文档库 最新最全的文档下载
当前位置:文档库 › 桥梁抗震-时域法

桥梁抗震-时域法

桥梁抗震-时域法
桥梁抗震-时域法

第三章

时程分析法和阻尼计算理论2013版

桥梁结构抗震

1 ∫

( ) d

sin ( )d tg e t ξω

τδ ω

τ τ? ? ?

( )x t = d ω

§3-1 时程反应分析法

单自由度结构在地震作用下的运动方程为:

mx + cx + kx = ?m δ g (t )

t 0

由于地震波是极为不规则,上述积分难以用解析解计算。

2013版

桥梁结构抗震

2i i i i y y y ξ ω

ω+ += ?

( ) ( )Ti g i g

MI t t φδγ= ?

δ

Pi M

2013版

( )k ki i z g y t =

多自由度结构在地震作用下的运动方程为:

Mx + Cx + Kx = ? M I δ g (t )

具有正交阻尼,采用振型分解,得到广义坐标下单自由度运动方程:

2 1

i i

对于线性结构,任意反应量 Z 与结构位移之间存在线性关系:

z = Qx = Q Φy = Gy

Z 的任一分量 Z k 可表示为:

n

i =1

桥梁结构抗震

2013版

Mx + Cx + Kx = ? M I δ g (t )

一般结构自由度较多,而且复杂的 地震动过程不能用简

单的解析函数描述,因此得不到地震反应的解析表达式。

对于非正交阻尼结构 ,运动方程不能解耦,难以求解动 力方程组。

对于包含非线性 (几何或物理)、 桩(或基础)与土 相 互作用、行波效应或多点激励 等等情况,不能采用振型 叠加原理,也无法采用解析方法求解。

用数值方法是解决上述问题的有效办法!

桥梁结构抗震

2013版

§3-2 直接积分法

直接积分法——直接采用数值积分计算结构地震响应的方法

数值积分的基本原理:

(1)将振动时程分为一系列相等或不相等的微小时间间隔△t ;

(2)在△t 的时间间隔内,假定位移、速度和加速度按一定规律变化; (3)求解 t i △+ t 时刻结构的地震反应,t i △+

t 时刻结构的动力平衡方程可

以表示为如下的增量形式:

K D ?u t + ?t = ?F D

其中,K D 和 △F D 分别为结构等效动力刚度和等效荷载向量。

(4)对一系列时间间隔按上述步骤逐步进行积分,直到完成整个振动过程。

桥梁结构抗震

2013版

数值积分法:

显式积分法:利用时刻 t i 的位移、速度推算下一时刻 t i+1 的位 移和速度,

u i +1 = f (t i , u i , u i , u i )

显式积分法对于非线性结构,误差较大,并出现发散现象, 得不到精确结果。

隐式积分法:采用包含 t i △+ t 时刻运动响应的函数 f ,来推算 下一时刻 t i+1 的位移和速度,

u i +1 = f (t i , u i , u i , u i , u i +1 , u i +1 , u i +1 )

隐式积分法可以控制误差积累、计算结果稳定。

桥梁结构抗震

常用的数值积分法:

地震反应分析基本采用隐式积分

常用的两种方法为Newmark- β 法,Wilson- θ 法等

2013版

Newmark 法是一种加速度法,根据时间增量内假定的加速度 θ

桥梁结构抗震

u i +1 ? u i

u (t ) = u i + (t ? t i )

1 u i +1 ? u i

u (t )=u i + ∫ u (t )dt = u i + u i (t ? t i ) + (t ? t i )2

2013版

1

u (t )=u i + ∫ u (t )dt = u i + u i i t ) + u i i t )2 (t

? (t ? 2

1 u i +1 ? u i §3-3 Newmark 数值积分法

β

变化规律计算结构的动力响应。由于选择的加速度变化规律 任意,Newmark 方法的形式多样。 (1)线性加速度法

t

t i ?t

t

t i

+ (t ? t i )3

6 ?t

1

1 1 , 1i i

i g i

mu

cu

ku mu

++= ?

桥梁结构抗震

, 1g i u +( )i i u u t + 2(

)i i i u u t u t + ? + ?

1i u + =

?

2013版

21 t t +? +?

1 2

t i+1 时刻的结构响应满足运动方程

β

将 u i +1,u i +1 代入上式,得

c

k 1

m

m 3 1 c 1 k 2 m i 6 m

将 u i +1 代入 u i +1,u i +1 式则速度和位移反应值可求得。

地震时,速度和位移初值为0,加速度初值可由下式得到

mu 0 = ? m u g ,0

桥梁结构抗震

1 1( )i i i i u u u u t +

=++?

21 1( )i i i i

i u u u t u u t + += + ? + + ?

2013版

, 1g i u +

( )i i u u t + 2(

)i i i u u t u t + ?

+ ?

1i u + = ?

( )u t u =+

21 t t +? +?

1 2

(2)平均加速度法

1

(u i i +1 )

2

1

2 1 4

利用运动方程可得:

c

k 1

m

m 4 1 c 1 k

2 m i 4 m

桥梁结构抗震

1i i

u u + ?1i u u ?2013版

1/ 2 1/ 2 1

12i i i

i i u u u u

u

??+

i

u = =

1/ 2i i i u u t ? +? = u =

i u t +

? =

(3)冲击加速度法

u i +1/ 2 ? u i ?1/ 2 = u i ?t

u i ?1/ 2 = u i +1/ 2 =

?t

?t

u i +1 = 2u i ? u i ?1 + u i ?t 2

?t

?t 2

1 u i ? u i ?1 1 u i +1 ? u i ?1

2

?t 2 2?t

桥梁结构抗震

1

1(

)i

i i

i u u

u

u

t +=++?

2

21

1(

)i

i i

i

i u

u

u t

u t

u

t β

β+

+=

+ ? +

?

?

+

?

2013版

(4)Newmark - β 法

β

1

2

1

2

β 取不同的值,得到时间增量内加速度的不同变化形式,

β = 1/ 6 为线性加速度法 β = 1/ 4 为平均加速度法 β = 0 为冲击加速度法

对于多自由度的结构,其地震运动方程为: 桥梁结构抗震

2 21 1(

)i

i i

i

i u

u

u t

u t

u

t β β+ +

=

+ ? +

?

?

+

?

2013版

1

1(

)i

i i

i u u

u

u

t +=++?

(4)Newmark - β 法

β

Mu + Cu + Ku = F (t )

则 t i+1 时刻的位移、速度、加速度为:

1

2

1

2

u i +1 = ? M ?1Cu i +1 ? M ?1 K u i +1 + M ?1 F (t i +1 )

采用增量形式表示: 桥梁结构{抗震

?u = u i

i ?t 2 + β?u ?t 2

?t +

u 2β?t

1

?u = ?u ? ? ?u = u i ?t +

?u ?t

β?t β?t 2β

u i {2013版

(4)Newmark - β 法

β

1

1 1

1 ?u =

?u ?

?(

? 1)u i ?t

2 1 1 1

u i u i

2

?u = ? M ?1C ?u ? M ?1 K ?u + M ?1?F

式中:

?u = u i +1 ? u i

?u = u i +1 ? u i

?u = u i +1 ? u i

?u = ?u ? ?( u i i ?t ? 1)u 2β?t 2 4

桥梁结构抗震

?u = ?u ? ? β?t β?t 2β 2013版

K = K + C + 2β?t β?t M

?P = ?F + M ? u i i ? + C ? ? 1 1 ? ? 1 ? ?

β?t 2β ? 2β ? 4β ?u = ? M ?1C ?u ? M ?1K ?u + M ?1?F

采用增量形式表示速度和加速度:

1 1 1 β

代入

1 1 1

2 u i u i

可得下面计算位移增量的线性方程组:

K ?u = ?P

?u 代入上式得?u ,?u

其中系数矩阵和常数向量:

1 1

+

u u i + ? ? 1? u i ?t ? ? ? ?

?

桥梁结构抗震

t

t t

u u

=t t

t u u

u τ

τ+

++

2t

t

t u u ?

2013版

=t

t

t u u u τ

τ+

++

2 3t t t t u

u u 内t §3-4 Wilson- θ 数值积分法

基本假定:在时间间隔 θ ? ?(θ ≥ 1.0) 加速度响应线性变 化。则在间隔 θ ? ?t 内的任意时刻 t + τ 的加速度根据线性内

插值计算:

u t +τ =u t +

τ

θ ? ?t

τ

2θ ? ?t

τ + τ

2

6θ ? ?t

cr

t

n

T π 2013版

t ? ≤

(2)反应结构周期变化

桥梁结构抗震

§3-5 数值积分的几点问题

收敛性:当 ?t → 0 时,数值算法的数值解趋于准确值。

中心差分法,Newmark - β 法,wilson - θ 法均满足。

稳定性:某一步产生的误差不会在后续的计算中被无限

放大。

中心差分法为有条件稳定(要求

, Newmark - β 法和wilson - θ无条件稳定( ?t 取值不会导

致发散)。

时间步长选择:(1)足以描述外部荷载变化

T

10

桥梁结构抗震

2013版

§3-6 时程反应分析法特点

可以考虑结构、土—深基础相互作用,地震波相位差以及 不同地震波多分量多点输入等因素,以建立结构(包括基 础与地基)动力计算模型和相应地震振动方程。

可以考虑结构的几何和物理非线性以及各种减振、隔震装 置的非线性性质(如构件的弹塑性、橡胶支座变形、特种 阻尼装置等)。

对于复杂桥梁,如悬索桥、斜拉桥、斜交支承桥、弯梁桥 等桥梁,其振动模态存在着纵、横、垂直、扭转等的耦

合,时程反应分析法可以考虑这些耦合效应进行三维分析。

动态分析可以考虑各种不同因素,使结构抗震计算分析的 结果更加符合实际情况,得到结构地震过程中的全过程动

态反应,使桥梁抗震计算从单一强度保证转入强度、变形 (延性)的双重保证。

土与结构相互作用

桥梁结构抗震2013版

桥梁结构抗震

2013版

§3.7 结构阻尼理论和计算方法

3.7.1 桥梁振动阻尼

若无外部能源,则任何原来振动的物理系统都会

随着时间的增长趋于静止。这是因为系统的能量会因 为某些原因而耗散,产生振动系统能量耗散的原因称 为阻尼。

任何现实的建筑结构系统都具有振动阻尼。

阻尼产生的原因主要有结构材料的粘性、构件接

触面(或点)的摩擦,以及为控制结构振动所加于结构 的人工耗能装置等。

对于地震问题还有由于结构基础反射作用产生的

输入地震动的能量的损失,称其为辐射阻尼。

公路桥梁抗震设计的设防标准研究

【摘要】本文通过对国内外桥梁的抗震规范进行了细致的比较分析,以及对抗震桥梁的使用功能分类与重要性等因素的研究,提出了公路桥梁的抗震设防的标准,为中国公路桥梁的抗震设计规范的修订及完善提供了重要的依据。 【关键词】公路桥梁;抗震;设防标准 公路桥梁的抗震设防是指在地震作用下能够按照设计要求,实现预期功能的桥梁工程的预防措施。桥梁按照设定的可靠性要求以及抗震技术要求,一般是由设计地震动参数和建筑其使用功能的重要性决定的,这就是桥梁抗震设防的标准。当前,我国的《公路工程抗震设计规范》中,明确提出直接以基本烈度作为设防烈度,而且考虑到结构重要性系数,实际上没有明确的规定公路桥梁的结构抗震设防标准。而抗震设防标准是对结构抗震设防要求高低尺度的衡量,它直接关系到公路桥梁结构的安全度与工程造价的多少,是在抗震设计中不可回避的问题。 1.公路桥梁抗震的三水准设防与二阶段设计 多级抗震设防是被国内外的建筑物抗震规范中广泛运用的手段,其三水准设防设想,是通过二阶段设计实现的。 1.1三水准设防 若桥梁结构其设计的基准期是y,那么公路桥梁“小震不坏,中震可修,大震不倒”的抗震设计目标中,小震、中震、大震则分别约为y年63%、y年10%、y年3%。 在地震的作用下,桥梁的结构性能目标可分为三类,即桥梁构件没有任何损坏,结构保持在弹性范围内;桥梁构件出现可以修复的损坏,修复后可以正常使用;桥梁构件损坏严重,但整个结构其非弹性变形依然受到控制,同结构倒塌的临界变形还有一定的距离,震后能够修复,震时紧急救援车还可以通过。为实现公路桥梁的抗震设计目标,一般可以采用三水准的方法进行抗震设防。设防水准以及相应的性能目标如下表: 1.2二阶段设计 公路桥梁的抗震规范征求意见的稿拟中,所采用的二级设防,二阶段设计是满足“小震不坏,大震不倒”这一目标的,认为“中震可修”是自动满足的。所以,我国当前实际上应用的同公路桥梁抗震规范拟稿中的提议是一致的,即:在公路桥梁的抗震设计中,均采用二级设防,二阶段设计的方法,但是二者的二级设防,二阶段设计的内容是不完全相同的,在实际的应用过程中,为了能够保证结构的抗震安全性,所采取的二级设防、二阶段设计,实际上满足了“中震不坏、大震不倒”的目标,而“小震不坏”这一目标会自动满足。 2.公路桥梁抗震设防的重要性以及使用功能分类 2.1建筑抗震设防重要性的分类 根据建筑对社会、政治、经济以及文化的影响程度,将建筑抗震设防类别的重要性划分为以下几类。甲类:重大建筑工程和地震时可能发生严重次生灾害的建筑,如:大型桥梁,危险品等;抗震设防标准应高于本地区抗震设计基本地震加速度值a的要求,其值应按批准的地震安全性评价结果确定,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求;当a=0.4g时,应该按照a>0.4g的要求。乙类:地震时使用功能不能中断或需尽快恢复的建筑,如:医院,发电厂等;抗震设防标准应符合本地区抗震设计基本地震加速度值a的要求,当0.05g≤a≤0.3g时,应该按照0.1g≤a≤0.4g的要求。丙类:一般的建筑,如:一般的民用或工业建筑;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求。丁类:抗震次要建筑,如:一般仓库;抗震设防标准符合本地区抗震设计基本地震加速度值a的要求,设计基本地震加速度值a减半,但最小值不得小于0.05g。 依据建筑物重要性来确定的抗震设防类别,决定了建筑抗震设计所采用的地震带来的损坏的大小以及应该采取的抗震措施的等级,而且地震的作用随着抗震设防类别的差异,可以

公路桥梁抗震设防要求 -工程.

公路桥梁抗震设防要求 -工程 2019-01-01 1 将公路工程划分为五个档次: 第一档次为高速公路和一级公路上的抗震重点工程(系指特大桥、大桥、隧道和破坏后修复或抢修困难的路基、中桥和挡土墙等工程), 。此类工程地震破坏后会引起严重后果,上造成重大损失,国防上有特别重要的影响。其抗震等级定为一级,设计基准期为80年。 第二档次为高速公路、一级公路的一般工程(系指非重点的路基、中小桥和挡土墙等工程)和二级公路的抗震重点工程以及二三级公路路工程抗震设防目标 公路工程对政治、经济、国防和抗震救灾具有特别重要的意义,地震时一旦发生破坏,将造成交通中断,后果非常严重。进行公路工程抗震设计时,应根据不同等级公路的重要性程度,考虑重要性系数来计算水平地震作用。重要性系数的取值与工程类别有关,《公路抗震规范》根据工程的重要性和修复(抢修)难易程度上桥梁的支座。此类工程抗震设防要求高,具有特别重要的政治、经济意义。其抗震等级定为二级,设计基准期为60年。 第三档次为二级公路上的一般工程和三级工路上的抗震重点工程以及四级公路上的梁端支座、梁端连接、支挡措施。此类工程具有比较重要的政治、经济意义。其抗震等级定为三级,设计基准期为40年。 第四档次为三级公路上的一般工程和四级公路上的抗震重点工程。此类工程的抗震等级定为四级,设计基准期为20年。 第五档次为四级公路上的一般工程。此类工程的年平均昼夜交通量在200辆以下,一般可以不进行抗震强度和稳定性验算。 我国根据地震的不确定性、现有的技术条件和国家的经济条件及公路工程的特点和用途,在考虑国家经济力量可以承受并保障人民生命财产的安全和公路工程设施基本完好的前提下,提出了公路工程抗震设计总目标:按规范要求进行抗震设计的公路工程在发生与之相当的基本烈度地震影响时,位于一般地段的高速公路、一级公路工程,经一般整修即可正常使用;位于一般地段的二级公路及位于软弱粘性土层或液化土层上的高速公路、二级公路工程,经短期抢修即可恢复使用;三四级公路工程和位于地震危险地段(指发震断层及其邻近地段;地震时可能发生大规模滑坡、崩塌、岸坡滑移等地段)、软弱粘土层或液化土层上的二级公路以及位于抗震危险地段的高速公路、一级公路工程,保证桥梁、隧道及重要的构造物不发生严重破坏。

JTGD60-2015 公路桥涵设计通用规范及删减列表

JTGD60-2015 公路桥涵设计通用规范新规范删减列表 1.0.4、设计使用年限(新增) 桥涵主体结构和可更换部件的使用年限提出明确要求。 1..0.6、增加抗风、抗震、抗撞设计要求。 3.1.2、公路桥涵线形设计:(引用公路路线设计规范)。 3.1.4、地震状况应做承载力极限状态设计(从偶然状况中剥离)。 3.1.5、公路桥梁钢结构部分应根据需要进行抗疲劳设计(通用规范新增内容,对应的钢结构设计新规范执行)。 3.1.6、风险评估:初步设计阶段实行风险评估制度(新增,对应交公路发(2010)175号)。 3.2.3、增加斜交桥梁桥墩斜交正做时,墩台边缘净距的计算简式。 3.2.7、新增跨线桥桥墩设置及防护要求。 3.4.1、紧急停车带的设计长度要求修改。 3.4.2、人行道设置宽度修改。最小宽度有原来0.75或1米,修改为1米。增加路缘石高度设置的进一步说明。 3.5.1、增加易结冰、积雪的桥梁纵坡不宜大于3%的要求。 3.5.3、第四条,增加逆风、冰冻、漂流物的影响下,提高铺砌高度。 3.5.5、详细补充桥台搭板设置长度、宽度、搭接以及厚度要求。 3.6.6、增加桥梁栏杆与桥面板的连接方式描述。 3.6.8、条纹中补充了盆式支座、球钢支座等支座。 3.6.9、简化伸缩缝的要求,删除了数模式伸缩缝中钢梁高度的要求。 3.7.6、增加桥面排水、桥台排水、支挡构造物排水的要求,详见《公路排水设计规范》 3.8.2、新增永久观测点的设置要求。(特大桥、大桥) 3.8.4、修改防雷设计要求。(参考《建筑物防雷设计规范》、《高速公路设施防雷设

计规范》) 3.8.6、新增结构监测设施设置要求(技术复杂的大型桥梁)。 3.8.7、新增跨线桥设置防抛网要求。 4.1.5、基本组合中将汽车荷载按照车辆荷载的加载时,车辆荷载分项系数调整为1.8。 4.1.5、桥涵结构设计安全等级修改,将原不同情况下的大桥、中桥、小桥的结构设计安全等级提高了一个等级。 4.1.5、偶然组合:修改作用的分项系数。 4.1.6、取消长期组合、短期组合的说法,改为:准永久组合及频遇组合。 4.1.7、增加钢结构疲劳设计荷载组合规定。 4.2.2、增加预加力标准值计算公式。 4.2.5、第五条,增加水浮力标准值计算公式。 4.3.1、各等级公路桥涵的汽车荷载等级做了一定调整,将二级公路荷载等级标准提高了一半(由偏向公路二级,改为偏向公路一级)。车道荷载中集中荷载Pk的起始计算标准提高,由180KN提高至270KN。对交通组成中重载交通比重较大的公路桥涵,宜采用与该公路交通组成相适应的汽车荷载模式进行整体和局部验算。 4.3.1、汽车横向折减系数改为横向车道布载系数,提高单车道布载系数至1.2。 4.3.3、离心力计算取消了半径的限制,弯桥均需计算离心力。 4.3.7、增加疲劳荷载计算模型。 4.3.8、风荷载标准直接引用《公路桥梁抗风设计规范》,删除原来规范中规定的内容。 4.3.12、无悬臂宽幅箱梁,宜考虑横向温度梯度引起的效应。(新增内容) 4.3.13、支座摩擦系数增加盆式支座、球形支座的规定。 4.4.1、取消内河航道等级为1-3级内河船舶撞击作用设计值,要求按照专题研究确定。

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

《建筑工程抗震设防分类标准》

《建筑工程抗震设防分类标准》 修订征求意见稿 前言 我国在1976年唐山地震后,建设部作出建筑工程从6度开始抗震设防和按高于设防烈度一度的“大震”不倒塌的设防目标进行抗震设计的决策,是正确的。本次汶川地震表明,严格按照现行规范进行设计、施工和使用的建筑,在遭遇比当地设防烈度高一度的地震作用下(即地震力比规定值大一倍),没有出现倒塌破坏,有效地保护了人民的生命安全。 鉴于我国经济已有较大发展,各类建筑有可能进一步提高抗震设防标准。为贯彻落实《防震减灾法》和《汶川地震灾后恢复重建条例》,本次修订拟增加下列修订内容: 1.医疗系统、教育系统的建筑提高设防类别,并新增为防灾应急场所建筑设防类别,有3条。 2.体育建筑、商业建筑等人流密集建筑中划为乙类建筑的范围适当扩大,有3条; 3. 县和县级市的防灾应急指挥中心、市政基础设施、交通运输和电信建筑中的乙类建筑,从8、9度设防区扩大到7度区或6、7度区,有8条; 4. 新增明确本标准是最低要求的强制性条文和信息中心类建筑的设防类别规定各1条; 5. 对抗震设防类别的内涵和一些条款的文字表达作了改进,有10条。 本次修订共有26条。约占2004年版总条款数(100条款)的1/4。本征求意见稿中,带方框的文字为拟删除的内容,下划线为拟新增的内容,条号涂黄色的为拟新增强制性条文。 新建、改建、扩建的房屋建筑工程和市政基础设施工程,其抗震设防类别不应低于本标准的规定。 [修订说明] 本条拟新增为强制性条文,明确二点:其一,所有建筑工程均应确定其设防分类。其二,本标准的规定是最低的要求,有条件的建设单位、业主可以提高设防要求,例如按更高的抗震设防类别设计,或按照设计规范采用隔震、消能减震等新技术,使房屋遭遇强烈地震影响时损坏程度有所减轻。 此外,既有建筑工程的设防分类,允许根据实际情况处理。 3.0.1建筑抗震设防类别划分,应根据下列因素的综合分析确定: 1建筑破坏造成的人员伤亡、直接和间接经济损失及社会影响的大小。 2 城镇的大小和地位、行业的特点、工矿企业的规模。 3建筑使用功能失效后,对全局的影响范围大小、抗震救灾影响及恢复

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

城市轨道交通桥梁设计常用规范(截止2015年12月31日)

序号规范名称有效版本1《地铁设计规范》GB50157-2013 2《城市轨道交通工程设计文件编制深度规定》建质2013-160号3《城市轨道交通技术规范》GB50490-2009 4《城市轨道交通工程项目建设标准》建标104-2008 5《城际铁路设计规范》TB10623-2014 6《高速铁路设计规范》TB10621-2014 7《跨座式单轨交通设计规范》GB50458-2008 8《内河通航标准》GB50139-2014 9《混凝土结构设计规范》(2015版)GB50010-2010 10《铁路混凝土结构耐久性设计规范》TB10005-2010 11《铁路混凝土工程预防碱-骨料反应技术条件》TB/T3054-2002 12《铁路桥涵设计基本规范》TB10002.1-2005 13《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005 14《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005 15《铁路桥涵地基和基础设计规范》(2009版)TB10002.5-2005 16《铁路工程抗震设计规范》GB50111-2006 17《城市轨道交通结构抗震设计规范》GB50909-2014 18《混凝土结构加固设计规范 》GB50367-2013 19《混凝土结构后锚固技术规程》JGJ145-2013 20《铁路桥梁钢结构设计规范 》TB10002.2-2005 21《铁路结合梁设计规定》TBJ 24-89 22《钢-混凝土组合桥梁设计规范》GB50917-2013 23《公路钢混组合桥梁设计与施工规范》JTG/T D64-01-2015 24《公路钢结构桥梁设计规范》JTG D64-2015 25《钢结构设计规范》GB50017-2003 26《新建时速200公里客货共线铁路设计暂行规定》铁建设2005-285号27《铁路工程设计防火规范》TB10063-2007 28《铁路工程地质勘察规范》TB10012-2007 29《城市轨道交通岩土工程勘察规范》GB50307-2012 30《市政工程勘查规范》CJJ56-2012 31《城市地下管线探测技术规程》CJJ61-2003 32《铁路工程基桩检测技术规程》TB10218-2008 33《建筑基桩检测技术规范》JGJ106-2014 34《铁路桥涵工程施工安全技术规程》TB10303-2009 35《铁路桥梁盆式橡胶支座》TB/T2331-2013 36《铁路桥梁球形支座》TB/T3320-2013 37《桥梁球型支座》GB/T17955-2009 38《城市轨道交通桥梁盆式支座》CJ/T464-2014 39《城市轨道交通桥梁球型钢支座》CJ/T482-2015 40《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1-2008 41《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2-2007 42《钢筋混凝土用钢筋焊接网》GB/T1499.3-2010 43《预应力混凝土用螺纹钢筋》GB/T20065-2006 44《预应力混凝土用钢绞线》GB/T5224-2014 45《预应力混凝土桥梁用塑料波纹管》JT/T529-2004 46《预应力混凝土用金属波纹管》JG225-2007 47《预应力筋用锚具、夹具和联结器》GB/T14370-2007 48《铁路工程预应力筋用夹片式锚具、夹具和连接器技术条件》TB/T3193-2008 49《碳素结构钢》GB/T700-2006 50《桥梁用结构钢》GB/T714-2015 51《低合金高强度结构钢》GB/T1591-2008 52《电弧螺柱焊用圆柱头焊钉》GB/T10433-2002 53《钢结构焊接规范》GB50661-2011 54《钢结构高强度螺栓连接技术规程》JGJ82-2011 55《铁路钢桥高强度螺栓连接施工规定》TBJ214-92 56《金属熔化焊焊接接头射线照相》GB/T3323-2005 57《无损检测 焊缝磁粉检测》JB/T6061-2007铁路桥涵规范的修订内容见铁道部、铁总相关文件 (一)设计规范 (截止2015年12月31日) 拉索、缆索、冷铸 镦头锚、索鞍、索 夹等材料规范不在 此列表中

桥梁抗震复习题

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度?基本地震烈度和E1地震E2地震是什么关系? 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。 答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波?它们的传播特点是什么?各种波的速度对比? 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。 纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。

5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种波 就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为: 在离震中100Km处用伍德-安德生式标准地震仪所记录到的最大水平 动位移(以微米计)的常用对数值,即 Ml=lgA 地震烈度:用来衡量地震破坏作用大小的一个指标。 联系与区别:对于一次地震而言,震级只有一个,烈度则随着地点的变化而有若干个。一般来说,震中的烈度最高,离震中越远,地震影响越小,烈度 越低。 关系:Ml=1.5+0.58I0(震中烈度) 7.影响地震动特性的因素。 答:包括震源、传播介质与途径、局部场地条件这三类。 8.地震烈度是按什么标准进行区分的? 答:按地震烈度表的标准进行区分 主要依据是建筑物的破坏程度、地貌变化特征、地震时人的感觉、家具器物的反 应等。 9.地震造成的地表破坏有哪些现象? 答:地裂缝、滑坡、砂土液化软土震陷。

建筑抗震设防甲乙丙分类

按《建筑抗震设防分类标准》GB50223-2004整理,列出了常见的抗震设防类别为甲类和乙类的建筑,除此之外,基本上可以按抗震设防类别为丙类的建筑进行抗震设防。 一、基本规定 建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。 甲类建筑应属于重大建筑工程和地震时可能发生严重此生灾害的建筑,乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,丙类建筑应属于除甲、乙、丁类建筑以外的建筑,丁类建筑应属于抗震次要建筑。 甲类建筑在地震破坏后会产生巨大社会影响或造成巨大经济损失。严重次生灾害指地震破坏后可能引发水灾、火灾、爆炸、剧毒或强腐蚀性物质大量泄漏和其他严重次生灾害。 乙类建筑属于地震破坏后会产生较大社会影响或造成相当大的经济损失,包括城市的重要生命线工程和人流密集的多层的大型公共建筑等。 丁类建筑,其地震破坏不致影响甲、乙、丙类建筑,且社会影响和经济损失轻微。一般为储存物品价值低、人员活动少、无次生灾害的单层仓库等。 二、抗震防灾建筑 ①医疗建筑的抗震设防类别,应符合下列规定: 三级特等医院的住院部、医技楼、门诊部,抗震设防类别应划分为甲类。 大中城市的三级医院住院部、医技楼、门诊部,县及县级市的二级医院住院部、医技楼、门诊部,抗震设防烈度为8、9度的乡镇主要医院住院部、医技楼,县级以上急救中心的指挥、通信、运输系统的重要建筑,县级以上的独立采、供血机构的建筑,抗震设防类别应划分为乙类。 工矿企业的医疗建筑,可比照城市的医疗建筑确定其抗震设防类别。 医院的级别,三级医院指该医院总床位不少于500个且每床建筑面积不少于 60m2,二级医院指床位不少于100个且每床建筑面积不少于45m2。三级特等医院为极少数承担特别重要医疗任务的三级医院。 ②消防车库及其值班用房,抗震设防类别应划分为乙类。 ③大中城市和抗震设防烈度为8、9度的县级以上抗震防灾指挥中心的主要建筑,抗震设防类别应划分为乙类。

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读 近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下: 一、修订背景 原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。 二、《规范》的定位 《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。 三、特点及主要修订内容 《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。 《规范》主要吸收了近年来国内外在桥梁抗震概念设计、延性抗震设计、减隔震设计以及构造措施等方面的成熟研究成果,修订和完善了相关设计规定和计算方法,增强了《规范》体系的完整性以及设计和计算方法的适用性和可操作性。 具体来讲,《规范》的主要修订内容包括: (一)在基本要求方面:增加了桥梁结构抗震体系的内容,明确了B类和C类梁桥可采用的抗震体系包括延性抗震体系和减隔震体系两类。细化了抗震概念设计的内容,增加了梁式桥一联内桥墩的刚度比要求和多联梁式桥相邻联的基本周期比要求。

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1.震级和烈度有什么区别和联系? 震级是表示地震大小地一种度量,只跟地震释放能量地多少有关,而烈度则表示某一区域地地表和建筑物受一次地震影响地平均强烈地程度.烈度不仅跟震级有关,同时还跟震源深度.距离震中地远近以及地震波通过地介质条件等多种因素有关.一次地震只有一个震级,但不同地地点有不同地烈度. 2.如何考虑不同类型建筑地抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类).乙类(重点设防类).丙类(标准设防类).丁类(适度设防类). 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度地预估罕遇地震影响时不致倒塌或发生危及生命安全地严重破坏地抗震设防目标. 2 )重点设防类,应按高于本地区抗震设防烈度一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施;地基基础地抗震措施,应符合有关规定.同时,应按本地区抗震设防烈度确定其地震作用. 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施.同时,应按批准地地震安全性评价地结果且高于本地区抗震设防烈度地要求确定其地震作用. 4 )适度设防类,允许比本地区抗震设防烈度地要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低.一般情况下,仍应按本地区抗震设防烈度确定其地震作用. 3.怎样理解小震.中震与大震? 小震就是发生机会较多地地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇地地震,2%. 4.概念设计.抗震计算.构造措施三者之间地关系? 建筑抗震设计包括三个层次:概念设计.抗震计算.构造措施.概念设计在总体上把握抗震设计地基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性.加强局部薄弱环节等意义上保证抗震计算结果地有效性.他们是一个不可割裂地整体. 5.试讨论结构延性与结构抗震地内在联系. 延性设计:通过适当控制结构物地刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大地延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”. 延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件地延性,提高抗震性能. 第2章场地与地基 1.场地土地固有周期和地震动地卓越周期有何区别和联系? 由于地震动地周期成分很多,而仅与场地固有周期T接近地周期成分被较大地放大,因此场地固有周期T也将是地面运动地主要周期,称之为地震动地卓越周期. 2.为什么地基地抗震承载力大于静承载力? 地震作用下只考虑地基土地弹性变形而不考虑永久变形.地震作用仅是附加于原有静荷载上地一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果

建筑抗震设防分类标准

建筑抗震设防分类标准 作者:不详 建筑抗震设防分类标准 (GB50223—95) 1.总则 1.0.1 为使建筑的抗震设计有明确的设防等级,以合理使用建设资金,减轻地震灾害,特制定本标准。 1.0.2 本标准适用于设防烈度为6~9度地区的建筑抗震设防分类。 1.0.3 有特殊要求的建筑和本标准未列的行业的建筑抗震设防等级,由有关部门根据实际情况比照本标准做专门规定。 1.0.4 各行业、各部门的建筑抗震设防等级的行业标准,应符合本标准对建筑的抗震设防等级标准的原则要求和规定。 2.术语 2.0.1 抗震设防等级划分抗震设计中,根据建筑遭遇地震破坏后经济损失和社会影响程度及其在抗震救灾中的作用,对建筑所作的设防等级分类。 2.0.2 直接经济损失建筑及设备、设施本身破坏的损失,以及其停产所受的损失。 2.0.3 间接经济损失建筑及设备、设施破坏,导致停产所减少的社会产值,修复所需费用,救灾费用以及保险补偿费用等。 2.0.4 社会影响主要指建筑破坏导致人身伤亡和居住条件、福利条件、生产条件以及生态环境污染等造成的损失。 2.0.5 动力系统建筑指供电、供热、供水、供气系统的建筑。 3.基本规定 3.0.1 建筑抗震设防等级的划分,应综合考虑下列原则: 3.0.1.1 社会影响和直接、间接经济损失的大小。 3.0.1.2 城市的大小和地位、行业的特点、工矿企业的规模。 3.0.1.3 使用功能失效后对全局的影响范围大小。 3.0.1.4 结构本身的抗震潜力大小、使用功能恢复的难易程度。 3.0.1.5 建筑各单元的重要性有显著不同时,可考虑进行局部的等级划分。3.0.1.6 在不同行业之间的相同建筑,由于所处地位及受地震破坏时产生后果及影响的不同,其抗震设防等级可以不同。 3.0.2 建筑应按其使用功能的重要性,分为甲、乙、丙、丁四类,其划分应符合下列要求: 3.0.2.1 甲类建筑,地震破坏后对社会有严重影响,对国民经济有巨大损失或有特殊要求的建筑。 3.0.2.2 乙类建筑,主要指使用功能不能中断或需尽快恢复,及地震破坏会造成社会重大影响和国民经济重大损失的建筑。 3.0.2.3 丙类建筑,地震破坏后有一般影响及其他不属于甲、乙、丁类的建筑; 3.0.2.4 丁类建筑,地震破坏或倒塌不会影响上述各类建筑,且社会影响、经济损失轻微的建筑。一般指储存物品价值低,人员活动少的单层仓库建筑。 3.0.3 各类建筑的抗震设防标准,应符合下列要求: 3.0.3.1 甲类抗震建筑,应提高设防烈度一度设计(包括地震作用和抗震措施)。

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

2019年GPZ(KZ)公路桥梁抗震盆式橡胶支座系列规格表

GPZ(KZ)型系列 公路桥梁抗震盆式橡胶支座(DX单向,SX双向,GD固定) 主要尺寸表

GPZ(KZ)公路桥梁抗震盆式橡胶支座 GPZ(KZ)系列抗震盆式橡胶支座是依据中华人民共和国交通行业标准《》(标准号JT391-1999)及公路工程抗震设计规范(JTJ004-89),在盆式橡胶支座的基础上增加了消能和阻尼措施。 包括固定支座和单向活动支座两种型式,和与之配套使用的还有双向活动支座。支座规格按JT391-1999要求分为31级。支座竖向设计承载力、支座转角、支座摩擦系数及位移均按标准要求设计。仅固定支座各方向和单向活动支座非滑移方向的水平力由原支座设计承载力的10%提高至20%。 现在.国内外采取的是刚性抗震法和柔性减震法两种抗震方法,刚性抗震需增大结构(包括基础结构和抗震支座结构)尺寸,柔性减震的特点是:减震性能好而刚度较小,在较大地震波的情况下有被破坏的可能。该系列支座采取了刚、柔结合等有效抗震措施,增大了支座的耗能能力,极大的改善了支座的抗震性能,因此地震发生时可提高桥梁的抗震能力,最大限度的限制了桥梁上下部结构之间的相对位移,减小了地震力的放大系数。非地震时等同一般盆式橡胶支座使用。 由于GPZ(KZ)系列抗震盆式橡胶支座设计有固定支座和单向活动支座,两种型式支座配合使用比仅在桥梁固定墩上设置抗震支座对提高全桥结构的抗震能力是不言而喻的。 GPZ(KZ)盆式橡胶支座结构形式

GPZ(KZ)GD(固定抗震盆式橡胶支座),主要由上座板、消能板、密封圈、橡胶板、底盆和阻尼胶圈等组成。GPZ(KZ)DX(单向活动抗震盆式橡胶支座)还有中间钢板、四氟滑板、不锈钢滑板及侧向滑移装置等。减震原理主要是当支座水平力大于支座设计竖向承载力的20%后,消能板开始滑移,起到第一道隔震效果;然后阻尼圈发挥第二道阻尼效果,支座起到抗震作用;当地震冲击波超过一定极限时,该系列的刚性抗震起到了第三道抗震效果。 GPZ(KZ)盆式橡胶支座性能 1、此种支座按竖向设计承载力:可分31级,即、1、、、 2、、 3、、 4、 5、 6、 7、 8、 9、10、、15、、20、、25、、30、、35、、40、45、50、55、60MN。支座设计承载力允许超载10%。 2、支座水平承载力:固定橡胶支座各方向和单向活动支座非滑移方向的水平承载力可承受支座设计承载力的20%。 3、支座摩擦系数:单向活动抗震支座,在硅脂润滑下,常温型支座(-25℃ ~+60℃ )设计摩擦系数最小取值μ=,耐寒型支座(-40℃ ~+60℃ )设计摩擦系数最小取值μ=。 4、转角:本系列的橡胶支座转动角度为。 5、位移:单向活动抗震橡胶支座位移量,横桥向为± 3mm GPZ(KZ)盆式橡胶支座设计注意事项 1、建议墩台顶面设置支承垫石。支承垫石的高度应考虑支座养护、检查的方便及更换支座时顶梁的可能性,支座底板以外垫石边缘部分最好设置一定坡度以利排水。 因规格相同类型不同的支座高度不同,应注意调整垫石顶面的标高。 2、橡胶支座顶、底板所承载的混凝土应按公路桥涵设计规范中局部承压的有关要求配置钢筋网。 3、橡胶支座规格可根据上部结构计算的恒载、活载及偏载影响等之和在规格系列表中就近选取。因支座具有一定的安全系数,选型时不必人为加大支座规格。在选择常温型支座还是

相关文档
相关文档 最新文档