,火势蔓延迅速,一旦发生事故,难以控制[2]。 CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸,如果事故得不到有效控制,还可相互作用,相互影响,促使事故扩大蔓延及至产生巨大的冲击波危害,因此,对其危害后果做出合理评价具有重大意义[1]。 二、泄漏事故后果模拟分析 假设某一加气子站内有3支4m3大容积储气瓶,其中一支储气瓶的瓶口处发生天然气泄漏,模拟分析如下: 1.泄漏量计算 1.1 泄漏类型判断 P-储气瓶组内介质压力,取25MPa P0 -环境压力,取0.1 MPa,则P0 / P = 0.004 k-介质的绝热指数,取1.316 ,则介质流动属音速流动。 1.2泄漏孔面积和喷射孔等价直径

爆炸评价模型及伤害半径计算

爆炸评价模型及伤害半径计算 1、蒸气云爆炸(VCE )模型分析计算 (1)蒸气云爆炸(VCE )模型 当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。用TNT 当量法来预测其爆炸严重度。其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。其公式如下: W TNT = 式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8; A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ; Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。 (2)水煤气储罐蒸气云爆炸(VCE )分析计算 由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。 若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为: 取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg ); 水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193

kJ/kg):取Q f =616970kJ/kg; TNT的爆热,取Q TNT =4500kJ/kg。 将以上数据代入公式,得 W TNT 死亡半径R1=13.6(W TNT/1000) =13.6×27.740.37 =13.6×3.42=46.5(m) 重伤半径R 2 ,由下列方程式求解: △P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3 △P2=△P S/P0 式中: △P S ——引起人员重伤冲击波峰值,取44000Pa; P ——环境压力(101300Pa); E——爆炸总能量(J),E=W TNT ×Q TNT 。 将以上数据代入方程式,解得: △P2=0.4344 Z2=1.07 R2=1.07×(27739×4500×1000/101300)1/3 =1.07×107=115(m) 轻伤半径R 3 ,由下列方程式求解: △P3=0.137Z3-3+0.119 Z3-2+0.269 Z3-1-0.019 Z3=R3/(E/P0)1/3

(生产管理知识)生产装置重大泄漏事故原因分析及灾害后果模拟计算

生产装置重大泄漏事故原因分析及灾害后果模拟计算 1、泄漏事故原因统计分析 根据建国以来化工系统所发生的59起重大及典型泄漏事故的实际情况,从五方面对事故原因进行了分类,见表1。 表1 重大及典型泄漏事故原因分类 (1)工艺技术 工艺路线设计不合理,操作中关键参数控制要求不严格。 (2)设备、材料本身原因 设备本身缺陷,材料及安装质量未达到标准要求;生产、制造过程中不按照有关规定进行;材料选择不符合标准。 (3)人为因素 违章操作、误操作、缺少必要的安全生产和岗位技能知识;工作责任心不强。 (4)外来因素 外来物体的打击、碰撞。 (5)其他因素 不属于以上四种原因之一。 从以上统计可以看出,泄漏事故的发生主要是因为设备等产品的质量不过关,职工不按操作规程进行操作和安全生产意识不强等主要原因造成的。针对这些原因,企业应加强产品质量的检查和验收,积极开展安全生产及岗位操作技能教育,真正做到岗前培训,持证上岗。 2、典型事故案例分析

本节通过列举案例,分析类似事故,找出可能造成系统故障、物质损失和人员伤害的危险因素,防患于未然。 【案例一】1000m3气柜爆炸 发生日期:1979年7月9日 发生单元:河北省大城化肥厂 经济损失:14万元 (1)事故经过: 7月9日中午12时许,全厂断电,造气停车。当时造气工段1号炉正作吹风,2号炉作下吹,气柜存半水煤气400m3。停车前作最后一次半水煤气分析成分合格。此时发现1号煤气炉有倒气现象,为防止发生炉口爆炸,于下午2时左右,将气柜出口水封放空阀打开,将气柜内半水煤气放掉,下午4时气柜钟罩已落底。这时操作工又将1号洗气塔放空阀打开,作进一步系统卸压,各工段均处于停车状态,各工段只留下1~2名工人值班,到下午6时55分气柜突然发生爆炸。气柜周边撕裂,顶盖升至高空约40m,落至距气柜中心14m远处,将围墙砸塌10m多长。气柜爆炸的同时,造气工段2号洗气塔顶盖亦被炸坏,打出33m。没有造成人身伤亡。 (2)原因分析:①可燃性气体存在:虽然气柜已放空,气柜钟罩已落底,但钟罩球形顶部尚残存60多M3水煤气,洗气塔及煤气管道中也残存40多M3的 可燃性气体;②空气的混半水煤气,在这100M3半水煤气中含有大量的CO与H 2 入:由于气柜出口水封放空阀与洗气塔放空阀均已打开,使系统与空气连通,当系统内有压力时,半水煤气自系统排向大气,但自9日中午起就连续下大雨,气温下降很快,容器管道内残存的半水煤气温度也明显下降,致使气柜形成负压,由放空阀将空气吸入气柜,酿成爆炸条件。③火源引入:因1号洗气塔排污闸阀密封不严,较长时间的停车使水泄漏较多,水封失去作用,使造气炉与洗气塔、管道、气柜成为连通体,炉体火源引入气柜,引起爆炸。 (3)教训:①停车时必须由造气工段长负责检查设备(包括各种阀门)、工艺情况;②放空阀卸压后要及时关闭,避免空气混入;③防止停车后气柜煤气倒回、炉口爆炸,可使气柜进口水封加水和洗气塔、洗气箱水保持溢流。

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

储罐区火灾爆炸-事故树(分析方法与重要度计算)

灌区火灾爆炸――事故树(分析方法与重要度计算) 图-1 贮罐的事故火灾爆炸事故树 将贮罐的事故火灾爆炸事故树转化为成功树如图-2

图-2 贮罐的事故火灾爆炸事故树转化为成功树 贮罐火灾爆炸事故树的分析评价 1 、结构函数式 Tˊ=AˊBˊa=a(Aˊ+Bˊ)=a(X1ˊX2ˊX3ˊX4ˊCˊ+DˊEˊ)=a(X1ˊX2ˊX3ˊX4ˊFˊX5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ)=a{X1ˊX2ˊX3ˊX4ˊ(X6ˊ+X7ˊ)X5ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ}= a(X1ˊX2ˊX3ˊX4ˊX5ˊX6ˊ+X1ˊX2ˊX3ˊX4ˊX5ˊX7ˊ+X8ˊX9ˊX10ˊX11ˊX12ˊ) 2、最小径集 通过计算分析该事故树12个基本事件,可以得出下列3个最小径集:

P1={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X6ˊ} P2={a,X1ˊ,X2ˊ,X3ˊ,X4ˊ,X5ˊ,X7ˊ} P3={a,X8ˊ,X9ˊ,X10ˊ,X11ˊ,X12ˊ} 3、结构重要度分析 根据以上结果,运用结构重要度近似判别式,可以计算出12个基本事件和一个条件事件的结构重要度系数。计算结果如下:由于条件事件a存在于每一个径集中,因此其结构重要度系数I Φ(a)最大; 事件X8、X9、X10、X11、X12是3个径集中基本事件最少的一个径集中出现,其结构重要度系数IΦ(8)、IΦ(9)、IΦ(10)、IΦ(11)、I Φ(12)相等; 事件X1、X2、X3、X4、X5是3个径集中出现两次的基本事件,其结构重要度系数IΦ(1)、IΦ(2)、IΦ(3)、IΦ(4)、IΦ(5)相等; 事件X6、X7是3个径集中只出现一次的基本事件,其结构重要度系数IΦ(6)、IΦ(7)相等; 由此得出结构重要度顺序: IΦ(a)>IΦ(8)=IΦ(9)=IΦ(10)=IΦ(11)=IΦ(12)>IΦ(1)=IΦ(2)=IΦ(3)=IΦ(4)=I Φ(5)> IΦ(6)=IΦ(7) 评价结果分析及其对策措施建议 由事故树分析可知,火源与达到爆炸极限的混合物蒸气构成了液化气贮罐燃爆事故发生的要素。条件事件a(达到爆炸极限)结构重要度最大,是液化气贮罐燃爆事故发生的最重要条件,结合事故案例分析,要求采取以下针对性的措施: 1)贮罐罐体设计应采用不易产生蒸气的内浮顶罐或固定的喷淋冷却系统,最大可能地减少液化气蒸气在空气中达到爆炸极限; 2)在罐附近安装气体报警装置,对混合气浓度进行检测,一旦接

氯气泄漏重大事故后果模拟分析经典

氯气泄漏重大事故后果模拟分析(经典)

————————————————————————————————作者: ————————————————————————————————日期: ?

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

道化学火灾爆炸危险指数评价法

道化学火灾、爆炸指数评价法 1 目的 美国道化学公司自1964年开发“火灾、爆炸危险指数评价法”(第一版)以来,历经29年,不断修改完善;在1993年推出了第七版,以已往的事故统计资料及物质的潜在能量和现行安全措施为依据,定量地对工艺装置及所含物料的实际潜在火灾、爆炸和反应危险性行分析评价,可以说更趋完善、更趋成熟。其目的是: (1)量化潜在火灾、爆炸和反应性事故的预期损失; (2)确定可能引起事故发生或使事故扩大的装置; (3)向有关部门通报潜在的火灾、爆炸危险性; (4)使有关人员及工程技术人员了解到各工艺部门可能造成的损失,以此确定减轻事故严重性和总损失的有效、经济的途径。 2 评价计算程序 评价计算程序如下: 火灾、爆炸危险指数评价法风险分析计算程序如图1所示。 图1 风险分析计算程序 3 火灾、爆炸危险指数及补偿系数

火灾、爆炸危险指数及补偿系数见表1、表2、表3及表4。

表1 火灾、爆炸指数(F&EI)表

4 DOW方法计算说明 4.1 选择工艺单元 确定评价单元:进行危险指数评价的第一步是确定评价单元,单元是装置的一个独立部分,与其他部分保持一定的距离,或用防火墙。 定义: 工艺单元——工艺装置的任一主要单元。 生产单元——包括化学工艺、机械加工、仓库、包装线等在内的整个生产设施。 恰当工艺单元——在计算火灾、爆炸危险指数时,只评价从预防损失角度考虑对工艺有影响的工艺单元,简称工艺单元。 选择恰当工艺单元的重要参数有下列6个。一般,参数值越大,则该工艺单元就越需要评价。

(1)潜在化学能(物质系数); (2)工艺单元中危险物质的数量; (3)资金密度(每平方米美元数); (4)操作压力和操作温度; (5)导致火灾、爆炸事故的历史资料; (6)对装置起关键作用的单元。 选择恰当工艺单元时,还应注意以下几个要点: (1)由于火灾、爆炸危险指数体系是假定工艺单元中所处理的易燃、可燃或化学活性物质的最低量为2268kg或2.27m3,因此,若单元内物料量较少,则评价结果就有可能被夸大。一般,所处理的易燃、可燃或化学活性物质的量至少为454kg或

储罐火灾爆炸事故现场处置方案通用范本

内部编号:AN-QP-HT540 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 储罐火灾爆炸事故现场处置方案通用 范本

储罐火灾爆炸事故现场处置方案通用范 本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1事故特征 1.1危险性分析和事故类型 根据事故发生的过程、性质和机理,以及可能导致人员伤亡、财产损失、环境破坏的各种危害因素,经危害识别,储罐火灾爆炸事故类型有先爆炸后燃烧、先燃烧后爆炸、局部稳定燃烧三种类型。 1.2事故发生的区域、地点及装置名称 1.2.1区域或地点 储罐 1.2.2装置名称

二硫化碳储罐池火灾安全评价法

行业资料:________ 二硫化碳储罐池火灾安全评价法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

二硫化碳储罐池火灾安全评价法 本项目选取一个60m3二硫化碳储罐作为研究对象,贮罐发生泄漏后,二硫化碳液体将会立即扩散到地面,一直流到低洼处或人工边界,被防火堤、防护围堰等阻隔不再扩展,形成液池,若遇到火源将发生池火。本项目中二硫化碳储罐取其充装系数为85%,其池火事故后果的预测过程如下:1)查阅有关手册,二硫化碳的燃烧速度取为dm/dt:132.97Kg㎡/s。 2)池火的火焰燃烧高度计算 为:H= H一火焰高度,m:r—液池半径,根据图纸尺寸,取值1.75m: ρo一周围空气密度,Kg/m3;计算1m3空气的重量为:≈1295(g)式中:1000为1m3空气=1000升,单位(L)29为1摩尔空气质量,单位(g/mol)22.4为标准状况下每升空气的摩尔数,单位(L/mol) 空气密度为1.295Kg/m3。g—重力加速度,9.8m/ s2:dm/dt一燃烧速度,132.97Kgm2/s.计算得到液池火焰燃烧高度为79.43m。3)进一步计算得到热辐射通量为Q:Q=Q 一总辐射通量,Wη一效率因子,取O.26;hc一二硫化碳燃烧热,取13553K.98J/Kg,计算得到池火的总辐射通量为:64.77×105W4)计算火灾辐射强度造成的损失:火灾辐射强度造成的损失参见下表表5.6-1火灾辐射强度造成的损失表 入射通量(kW/㎡)对设备的损害对人的伤害37.5操作设备全部损坏1%死亡10S,100%死亡1min25在无火焰、长时间的辐射下,木材燃烧的最小能量重大损失1~10S100%死亡1min12.5有火焰时,木材燃 第 2 页共 8 页

事故后果模拟分析

事故后果模拟分析 (1)物理爆炸能量计算 液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程。在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时考虑气体膨胀做的功。过热状态下液体在容器破裂时释放出爆破能量可按下式计算: [] W T )S S ()H H (E 12121---= 式中,E ——过热状态液体的爆破能量,kJ ; H 1——爆炸前饱和液体的焓,kJ/kg ; H 2——在大气压力下饱和液体的焓,kJ/kg ; S 1——爆炸前饱和液体的熵,kJ/(kg ·℃); S 2——在大气压力下饱和液体的熵,KJ/(kg ·℃); T 1——介质在大气压力下的沸点,℃; W ——饱和液体的质量,kg 。 (2)物理爆炸冲击波的伤害范围(危险性区域)估算 冲击波对人体造成的伤害是由于其超压引起的,显然,超压越大,伤害作用就越大。对爆炸的冲击波超压,采用比

例法则模拟标准TNT炸药爆炸之冲击波超压进行估算,即两个爆炸源若在某一地点形成同样的冲击波超压,则此超压点与两爆炸源距离之比,等于两爆炸源爆炸药量之比的三次方根。也就是说,当 R/ R0= ( Q /Q 0 )1/ 3= α 时,有 ΔP= ΔP0 式中:R ——实际爆炸源至超压点的距离,m; R0——标准炸药爆炸源至超压点的距离,m; q ——实际爆炸物的TNT当量,TNT,kg; q0——标准TNT炸药量,TNT,kg; α——爆炸模拟比; ΔP ——实际爆炸源至超压点的超压,MPa; ΔP0——标准炸药爆炸源至超压点的超压,MPa。

二硫化碳储罐池火灾安全评价法(一)

二硫化碳储罐池火灾安全评价法(一) 本项目选取一个60m3二硫化碳储罐作为研究对象,贮罐发生泄漏后,二硫化碳液体将会立即扩散到地面,一直流到低洼处或人工边界,被防火堤、防护围堰等阻隔不再扩展,形成液池,若遇到火源将发生池火。本项目中二硫化碳储罐取其充装系数为85%,其池火事故后果的预测过程如下:1)查阅有关手册,二硫化碳的燃烧速度取为dm/dt:132.97Kg㎡/s。2)池火的火焰燃烧高度计算为:H=H一火焰高度,m:r—液池半径,根据图纸尺寸,取值1.75m:ρo一周围空气密度,Kg/m3;计算1m3空气的重量为:≈1295(g)式中:1000为1m3空气=1000升,单位(L)29为1摩尔空气质量,单位(g/mol)22.4为标准状况下每升空气的摩尔数,单位(L/mol)空气密度为1.295Kg/m3。g—重力加速度,9.8m/s2:dm/dt一燃烧速度,132.97Kgm2/s.计算得到液池火焰燃烧高度为79.43m。3)进一步计算得到热辐射通量为Q:Q=Q一总辐射通量,Wη一效率因子,取O.26;hc一二硫化碳燃烧热,取13553K.98J/Kg,计算得到池火的总辐射通量为:64.77×105W4)计算火灾辐射强度造成的损失:火灾辐射强度造成的损失参见下表表5.6-1火灾辐射强度造成的损失表 入射通量(kW/㎡)对设备的损害对人的伤害37.5操作设备全部损坏1%死亡10S,100%死亡1min25在无火焰、长时间的辐射下,木材燃烧的最小能量重大损失1~10S100%死亡1min12.5有火焰时,木材燃烧,塑料熔化的最低能量1度烧伤10S1%死亡1min4.020S感觉疼痛,可能

液氨储罐火灾爆炸事故树参考文本

液氨储罐火灾爆炸事故树 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液氨储罐火灾爆炸事故树参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 液氨储罐火灾爆炸事故树建造过程见图1 (1)将后果严重且较易发生的事故“液氨储罐火灾爆 炸”作为顶上事件(第一层)。 (2)调查爆炸的直接原因 事件以及事件的性质和逻辑关系。直接原因事件为 “点火源”和“氨气达可燃浓度”。这两个事件要现时发 生,且在“达到爆炸极限”时,火灾爆炸才会发生,故用 “条件与门”与顶上事件连接。 (3)调查“点火源”的直接原因事件以及事件的性质和 逻辑关系。直接原因事件为“明火火源”、“储罐静电放 电”、“人体静电放电”、“机械火花”、“雷击火

花”。只要这四个事件中的一个发生,就会构成火灾爆炸的“点火源”,故将其用“或门”与中间事件“点火源”连接。 (4)调查“明火火源”的直接原因事件以及事件的性质和逻辑关系。直接原因事件为“吸烟”、“动火”。这两个事件都是“明火火源”,故将其用“或门”与中间事件“明火火源”连接。 (5)调查“机械火花”的直接原因事件以及事件的性质和逻辑关系。直接原因事件为“黑色金属与储罐撞击”、“鞋钉与地面摩擦发火”。只要这两个事件中的一个发生,就会构成“机械火花”,故将其用“或门”与中间事件“机械火花”连接。 (6)调查“雷击火花”的直接原因事件以及事件的性质和逻辑关系。直接原因事件为“直击雷”、“雷电感应”。只要这两个事件中的一个发生,就会构成“雷击火

池火灾计算

扩建项目储罐区储存有汽油,汽油主要危险在于泄漏后遇到点火源发生池火危险,因此,本报告对汽油罐组进行池火模拟。 (1)液池直径 汽油储罐所在罐组的防火堤围成的面积面积约为s=126.5m ×67.5m=8538.8m 2, D=(4×8538.8/3.14)1/2 =104.3(m) (2)燃烧速度 汽油的沸点一般高于发生池火时周围环境的温度,液体表面生单位面积的燃烧速度v 为: H T T c Hc v O b p +-= )(001.0 式中,v ——单位表面积燃烧速度,)/(2s m kg ?; c H ——液体燃烧热;汽油为 4.7×10 8 kg J /; p c ——液体的比定压热容;汽油为 2220)/(K kg J ?; b T ——液体的沸点;取汽油的最小沸点为 313K ; o T ——环境温度;汽油储罐采用保冷措施后,取 25℃即298 K ; H ——液体的汽化热;汽油为335k kg J /。 通过查询可知汽油的燃烧速度为)/(026.02s m kg ? (3)火焰高度 火焰高度计算公式为: 6.02 1 0])2([ 84gr v r h ρ= 式中,h ——火焰高度;m ; r ——液池半径;m ; 0ρ——周围空气密度,ρ0=1.293kg/m 3 ;(标准状态); g ——重力加速度,2 /8.9s m ;

v ——燃烧速度,)/(2s m kg ?。 m h 52.42])52.158.92(293.10.026 [ 15.25846.02 1 =???= 因此,汽油储罐发生池火事故时火焰高度为m 52.42。 (4)热辐射通量 当液池燃烧时放出的总热辐射通量为: 1 72)2(6.02++= v H v rh r Q c ηππ 式中,Q ——总热辐射通量;W ; η——效率因子;可取0.13~0.35,取其平均值0.24; 其余符号意义同前。 W Q 106.08 2106.771 026.07210.7424.0026.0)52.4252.1514.3215.2514.3(?=+????????+?= (5)计算目标入射热辐射强度 假设全部辐射热量由液池中心点的小球面辐射出来,则在距离池中心某一距离(X )处的入射热辐射强度为: 2 4X Qt I c π= 式中,I ——入射通量;2/m W ; Q ——总热辐射通量;W ; c t ——热传导系数,在无相对理想的数据时,可取值为 1; X ——目标点到液池中心距离;m 。 当入射通量一定时,可以求出目标点到液池中心距离X : 当2 /5.37m kW I =时,m I Qt X c 18.70105.3714.341106.774310=?????= = π 当2 /25m kW I = 时,85.96X m = = =

氯气泄漏重大事故后果模拟分析经典

X10-7?6.9X 10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1X10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1X 10-6,随着近年来防灾技术水平的提高,呈下降趋 势。 第七章氯气泄漏重大事故后果模拟分析 7.1 危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围内对环境造成破坏, 致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t「C),液氯比热为C(kj/kg「C),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t o(C),此时全部液氯放出的热量为: Q=WC(t-t 0)

设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t 0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3 )为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点:-34 C 液体平均此热:0.98kj/kg「C 汽化热: 2.89X 10F kj/kg 吸入5- 10mim致死浓度:0.09% 吸入0.5- 1h 致死浓度:0.0035-0.005% 吸入0.5- 1h致重病浓度:0.0014-0.0021%

相关文档
相关文档 最新文档