文档库 最新最全的文档下载
当前位置:文档库 › 高压输电线路的防雷保护

高压输电线路的防雷保护

高压输电线路的防雷保护
高压输电线路的防雷保护

高压输电线路的防雷保护

1.雷电机制及雷电效应

1.1雷电形成及对地雷击

1.2雷电效应:

(1)热效应

(2)光效应

(3)电动力效应

(4)电磁效应 E SP∝q/L 图1

l >> L E MP∝dq/dt/L2

E RP∝d2q/dt2/L3

对于高压输电线路防雷,人们关心的主要是对地雷击。

2.与线路防雷有关的几个参数

2.1雷电流幅值累积概率分布:

1979年我国过电压保护规程给出雷电流幅值累积概率分布的计算

lgP I= -I/108 (1)

I:雷电流幅值(kA)

P:雷电流超过I的累积概率

其相应曲线如图1-1

上述曲线和(1)式是由1205个实测雷电流数据整理得出。限于

我国当时的条件,绝大多数雷电流是用磁钢记录器由多塔电流相加而得。

我国220kV新杭线经30年的现场实测,获得106个雷击塔顶宝贵的数据,其概率分布公式为:lgP I= -I/87.6 (2) 106个数据中的97个负极性雷电流幅值的累积概率分布为:

lgP I= -I/87.2 (3)

两者相差很小,取为lgP I= -I/88 (4),即为1997版过电压保护规程使用的数据。

在西北地区(陕南除外),内蒙古部分地区,20个雷电日及以下者取lgP I= -I/44 (5)

2.2雷电流的波形和陡度

雷电流的等值波形,常用的有三种:

(1)标准冲击波形,也称双指数波

i=I0(e- t-e-βt) (6)

被击物体的阻抗是纯电阻性时,作用在被击物的电压波形和电流波形是相同的。双指数波形也用作冲击绝缘强度试验电压波形,对此定出标准的波头和波长,常记为1.5/40。

(2)等值斜角波,有时将雷电流看作斜角波,其斜率可由给定的幅值和波头长度I f决定,a=I M/I f (7)

(3)等值余弦波

i=I M/2 (1-cosωt) (8)

di I Mω

= =a max (9)

dt 2

πI M

I f = (10)

2 a max

雷电流的陡度直接测量更为困难些,通常根据雷电流幅值和波头长度,再按一定的波形去推算。也可以按下面的公式计算雷电流陡度出现的概率:

a

lgPa= - (11)

36

式中 a 是雷电流陡度(kA/μs)。

Pa是出现等于或大于陡度a的雷电流的概率。

2.3地面落雷密度

对地落雷密度Υ—每km2 每个雷电日D ,平均雷击地面的次数,1979年的规范定为0.015次/ km2.D。近年的雷电定位系统的测量表明,多数情况Υ=0.09~0.1。国外几个国家的取用值都大于0.06。Υ值与年平均雷电日Td有关,一般,若Td变大,则Υ随之变大。我国幅员辽阔,Td变化大,如格尔木Td仅为0.3,海南澄迈Td为133。所以Υ随Td而变是合理的。国际大电网会议第33委员会推荐的计算式:

Ng=0.023Td1.3(8)

式中 Ng为在年平均雷暴日为Td的条件下,每1km2大地1年的雷击次数。

Td为年平均雷暴日。

DL/T 620 1997 推荐r值为0.07。

浙江电研院认为r=0.07偏大,SDJ7-79推荐r=0.015,新杭线30年雷电观测,实测推导出r=0.0242(《电网技术》1999 No.9 孙萍)。

3.输电线路传统的防雷保护措施及其局限性

3.1传统的防雷保护措施

a. 避雷线

b. 减小保护角

c. 降低接地电阻

d. 加装耦合地线

e. 塔顶装避雷针

f. 提高绝缘水平

g. 采用不平衡绝缘,自动重合闸,消弧线圈等等

3.2作用及其局限性

a. 上述有些措施对提高耐雷水平降低跳闸率起到了明显的作用;

b. 对有些地区或地形地貌特殊的地区上述措施即使综合使用,跳闸率依然居高不下;

c. 复合外套金属氧化物避雷器的出现为提高线路的耐雷水平,降低跳闸率创造了条件。

4.带串联间隙的复合外套金属氧化物避雷器(PMOA)

4.1线路上安装避雷器是PMOA应用范围的扩展

4.2线路型PMOA国内外发展概况

国外:a. 日本

b. 美国

c. 英国、法国

国内:a. 90-95年“九五”电力部重点科研项目(电科院、清华)。

b.中能、法伏安、电科院、西瓷所等线路型PMOA投入系

统运行,取得较好的运行效果。

4.3线路型避雷器的主要功能

a. 系统正常运行电压、工频暂态电压下,操作过电压下,避

雷器不应动作。

b. 雷电过电压下,避雷器应可靠动作,并将绝缘子两端的电压钳制至绝缘子的伏秒特性以下,动作之后,并应在设计的时间内可靠熄弧。

c. 避雷器应有足够的通流容量和大电流冲击耐受能力,耐受大电流冲击后,电阻片的稳定性良好。

d. 线路避雷器安装后,空气间距应满足塔头绝缘配合的要求。

e. 线路避雷器及其外露金属件、连接线的局部放电量和无线电干扰水平应符合线路规范的要求。

f. 安装方便。

4.4线路型PMOA的类型

g. 无间隙型

h. 带串联间隙型:(a)绝缘子支撑间隙

(b)纯空气间隙

图2

4.5线路型PMOA的保护原理

就序3中的b和c讨论之

a. 保护原理

PMOA的伏—秒特性与I N的伏—秒特性配合。

图3

特点:

●带串联间隙PMOA是复合试品(半导体、空气间隙)组合物的

放电特性б值放电稳定性(U50)

●绝缘子串放电特性

●两者配合的重点在绕击

●确保雷击时避雷器先动作

b. PMOA动作后,熄弧问题

图4

图5

特点:

●MOR和弧阻的联合作用确定在1/4周波内可靠熄弧。

●国产的PMOA仅MOR就达到了,即熄弧性能裕度较大。

●伏安特性对称,对负极性的雷或振落雷,PMOA工作点稳定。

4.6 线路型PMOA的保护作用

保护范围与雷击类型有关

a.绕击,雷云头部的电位很高,绕击时绝缘子的闪络多发生在波

前0.8~1.2μs左右。

避雷器只能保护与其并联的绝缘子串。

b. 反击

(a) 雷击塔顶:雷电流波头长度与塔高、接地装置型式有关。

(b) 雷击避雷线

反击,雷击塔顶或避雷器线,绝缘子两端电压达到最大值的时间与雷电流的波形有关。雷电流的波头长度与被击物的高度、被击物接地装置的型式、雷电流的大小等因素有关。

关于雷电流波头长度:

据统计,雷电流的波头长度多出现在1~5μs的范围内。

过电压保护规程对雷电流波头长度的推荐使用值,也稍有不同:

如:对50~100kA雷电流用Tt=3μs(1959年11月版过电压保护规程)

对中等数值的雷电流用1~4μs(1979版过电压保护规程)一般用2.6/50μs斜角波波形(1979年版、1997年版)

日本线路用避雷器雷电残压波形:

6/20μs(日立公司)

2/20μs(明电舍)

2/10μs(NGK、东京电力公司)

瑞士白格尔教授实测雷电流较多,波头长度变化范围较大。

反击时绝缘子两端电压的变化如图6所示。

图6

图7

(1)当雷击塔顶时,且杆塔接地良好(< 30Ω),高度一般,雷电通道波阻抗一般取200Ω,通过杆塔的电流I M用雷电观测到

的电流即曲线推荐值。

di

U M=IR+L +Ue-KU T

dt

(2)雷绕击导线,导线波阻抗按400Ω考虑,雷击点的电流

I M200

I Mˊ= =I M/2

200+400/2

当雷击于金属杆塔或水泥杆塔的线路导线时,导线着雷处的电压波沿导线向两侧传播,幅值为400/2×I M/2=100I M电压都加在绝缘子串上。

大于U50时,就要发生闪络。所以绕击导线时,线路的耐雷水

平I M=U50/100

(3)雷击架空线路的避雷线时,避雷线的波阻抗按400Ω,雷击点的雷电流为I M/2。雷电流还要在相邻杆塔上分流;雷电通道离杆塔较远。感应过电压较低。因此,雷击避雷线档中时,杆塔绝缘子串闪络的概率较低。

雷击塔顶时,对150m的相邻杆塔,可能有保护作用。

雷击避雷线档中,对300m档距的相邻杆塔,可能有保护作用。

4.7线路PMOA的安装

(1)考核性安装:有的线路工区,选择几只PMOA,在频繁遭受雷击的杆塔三相上安装,以检验PMOA的性能和保护效果。

(2)使用PMOA,提高线路耐雷水平,降低跳闸率,一般做法是:

a.线路自然状况的统计

b.历年雷电事故统计及雷电定位系统实测参数统计

c.计算分析绕击、反击

d.现场察勘

e.确定安装杆号和相别

f.编制安装施工方案

4.8线路型PMOA的维护和运行

免维护或维护工作量很小

(1)不需要专门维护

(2)巡线时留意观察PMOA外观及计数器状况

(3)必要时对动作次数较多的PMOA,在线路停电时摇绝缘。

有串联间隙的线路型避雷器可以不做预防性试验,安全运行的效果是很好的。总结经国内外的运行经验,中国南方电网有限责任公司企业标准Q/CSG10007-2004《电力设备预防性试验规程》,对串联间隙型线路避雷器不要求定期做予试。

4.9安装示例

(1)保护开关断口用线路终端避雷器。

a. 如果避雷器安装在变电站内,可以选无间隙。一般采用直

立式或悬挂式。按设计部门的安装方案办理。

b. 如果避雷器安装在终端杆或站外的构架上,建议采用悬挂式。一般采用无间隙配在线监测仪,例如HY10WZ2-200/496接JCQF2型或采用带串联间隙的HY10CX3-204/534接JSYF9放电计数器。

(2)线路中间避雷器用于保护线路绝缘子和塔头空气间隙。常用的CX1型绝缘子支撑间隙,CX2型纯空气间隙。

(3)保护电缆头用避雷器安装。

(4)500kV线路避雷器的安装方式。

4.10讨论

架空输电线路的防雷(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 架空输电线路的防雷(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

架空输电线路的防雷(标准版) 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV

及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。雷击时,间隙被击穿,使避雷线接地。 2降低杆塔接地电阻 降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。规程要求,有避雷线的线路,每基杆塔的工频接地电阻在雷季干燥时不宜超过表1所列数值。 表1有避雷线输电线路杆塔的工频接地电阻 土壤电阻率Ωm100及以下100~500500~10001000~20002000以上 接地电阻Ω1015202530

输电线路防雷技术的应用

输电线路防雷技术的应用 李旭鑫 广东电网公司潮州供电局,广东潮州(521000) 摘要:近年来,由输电线路雷害引起的跳闸故障事故仍占有很高的比例,也是困扰输电线路运行维护单位的一个重要难题。因此,有必要对输电线路防雷技术的应用进行研究、探讨,减少因雷害引起输电线路跳闸次数,确保电网安全、可靠运行。 关键词:输电线路;防雷技术;应用 中图分类号:TM726文献标识码:A 文章编号:1003-5168(2012)24-0001-01 因为各种建设条件的需要,很多输电线路和输电设备在大部分情况下都是露天安装,这样一来,自然环境对这些设备的影响会相应变大。对于输电线路而言,最主要的天气影响即为雷击。而输电线路很容易因为雷击出现的强电流而受到严重的损害,从而导致电力系统无法运作。严重的情况下,还会引起火灾,造成生命财产的损失。我国由于很多地方的地形因素不同,环境因素不同,地质因素和经济因素的不同,导致需要输电线路安装的质量也不同。所以在全国范围内开展输电线路的防雷技术的研究难度比较大。 1雷电对输电线路造成的危害 从输电线路以及电网的安全考虑,雷电对输电线路的危害主要有两个方面:一、雷电通过输电线路时,能产生较高的过电压,造成继电保护动作跳闸,运行线路被切断,给经济带来巨大损失;考验电力设备的承受能力和绝缘水平,给人员、电力设备造成威胁。二、雷电会给输电线路带来巨大电流,导致雷电击中点炸毁、燃烧,导致输电导线损坏或熔断,巨大电流产生时有强大的电动力,会造成电力设备不同程度的机械损伤。 电力系统自身的修复能力不能自动恢复雷电导致带来的灾害,造成设备损坏也需要很多时间和人力物力进行检修维护。春季和夏季是雷电发生集中的季节,电力系统在这一时期中断将会带来巨大的经济损失。夜晚、环境恶劣地区的雷电天气发生性较大,也给检修带来困难。此外,运行中的输电线路更容易遭受雷击的可能性。我国每年都有较多的雷电导致停电事故发生的报道,有效的防雷可以大大减少这些事故的发生,对于减少经济损失和提高电网安全可靠运行水平具有极其重要的意义。 2雷害主要原因分析 根据相关专业人士多年的经验,对于山区线路来讲,实际高度的增加以及地形的影响,会导致绕击率较高;而对于平原,丘陵地区的线路来讲,则以反击为主。根据以上的这些特点,山区线路应尽量减小避雷线的保护角,选择较好的防雷走廊,而且,从本质上来讲,最有效的防雷措施依旧是加强绝缘。与山区线路对比,平原和丘陵地区的线路最有效的防雷措施应该是降低接地电阻。 其实导致雷击有很多原因,我们必须准确针对不同的雷害故障进行针对性的分析,再结合以上山区线路和平原、丘陵地区的线路的特点,加以分析,才能获得最好的避雷方案。 首先我们必须清楚,雷击主要是使大地感应电荷中和雷云中的异种电荷,而由雷云造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,而且这些大气过电压可以分为两种类型,一种是感应雷过电压,一种是直击雷过电压。这样,我们就可以明白接地装置的完好与雷害是有直接相关的原因的。 输电线路感应雷过电压最大可达到400KV左右,这种线路的电压尤其对35KV 及以下线路绝缘产生很大的威胁,但对于110KV及以上线路绝缘威胁很小,鉴于这一点,110kV 及以上输电线路雷击故障多由直击雷引起,而且接地装置的完好与雷害是有直接相关的原因的。不论是反击还是饶击形式的直击雷,都对线路安全运行存在着很大的隐患。在采取各种防雷措施之前,我们必须准确针对不同的雷害故障进行针对性的分析,彻底搞清楚雷击的性质,加以分析,才能获得有针对性的避雷方案。应该对雷击性质进行有效分析,才能达到很好的防雷效果。 3 输电线路防雷技术措施 我国目前采取了很多的防雷措施,这些措施的目的就是为了将雷击影响的概率降到最低,使我国电力系统安全正常有效的运行。然而对于输电线路来讲,受雷击的影响概率时却也因为各地的地形因素以及其他的原因,而各不相同。所以,我国由于很多地方的地形因素不同,环境因素不同,地质因素和经济因素的不同,导致需要输电线路安装的质量也不同。所以在全国范围内开展输电线路的防雷技术的研究难度比较大。同时防雷措施的制定还应该考虑成本,尽量使资源的利用最大化,尽量节约电力系统的投资成本,为此,除去安装必要的防雷装置以外,以下几个具体的环节必须要重视。

高压输电线路防雷现状和防雷措施

浅析高压输电线路防雷现状和防雷措施 摘要:伴随着经济的快速发展,电力需求日趋增加,雷击不断危害着输电线路,严重影响到电网的正常运行。本文就高压输电线路的防雷保护现状进行了分析,提出了防雷措施,可供参考。 关键词:高压输电线路;防雷现状;预防措施 abstract: with the rapid development of economy, the power demand is increasing constantly, the lightning harm to transmission line, seriously affected the normal operation of the power grid. this paper analyzes the present situation of lightning protection for high voltage transmission line, lightning protection measures are put forward, for reference. key words: high voltage transmission line; lightning protection; preventive measures 中图分类号: tu856 一、高压架空输电线路防雷保护的现状 1.架空输电线路防雷保护的现状 电在人们的生活生产中发挥着重要的作用,而雷击会影响高压架空输电线路的正常工作,甚至产生一系列的安全问题。尽管近年来我国相关部门加强了对线路防雷的研究,从而使因雷击导致线路跳闸的现象逐年减少,但在电网中,因雷击引起线路跳闸的情况仍有发生,这就说明,我们在高压架空输电线路的防雷保护工作还不够完善,还需要进一步的研究与探讨。

输电线路防雷保护论文

输电线路的防雷保护 摘要:不同类型的雷击,在不同的线路所产生的感应雷过电压及直击雷过电压是不同的。通过对不同输电线路的感应雷过电压及直击雷过电压分析,得出输电线路应有的耐雷水平。 关键词:电输线路,防雷,耐雷水平 abstract: different types of lightning, in different line produced by the induction lightning overvoltage and sings rem overvoltage is different. through different transmission line induction lightning overvoltage and sings rem overvoltage and analysis of the transmission line should have lightning resisting level. key words: electric lose lines, prevents thunder, lightning resisting level 中图分类号:f407.61 文献标识码:a 文章编号 前言:据统计,电力系统雷害事故中,线路的雷害事故占很大比例。线路雷害事故引起的跳闸,影响系统的正常供电,增加维修工作量,而且雷电波还会沿线路侵入变电站。 1输电线路的防雷措施 雷击暴露在空气中的架空输电线路有4种如图1所示。分别是:雷击线路附近地面、雷击塔顶、雷击避雷线和雷击导线。根据过电压形成的过程来分,上述4种雷击情况可分两类:感应雷过电压和

架空输电线路防雷措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.架空输电线路防雷措施正 式版

架空输电线路防雷措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护

措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用

架空输电线路防雷措施

编号:SM-ZD-12767 架空输电线路防雷措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

架空输电线路防雷措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力

浅析高压输电线路防雷现状和防雷措施

龙源期刊网 https://www.wendangku.net/doc/c76209755.html, 浅析高压输电线路防雷现状和防雷措施 作者:徐振 来源:《城市建设理论研究》2013年第07期 摘要:伴随着经济的快速发展,电力需求日趋增加,雷击不断危害着输电线路,严重影响到电网的正常运行。本文就高压输电线路的防雷保护现状进行了分析,提出了防雷措施,可供参考。 关键词:高压输电线路;防雷现状;预防措施 Abstract: With the rapid development of economy, the power demand is increasing constantly, the lightning harm to transmission line, seriously affected the normal operation of the power grid. This paper analyzes the present situation of lightning protection for high voltage transmission line, lightning protection measures are put forward, for reference. Key words: high voltage transmission line; lightning protection; preventive measures 中图分类号: TU856 一、高压架空输电线路防雷保护的现状 1.架空输电线路防雷保护的现状 电在人们的生活生产中发挥着重要的作用,而雷击会影响高压架空输电线路的正常工作,甚至产生一系列的安全问题。尽管近年来我国相关部门加强了对线路防雷的研究,从而使因雷击导致线路跳闸的现象逐年减少,但在电网中,因雷击引起线路跳闸的情况仍有发生,这就说明,我们在高压架空输电线路的防雷保护工作还不够完善,还需要进一步的研究与探讨。 2.高压输电线路遭受雷击的事故主要有线路绝缘子的50%的放电电压,有无架空地线,雷电流强度,杆塔的接地电阻这几个原因。在进行高压输电线路设计时,要先明确高压输电线路遭雷击跳闸的原因,然后有针对性选择防雷方式。所以说要制定完善的防雷保护方案,首先要求我们对雷击活动的规律进行研究,要搞清楚它是因何原因而发生的,从而有针对性的进行防雷保护 (1)雷击多发生于地形复杂、高差大、山谷风口等地方。在这些特殊环境中,雷击的频率很高,雷云与地面之间雷击的概率在每个雷电日平方公里中可达0.015次。 (2)雷击一般大多是发生在绝缘薄弱的耐张杆上的,目前的技术要求上使直线杆塔绝缘配置有了提高,但相应耐张杆塔的绝缘配置未调,从而导致其绝缘子要承受较之之前更大的机械负荷,使得耐张杆绝缘薄弱点产生。

输电线路防雷措施

https://www.wendangku.net/doc/c76209755.html, 输电线路防雷措施 在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。 输电线路的防雷措施有: (1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。 (2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。

https://www.wendangku.net/doc/c76209755.html, (3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。 (4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。 (6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。能免除线路的冲击闪络,使建弧率降为零。 (7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。 (8)自动重合闸:由于线路绝缘具有恢复功能,大多数雷击造成的冲击闪络和工频电弧在线路跳闸后能迅速去电离,线路绝缘不会发生永久性的损坏和劣化,自动重合闸的效果很好。

架空输电线路的防雷(正式版)

文件编号:TP-AR-L3224 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 架空输电线路的防雷(正 式版)

架空输电线路的防雷(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有 效的措施。避雷线的主要作用是防止雷直击导线,同 时还具有以下作用:①分流作用,以减小流经杆塔的 雷电流,从而降低塔顶电位;②通过对导线的耦合作 用可以减小线路绝缘子的电压;③对导线的屏蔽作用 还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈 好,而且避雷线在线路造价中所占的比重也愈低。因

此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷

架空输电线路防雷措施实用版

YF-ED-J3782 可按资料类型定义编号 架空输电线路防雷措施实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

架空输电线路防雷措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电

线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷

输电线路的防雷保护

输电线路的防雷保护 摘要:在我国输电线路由于防雷与接地措施不到位,引发的输电线路跳闸的情 况时有发生,对电网安全稳定运行造成重大影响,给地区经济社会的稳定发展带 来了不利,因此,加强输电线路的防雷接地的研究是非常必要的。本文分析了雷 电对输电线路的影响,总结探讨了输电线路的防雷接地常见措施。 关键词:输电线路;防雷;接地 引言: 随着我国经济社会的快速发展,电力企业按照十三五期间要求,贯彻落实“创新、协调、绿色、开放、共享”发展理念,全球能源互联网互通互联,逐步建成网架坚强、安全高效、绿色低碳、友好互动的现代化大电网的实际要求,输电线路 规模的越来越大。然而,在室外架设的输电线路很容易受到自然环境的影响。其中,雷电是影响输电线路的安全运行重要因素之一。因此,加强输电线路防雷接 地措施的落实,是保证电网持续、可靠供电的重要环节。 1 雷电对输电线路的危害 雷电对输电线路的危害主要表现在以下几方面:一是,输电线路中由于雷电 自身的高热效应带来的危害。雷电遇到输电线路时,由于高热效应的原因,被电 流击中的部位会产生高热能,有可能会使线路燃烧或者融化;二是电磁场的危害。由于雷电形成时会有电磁效应,当雷电击中线路时,雷击部位在电磁效应下形成 电磁场,从而使电流量瞬间增大,有可能使线路高温燃烧。三是,雷电所发出的 电波危害。电波也是雷电附带的一种现象,它经常会干扰防雷装置的正常工作, 使其无法有效发挥防雷功能,变为放电器反击输电线路。四是,雷电产生的过电 压的危害。输电线路上出现的大气过电压有两种:一种是雷击于输电线路引起的,称为直击雷过电压;另一种是雷击线路附近地面而引起的,由于电磁感应所引起的,称为感应雷过电压。雷电仍可能绕过避雷线的保护范围而击于导线(绕击);雷击杆塔或避雷线强大的雷电流通过杆塔及接地电阻,使杆塔和避雷线的电位突 然升高,杆塔与导线的电位差超过线路绝缘子闪络电压时绝缘子发生闪络,导线 上出现很高的电压。称由于过电压引起绝缘子闪络,导线对地短路,雷电过电压 持续时间短(几十μs),继电保护装置来不及动作,但工频续流沿放电通道继续 放电,在形成稳定燃烧的电弧后,则继电保护装置将使断路器跳闸。导线上形成 的雷电过电压波,最终将侵入变电站,经复杂的折反射后,在电气设备上出现很 高的过电压,危及设备绝缘,造成事故。输电线路防雷性能的优劣主要由耐雷水 平及雷击跳闸率来衡量。 2 输电线路的防雷接地措施 2.1 提升绝缘性能 由于地理条件的差异,在一些地区,塔杆之间的跨度较大,这在无形当中就 加大了塔杆落雷的机会。在雷击时,电位高电压大,受绕击的概率大。在高塔杆 上增加绝缘子串,加强线路的绝缘可以有效地进行防护。通常采用并联间隙绝缘子,在雷击闪络时绝缘子和电弧的表面最好不要直接接触,防止操作过电压超过 了保护间隙的承受范围而产生事故。使用并联间隙绝缘子,能够使并联间隙先放电,将雷电导入地面,绝缘子串和线路都不会受到损坏。此外,可以直接使用肉 眼观测并联间隙绝缘子,这样维护起来也比较便利。此外,也可以使用差异绝缘法,在同一个塔杆上面的三相绝缘性能是不同的,最下面的绝缘子比上面的多, 这样,在出现了雷击时,导线的绝缘体会最先穿透,雷电会沿着塔杆进入到地面,

第九章 输电线路的防雷保护(4)

第九章输电线路的防雷保护 本章要求: 输电线路的感应过电压:雷击大地和雷击杆塔时导线上感应过电压的计算 输电线路上的直击雷过电压和耐雷水平 建弧率及雷击跳闸率的计算。 输电线路防雷措施及作用分析 由于输电线路长度大,分布面广,地处旷野,易受到雷击。输电线路上出现的大气过电压有两种:一种是雷击于输电线路引起的,称为直击雷过电压; (1)雷直击导线,无避雷线的线路最易发生,但即使有避雷线,雷电仍可能绕过避雷线的保护范围而击于导线(绕击)。 (2)雷击杆塔或避雷线强大的雷电流通过杆塔及接地电阻,使杆塔和避雷线的电位突然升高,杆塔与导线的电位差超过线路绝缘子闪络电压时绝缘子发生闪络,导线上出现很高的电压。这种杆塔电位升高,反过来对导线放电,称为反击。 另一种是雷击线路附近地面而引起的,由于电磁感应所引起的,称为感应雷过电压。(3)雷击输电线路附近大地:当雷击导线水平距离65m以外的大地时(更近的落雷由于线路的引雷作用而击于线路),由于空间电磁场的急剧变化,在导线上感应出的过电压,称为感应雷过电压。 感应雷过电压的危害: (3-1)引起线路跳闸,影响正常供电 由于过电压引起绝缘子闪络,导线对地短路,雷电过电压持续时间短(几十μs),继电保护装置来不及动作,但工频续流沿放电通道继续放电,在形成稳定燃烧的电弧后,则继电保护装置将使断路器跳闸,影响正常送电。 (3-2)雷电波侵入变电站 导线上形成的雷电过电压波,最终将侵入变电站,经复杂的折反射后,在电气设备上出现很高的过电压,危及设备绝缘,造成事故。 输电线路防雷性能的优劣主要由耐雷水平及雷击跳闸率来衡量。 耐雷水平:雷击线路时线路绝缘不发生冲击闪络的最大雷电流的幅值,单位为KA。线路的耐雷水平越高,线路绝缘发生冲击闪络的机会就越小。 雷击跳闸率:每100km线路每年有雷击所引起的跳闸次数。是衡量线路防雷性能的综合指标。 线路防雷问题是一个综合的技术经济问题,在确定线路的具体防雷措施时,应根据线路的电压等级、负荷性质、系统运行方式、雷电活动的强弱、地形地貌的特点和土壤电阻率的高低等条件,特别要结合当地原有线路的运行经验通过技术经济比较来确定。

高压输电线路防雷要求措施探讨(修改)

绪论 输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带。输电线路的安全运行,直接影响到了电网的稳定和向用户的可靠供电。因此,输电线路的安全运行在电网中占据举足轻重的地位,是实现“强电强网”的需要,也是向工农业生产、广大人民生活提供不间断电力的需要 由于我国地处温带(部分地区属于亚热带气候),所以雷电活动比较强烈。漫长的输电线路穿过平原、山区、跨越江河湖泊,遇到的地理条件和气象条件各不相同,所以遭受电击的机会较多。据统计,我国电力系统各类事故、障碍统计中,输、配电线路的雷害事故占有很大的比例。由于输电线路对于保“网”的重要地位,如何减少输电线路的雷害事故成为电力系统安全稳定运行的一项重要课题。 输电线路雷害事故引起的跳闸,不但影响电力系统的正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上的落雷,雷电波还会沿线路侵入变电所。而在电力系统中,线路的绝缘最强,变电所次之,发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。由此可见,输电线路的防雷是减少电力系统雷害事故及其所引起电量损失的关键。做好输电线路的防雷设计工作,不仅可以提高输电线路本身的供电可靠性,而且可以使变电所,发电厂安全运行得到保障。 关键字:输电线路防雷雷击

摘要:文章通过对雷击放电过程的分析以及高压送电线路雷击跳闸产生的原因,在进行线路防雷工作时,提出一些合理的防雷方式,以提高送电线路耐雷水平。 1.防雷设计 1.1防雷设计原则 线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用的好,仍然是可以信赖的。对已投入运行的线路,应结合地区的地貌、地形、地质以及土壤状况和接地电阻的合理水平给出正确的评价,找出可能存在的薄弱环节或缺陷,因地制宜地采取措施。 1.2防雷设计方法 目前,我国输电线路防雷设计主要有以下几个方面: ⑴理选择线路路径; ⑵设避雷线; ⑶低杆塔接地电阻; ⑷部分地段装设避雷器; ⑸提高线路整体绝缘水平。 这几种方法在目前的输电线路防雷设计中运用得非常多,在线路路径受地形和投资限制,选择范围不大的情况下,架设避雷线,降低杆塔接地电阻、装设避雷器、提高线路绝缘水平成为防雷设计的主要方法。避雷线、杆塔接地电阻、避雷器、线路绝缘的设计标准在各类规程和技术规范都有较为详细的阐述。 在选择设计输电线路的防雷设施时,应按照当地的累点活动情况、系统的中性点接地方式、输电线路的绝缘情况、有无自动重合闸或备用自投装置、负荷的重要程度等各项条件来综合考虑,并按照技术经济比较的结果来做出决定采用最佳保护方案。 在输电线路防雷设计中,必须紧密结合当前电力生产和建设中的课题,不断收集和积累各种数据和资料,经常总结防雷保护工作中的经验教训,提出新的更加有效地保护技术措施,制造相应的保护装置,以满足不断发展的电网要求。 输电线路防雷保护工作必须一切从实际出发,要充分听取各种意见,科研、设计、施工和运行部门应紧密结合,通力协作,根据当地雷电活动情况和电力网的具体特点等,进行充分的技术经济论证,保证防雷保护的设计方案技术先进、方案合理。

高压输电线路的防雷措施分析

高压输电线路的防雷措施分析 发表时间:2019-09-18T16:16:03.487Z 来源:《电力设备》2019年第8期作者:李君吉 [导读] 摘要:高压输电线路在电力系统之中占据着极为重要的位置,分布广泛且供电线路较长。 (国网内蒙古东部电力有限公司检修分公司呼伦贝尔运维分部内蒙古自治区呼伦贝尔市 021000) 摘要:高压输电线路在电力系统之中占据着极为重要的位置,分布广泛且供电线路较长。现阶段我国高压输电线路极易受到雷电的影响,优化与保护高压型输电线路时,必须注重做好防雷保护工作,避免雷击给正常的输电工作造成安全威胁。本文结合高压输电线路发生雷击事故的原因探讨了当下高压输电线路较为有效的防雷措施。 关键词:高压输电线路;防雷;措施 引言 高压输电线路在整个供电系统中具有重要的作用,高压输电线路主要集中架设在野外,一旦线路遭受雷击,往往无法及时得到抢修,极易导致事故位置线路高温持续,最终引发火灾等灾害。因此,为提高供电系统的稳定性,必须对高压输电线路的雷电干扰情况进行分析,然后采取适当的措施进行处理,进而为供电系统的安全运行提供重要的保障。 1高压输电线路防雷工作的必要性 雷击问题不仅会影响到输电线路的安全性,同时还会破坏线路中已有电力设备,给输电单位造成直接的经济损失。在初期的高压输电线路工程建设活动中,建设方必须满足绝缘性方面的技术要求。当前的变电所在输电生产的过程中也发挥重大作用,保护不到位也会受到雷击影响,输电线路的整体安全性不能被保障,为了提升供电企业的信誉度,长期提供稳定的输电服务,必须针对雷击等恶性事件,强化防雷系统,减少雷雨天气给输电线路的恶劣影高压输电线路是电力系统运行的主动脉,起着连接用户与变电站的作用,高压输电线路的运行状态对于供电可靠性与安全性有着直接的影响。一般情况下,高压输电线路都架设在空旷的野外区域,有着纵横交错、走线长的特征,因此,在遇到雷雨天气后,高压输电线路很容易遭到雷击的影响,一旦发生雷击,高压输电线路就会出现保护跳闸,这就会影响整个电力系统的安全运行。 2高压输电线路发生雷击事故的原因 2.1保护角问题 我国电力行业对于高压输电线路避雷线的保护角设置有着十分明确的要求,而实际在高压输电线施工过程中,保护角作业注意事项却往往会被忽略。即便安装过程中相关人员已经注意到避雷线保护角的安装等问题,但在实际作业过程过程中由于其他因素或者突发状况等导致保护角设置过大。这大大增加了雷击的概率。 2.2接地装置问题 当前我国在用的接地装置普遍缺乏有效的维护,生锈以及腐蚀等情况屡见不鲜。碳钢是当前我国接地装置的主要材料,长时间的使用以及缺乏必要的维护最终会导致该材料变薄,电阻增加,导电性能大大降低,从而在雷击防护效果上大打折扣。一些地区采用导电混凝土或将降阻剂等化学试剂掺杂入接地装置中,其后期使用中受腐蚀情况将更为严重。 2.3杆塔问题 杆塔以往大都是由混凝土与钢筋浇筑而成,位于杆塔内部的钢筋主要起到线路保护接地装置的效果。当杆塔或者线路遭受雷击时,线路中的电流会经过杆塔中的钢筋导向大地。而一旦遭受的电流过大,一些质量较差的水泥杆塔极有可能被强大的能量所击裂,从而产生一系列裂痕,甚至一些原本存在裂痕的杆塔很有可能被进一步击碎,导致高压输电线路断线,影响正常供电。 3高压输电线路综合防雷措施的应用探讨 3.1控制线路保护角 输电线路的保护角与绕击率存有线性关系,缩小保护角,可以控制绕击率,从而降低线路跳闸率,针对已经建设完毕的线路运用该种防雷手段,需要极高的技术成本,面对山区中的输电线路,杆塔塔头会给线路带去一定的限制,大幅度缩减保护角的施工工作难以有效展开。增大避雷线与输电线之间的耦合系数可以减少绝缘子电压的反击和感应电压的分量,从而减少雷电事故,而架设耦合线可以增大避雷线与输电线之间的耦合系数;我们可以通过降低绝缘子承受的电压,从而提高线路耐雷水平,而架设耦合电线可以增大分流雷击塔顶时向相邻杆塔的破坏作用,同时耦合电线也有一些其他限制:架设时需要检验杆塔强度,以及耦合地线和输电线的距离;而且架设耦合电线施工比较困难、受严格地形条件限制;同时还会增加线路损耗;而且造价成本也比较高。 3.2降低杆塔接地电阻 在高压输电线路防雷工作的开展之中,杆塔接地电阻的降低是一个极为有效的防雷措施,对于此方面的改进工作,应重点注重以下几点。第一点,应在杆塔接地电阻降低措施的开展之中,注重对所在区域地形、气候原本输电线路运行等方面的情况进行全面的分析,方能开展相应的工作。第二点,在架空地线及接地引下线方面连接工作的开展之中,应确接触方面的良好效果。第三点,应对接地装置方面的施工情况进行严格的监督管理,确保实际的接地电阻能够与设计方案之中的相关性要求相符合。第四点,在此方面工作的开展之中,应对周围的土壤进行充分的检查,若土壤本身的电阻率较高,则可采用降阻剂降阻的方法,来实现对接地电阻方面的良好改善,使土壤能够与金属接地良好接触,进而确保雷电电流能够以最快的速度流入大地。 3.3减少地线电阻 当杆塔遭遇到直击雷的破坏时,在杆塔顶部与地面间会产生过大电压,瞬间增加与高压传输线路的电位差,在电位差超过绝缘材料的绝缘能力范围时,就会造成线路闪络。在此情况下,若因闪络产生的电流传导到其他临近的杆塔,则会导致输电线路出现高压高电流,引发线路跳闸,造成输电线路故障。为避免上述情况发生,可通过降低杆塔接地电阻减少电压差,避免电压差超过绝缘材料的承受范围。在架设高压输电线时,为降低电阻,可将镁合金地线埋设在线路下方,利用耦合地线增高压输电线路与避雷线耦合度,控制高压输电线路在遭受雷击时产生过大电压,起到分担电压的作用,进而提高输电线路的防雷效果。 3.4避雷器设备 利用避雷器设备可以更加直接地完成防雷工作,将避雷器安装到高压输电线路系统中的指定位置,选定避雷器设备的使用位置时,一般会将其安装到地线与电网导线之间,也可以将其安置到导线之间以达到强化避雷效果的目的。将避雷器与其他普通的避雷装置对比,其

110千伏高压输电线路的防雷保护

110千伏高压输电线路的防雷保护 摘要:在电力系统中,由于架空输电线路所处的地理环境,相对于电力系统的其他设备,架空输电线路遭受雷击的几率远远大于其他系统。本文通过对雷击线路的危害及线路雷击跳闸的两种主要表现形式的特点进行了介绍和分析,并结合架空线雷害事故的形成的4个阶段特点和多年运行实践经验提出了防范保护措施。 关键词:高压输电线路雷击跳闸分析保护措施 引言 电网中的事故多以输电线路的故障为主,而输电线路的故障又以雷击跳闸事故最为突出,尤其是架设于山区的线路,线路故障大多是由于雷击跳闸引起的。笔者通过对输电线路雷击跳闸情况及防雷工作进行总结,提出改进建议,对提高输电线路的雷电防护能力,以期能够促进电网的稳定运行。 1、线路雷击跳闸的两种主要表现形式 一种是直击雷,是指带电云层与大地上某一点之间发生迅猛的放电现象。直击雷威力巨大,雷电压可达几万伏至几百万伏,瞬间电流可达十几万安,在雷电通路上物体会被高温烧伤甚至融化。直击雷多为击于塔顶及塔顶附近的避雷线,一般造成该塔一相或多相瓷瓶闪络。 另一种是绕击雷,是绕过避雷线击于导线上,绕击雷多发生在大跨越档和线路周围空旷地区。一般造成边相瓷瓶串闪络,该边相应该是迎着雷云走向的一侧,有时因雷电流较大,雷绕击导线后雷电流沿导线两侧传递,也会造成该档相邻的杆塔同相瓷瓶串闪络,当较大的雷电流绕击在靠一侧杆塔的导线上时,造成该塔的瓷瓶串闪络,同时由于雷电流大,在通过杆塔入地时造成塔顶电位高,同样可以引起反击造成其它相瓷瓶闪络。 2、改善和降低雷击跳闸率的技术防范措施 2.1开展雷电参数的分析工作 结合输电智能巡检系统科技项目的实施,对110kV及以上输电线路杆塔均实现GPS卫星定位,并将数据输入雷电定位系统中去。今后凡是地区内出现雷电日时,都可及时查询输电线路附近雷电活动情况,进行雷电活动参数的分析,以确定线路可能遭受雷击的几率,划分出输电线路遭受雷害的等级,并采取相应的防雷措施。 2.2架设避雷线

输电线路的防雷技术措施

仅供参考[整理] 安全管理文书 输电线路的防雷技术措施 日期:__________________ 单位:__________________ 第1 页共7 页

输电线路的防雷技术措施 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立 放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。 反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。 第 2 页共 7 页

论输电线路防雷措施的开展应用

论输电线路防雷措施的开展应用 发表时间:2019-06-05T17:01:56.317Z 来源:《电力设备》2019年第2期作者:郭俊[导读] 摘要:输电线路作为电网的重要组成部分,承担着电力能量传输的重要作用。(四川雅安电力集团(股份)有限责任公司四川雅安 625000)摘要:输电线路作为电网的重要组成部分,承担着电力能量传输的重要作用。输电线路的正常运行易受气象、自然环境、地形条件等因素的制约,雷电作为一种常见因素长期影响着输电线路的正常运行。近年来,随着电网建设的快速发展和强对流天气的增多,雷害故障呈现出一些新的特点,输电线路防雷工作面临新的课题。本文对输电线路雷击故障对应措施做初步的探讨。 关键词:雷电;输电线路;对应措施引言: 雷电是自然界频繁发生的一种高强度的电磁脉冲现象,因其影响面大,受到了气象、航天、航空、电力石油诸多部门的广泛关注,其中,电网因其具有广域分布特征,特别是输电线路暴露在自然之中,所经之处大多为旷野、丘陵或高山,更易受到雷电的冲击。雷电已经成为严重影响电网安全运行的重要因素。为实现输电线路防雷工作取得实质性效果,首先需通过雷击故障调查分析,对故障机理进行分析判定,掌握雷击故障时空分布规律和特点。然后根据雷击故障相关规律和特点,通过输电线路地形因素、电压等级及线路重要程度的区别,突出重点,开展不同区域、不同电压等级、不同重要性线路防雷对应措施,提高输电线路的防雷水平,减少雷害造成的电网和设备故障,保障电网安全可靠运行。 一、防雷措施的开展应用 针对引起线路雷击跳闸的原因,输电线路雷击故障对应措施首先应该突出重点,结合目前各种应用成熟的软硬件设施,有针对性的采用各种有效措施为线路设置有力的防雷屏障,提高输电线路耐雷水平,根本上降低雷击跳闸率,提高电网安全运行的可靠性。现总结及制定相应技术措施如下: 1.雷电定位信息系统应用 雷电定位系统是我国电力系统近年来在雷电工程技术领域应用广泛的雷电监测技术手段。在雷电定位技术及其系统自主研发以及雷电监测网的建设上,积累了大量的监测资料。利用雷电定位信息系统,分析线路各段的落雷密度,再结合地形地貌,为制定相应措施提供依据。 雷击故障点快速定位:雷击故障点快速定位与传统手段相比,雷电监测网在s级时间内就能定位雷击故障杆塔或雷击点,极大提高了巡线工人劳动生产率。 雷电参数统计:雷电定位系统能统计线路走廊内比如雷电日、雷电时、雷电数、地面落雷密度、雷电流幅值等防雷工程设计领域重要的雷电参数基础数据。比如地闪密度划分就是根据雷电定位系统的大量基础数据,将雷电活动频度分为以下4个等级、7个层级。表1:地闪密度等级划分表 输电线路防雷水平评估:根据雷电定位系统中线路沿线走廊的雷电日、地闪密度和雷电流幅值的统计结果,可找出输电线路易受雷击并发生闪络的薄弱线段,即“易闪段”,供工程设计和运行参考。 2.防止雷电反击故障技术措施应用改善接地电阻:接地电阻的高低是影响杆塔顶电位高低的关键性因素。杆塔雷电冲击电位由杆塔电感、接地电阻和雷电流幅值决定。接地电阻如果过大,雷击时易使杆塔顶电位升高,对线路产生反击;当杆塔接地电阻降低时,雷击塔顶时塔顶电位升高幅度降低,绝缘子所承受的过电压程度也有所降低,从而提高耐雷水平。基于经济性和安全性的考虑,将接地电阻降到10欧是比较合适的。增强绝缘配置:由于输电线路在山区、峡谷等特殊区段需采用大跨越高杆塔,这就增加了杆塔着雷的机率。绝缘配置是影响线路耐雷水平的重要参数,对于杆塔可采取绝缘子调爬、增加绝缘子调爬、改用大盘径悬式绝缘子、增大塔头空气间距来提高其防雷性能。安装线路避雷器:当雷电反击在绝缘子串两端产生的雷电过电压超过避雷器的动作电压时,避雷器动作,从而限制设备上的过电压,保护线路。绝缘子串加装线路避雷器可防止闪络发生,安装线路避雷器于线路易击段、易击杆,能够有效降低反击跳闸率。但由于避雷器相对价格比较昂贵,线路杆塔数量多,加装成本太高,为使得安装更科学、经济,安装避雷器应结合雷电定位系统,对没有雷击跳闸记录,但落雷密度大,反击耐雷水平低的杆塔,可根据现场实际安装避雷器提高线路反击耐雷水平。 3.防止雷电绕击故障技术措施应用地线零度或负保护角:由于地线保护角与线路绕击率明显成正比关系;随着保护角的变大,绕击率显著增大。减小地线保护角是防止超高压线路绕击的主要措施,若地线的保护角过大,会使导线不在地线的保护范围之内,容易发生绕击。国网公司对其输电线路地线保护角作了如下的要求: 表2:重要线路地线保护角选取表

相关文档
相关文档 最新文档