文档库 最新最全的文档下载
当前位置:文档库 › PWM控制电机正反转

PWM控制电机正反转

PWM控制电机正反转
PWM控制电机正反转

下面的程序功能为单片机I/O口P2^0、P2^1输出1000HZ,占空比为%50,并能过P3^7按键控制正电机的正反转。

/*******************************************************************/

/* 程序名:PWM直流电机调速*/

/* 晶振:11.00592 MHz CPU型号:STC89C52 */

/* 功能:直流电机的PWM波控制,可以通过按键控制正反转*/

/*****************************************************************/

#include

#define uint unsigned int

#define uchar unsigned char

uchar time,count=50,flag=1;//低电平的占空比

sbit PWM1=P2^0;//PWM 通道1,反转脉冲

sbit PWM2=P2^1;//PWM 通道2,正转脉冲

sbit key_turn=P3^7; //电机换向

/************函数声明**************/

void delayxms(uint z);

void Motor_turn(void);

void timer0_init(void);

/*********主函数********************/

void main(void)

{

timer0_init();

while(1)

{

Motor_turn();

}

}

/****************延时处理**********************/

void delayxms(uint z)//延时xms程序

{

uint x,y;

for(y=z;x>0;x--)

for(y=110;y>0;y--);

}

/************电机正反向控制**************/

void Motor_turn(void)

{

if(key_turn==0)

{

delayxms(2);//此处时间不能太长,否者会的中断产生冲突

if(key_turn==0)

{

flag=~flag;

}

while(!key_turn);

}

}

/***********定时器0初始化***********/

void timer0_init(void)

{

TMOD=0x01; //定时器0工作于方式1

TH0=(65536-10)/256;

TL0=(65536-10)%256;

TR0=1;

ET0=1;

EA=1;

}

/**************定时0中断处理******************/

void timer0_int(void) interrupt 1

{

TR0=0;//设置定时器初值期间,关闭定时器

TH0=(65536-10)/256;

TL0=(65536-10)%256;

TR0=1;

if(flag==1)//电机正转

{

PWM1=0;

time++;

if(time

{

PWM2=1;

}

else

PWM2=0;

if(time>=100)

{

time=0;

}

}

else //电机反转

{

PWM2=0;

time++;

if(time

{

PWM1=1;

}

else

PWM1=0;

if(time>=100)

{

time=0;

}

}

}

基于单片机ATS控制步进电机正反转

基于单片机A T S控制步进 电机正反转 The latest revision on November 22, 2020

目录 步进电机 (7) 附件A 源程序 .......................................... (12) 附件B 仿真结果 (15) 致谢 (18)

摘要 能够实现步进电机控制的方式有多种,可以采用前期的模拟电路、数字电路或模拟与数字电路相结合的方式。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测日新月异更新。本文介绍一种用AT89S52作为核心部件进行逻辑控制及信号产生的单片机技术和汇编语言编程设计的步进电机控制系统,步进电机背景与现状、硬件设计、软件设计及其仿真都做了详细的介绍,使我们不仅对步进电机的原理有了深入的了解,也对单片机的设计研发过程有了更加深刻的体会。本控制系统采用单片机控制,通过人为按动开关实现步进电机的开关,复位。该系统还增加了步进电机的加速及减速功能。具有灵活方便、适用范围广的特点,基本能够满足实践需求。 关键词: AT89S52 步进电机 ULN2003 第一章系统分析 框图设计 根据系统要求画出基于AT89S52单片机的控制步进电机的控制框图如图2-1所示。

图2-1基于AT89C52单片机的控制步进电机的控制框图 系统主要包括单片机、复位电路、晶振电路、按键电路、步进电机及驱动电路几部分。 晶振电路 AT89C52单片机有一个用于构成内部振荡器的反相放大器,XTAL1 和XTAL2 分别是放大器的输入、输出端。石英晶体和陶瓷谐振器都可以用来一起构成自激振荡器。 晶振模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。图2-2为晶振电路。 图2-2 晶振电路 第二章系统设计 硬件连接图 根据图2-1,可以设计出单片机控制步进电机的硬件电路图,如图3-1所示。

电动机正反转实验报告

实验一三相异步电动机的正反转控制线路 一、实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等 三、实验方法 1、接触器联锁正反转控制线路 (1) 按下“关”按钮切断交流电源,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q1,接通220V三相交流电源。 (3) 按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。 (4) 按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。 (5) 再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。 Q1 23 220V

图1 接触器联锁正反转控制线路 3、按钮联锁正反转控制线路 (1)按下“关”按钮切断交流电源。按图2接线。经检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q 1,接通220V 三相交流电源。 (3) 按下SB 1,观察并记录电动机M 的转向、各触点的吸断情况。 (4) 按下SB 3,观察并记录电动机M 的转向、各触点的吸断情况。 (5) 按下SB 2,观察并记录电动机M 的转向、各触点的吸断情况。 Q 1 220V

图2 按钮联锁正反转控制线路 四、分析题 1、接触器和按钮的联锁触点在继电接触控制中起到什么作用? 实验二交流电机变频调速控制系统 一﹑实验目的 1.掌握交流变频调速系统的组成及基本原理; 2.掌握变频器常用控制参数的设定方法; 3. 掌握由变频器控制交流电机多段速度及正反向运转的方法。 二﹑实验设备 1.变频器;2. 交流电机。 三、实验方法 (一)注意事项 参考变频器的端子接线图,完成变频器和交流电机的接线。主要使用端子为R﹑S ﹑T;U﹑V﹑W;PLC﹑FWD﹑REV﹑BX﹑RST﹑X1﹑X2﹑X3﹑X4﹑CM。 变频器电源输入端R﹑S﹑T和电源输出端U﹑V﹑W均AC380V高电压﹑大电流信号,任何操作都必须在关掉总电源以后才能进行。

51单片机PWM控制直流电机正反转

//程序说明:使用内部时//PWM0=P3^7PWM1=P3^5 PWM2=P2^0 PWM3=P2^4 #include #define uchar unsigned char #define uint unsigned int sbit PWM0=P3^7; sbit PWM1=P3^5; sbit PWM2=P1^2; sbit PWM3=P1^3; uint i,j; void PWM_init() { CMOD=0x00;//PCA计数脉冲选择内部时钟fosc/12(0x02:fosc/2) CL=0x00;//PCA赋初值 CH=0x00; CR=1; //开始计数 } void zheng(uchar ZKB) { CCAP0L=255*(40-ZKB)/100;//占空比设置 CCAP0H=255*(40-ZKB)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM0=0x42;// 8位PWM模式 CCAP1L=255*(40-0)/100;//占空比设置 CCAP1H=255*(40-0)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM1=0x42;// 8位PWM模式 CR=1; //开始计数 } void fan(uchar ZKB) { CCAP0L=255*(40-0)/100;//占空比设置 CCAP0H=255*(40-0)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM0=0x42;// 8位PWM模式 CCAP1L=255*(40-ZKB)/100;//占空比设置 CCAP1H=255*(40-ZKB)/100;//CL由ff-00溢出时,CCAP0H的值装入CCAP0L CCAPM1=0x42;// 8位PWM模式 CR=1; //开始计数 } void Delay(uint t) //延时函数

三相异步电动机正反转控制实验

三相异步电动机正反转控制实验 一、实验目的: 1.学习与掌握PLC的实际操作与使用方法; 2.学习与掌握利用PLC控制三相异步电动机正反转的方法。 二、实验内容及步骤 : 本实验采用PLC对三相异步电动机进行正反转控制 ,其主电路与控制电路接线图分别为图2-1与图2-2 。图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2,KM5为正向接触器,KM6反向接触器。继电器KA5、KA6分别接于PLC的输出口Y33、Y34。 其基本工作原理为:合上QF1、QF5, PLC运行。当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 实验步骤 : 1.在断电的情况下,学生按图2-1与图2-2接线(为安全起见,控制电路的PLC外围继电器 KA5、KA6以及接触器KM5、KM6输出线路已接好) ; 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,输入PLC梯形图 ; 4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC; 5. 运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控制。在PC机上 对运行状况进行监控,同时观察继电器KA5、KA6与接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确 ; 6。记录运行结果。 图2-1 主控电路

图2-2 控制电路接线图 三.实验说明及注意事项 1.本实验中,继电器KA5、KA6的线圈控制电压为24V DC,其触点5A 220V AC(或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。 2.三相异步电动机的正、反转控制就是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。其中一个很重要的问题就就是必须保证任何时候、任何条件下正反向接触器KM5、KM6都不能同时接通,否则会造成电源相间瞬时短路。为此,在梯形图中应采用正反转互锁,以保证系统工作安全可靠。 3.本实验中,主控电路的电压为380V DC,请注意安全! 四.实验用仪器工具 PC 机 1台 PLC 1台 编程电缆线1根 三相异步电动机 1台 断路器(QF1、QF5) 2个 接触器(KM5、KM6) 2个 继电器(KA5、KA6) 2个 按钮 3个 实验导线若干 五.实验前的准备 1.预习实验报告,复习教材的相关章节; 2.根据图2-1、图2-2画出梯形图,并写出指令代码。

实验一 电动机正反转实验

实验一电动机正反转实验 一、实验目的 1、通过练习实现与、或、非逻辑功能,熟悉PLC编程方法。 2、熟悉ZY17PLC12BC实验箱的使用方法。 二、实验器材 1、ZY17PLC12BC型可编程控制器实验箱 1台 2、PC机或FX-20P-E编程器 1台 3、编程电缆 1根 4、连接导线若干 三、实验原理 (1)LD、LDI指令用于将触点接到母线上。另外,与后述的ANB指令组合,在分支起点处也可使用。 (2)OUT指令是对输出继电器、辅助继电器、状态继电器、定时器,计数器的线圈的驱动指令、对于输入继电器不能使用。 (3)并行输出指令可多次使用。 2、触点串联(AND/ANI) 说明: (1)用AND、ANI、指令,可进行触点的串联连接。串联触点的个数没有限制,该指令可以多次重复使用。 (2)OUT指令后,通过触点对其他线圈使用OUT指令称之为纵接输出。这种纵接输出,如果顺序不错,可以多次重复,

3、触点并联(OR/ORI) (1)OR、ORI用作为1个触点的并联连接指令。如果连接2个以上的触点串联连接的电路块的并联连接时,要用后述的ORB指令。 (2)OR、ORI指令是从该指令的当前步开始对前面的LD、LDI指令并联连接。并联连接的次数无限制,但由于编程器和打印机的功能对此有限制,所以并联连接的次数实际上是有限制的。 (1)两个以上的触点串联连接的电路称之为串联电路块。串联电路块并联连接时,分支的开始用LD、LDI指令,分支的结束用ORB指令。 (2)ORB指令与后述的ANB等均为无操作元件号的指令。 (1)分支电路并联电路块与前面电路串联连接时,使用ANB指令。分支的起点用LD、LDI指令。并联电路块结束后,使用ANB指令与前面电路串联。 (2)若多个并联电路块顺次用ANB指令与前面电路串联连接,则ANB的使用次数没有限制, (3)虽然可以连续使用ANB指令,但这时与ORB指令同样要注意LD、LDI指令的使用次数限制(8次以下)。 6、程序结束(END) 7、控制要求 本实验利用PLC控制电机正反转。发光二极管KM1亮模拟电机正转,发光二极管KM2

PLC控制实验--变频器控制电机正反转

实验二十八变频器控制电机正反转 一、实验目的 了解变频器外部控制端子的功能,掌握外部运行模式下变频器的操作方法。二、实验设备 序号名称型号与规格数量备注 1 网络型可编程控制器高级实验装置THORM-D 1 2 实验挂箱CM51 1 3 电机WDJ26 1 4 实验导线3号/4号若干 5 通讯电缆USB 1 6 计算机 1 自备 三、控制要求 1.正确设置变频器输出的额定频率、额定电压、额定电流。 2.通过外部端子控制电机启动/停止、正转/反转。 3.运用操作面板改变电机启动的点动运行频率和加减速时间。 四、参数功能表及接线图 1.参数功能表 序号变频器参数出厂值设定值功能说明 1 n1.00 50.00 50.00 最高频率 2 n1.05 1.5 0.01 最低输出频率 3 n1.09 10.0 10.0 加速时间 4 n1.10 10.0 10.0 减速时间 5 n2.00 1 1 操作器频率指令旋钮有效 6 n2.01 0 1 控制回路端子(2线式或3线式) 7 n4.04 0 1 2线式(运转/停止(S1)、正转/反转(S2)) 注:(1)设置参数前先将变频器参数复位为工厂的缺省设定值(2)设定n0.02=0可设定及参照全部参数 2.变频器外部接线图 五、操作步骤

1.检查实验设备中器材是否齐全。 2.按照变频器外部接线图完成变频器的接线,认真检查,确保正确无误。 3.打开电源开关,按照参数功能表正确设置变频器参数。 4.打开开关“K1”,观察并记录电机的运转情况。 5.旋转操作面板频率设定旋钮,增加变频器输出频率。 6.关闭开关“K1”,变频器停止运行。 7.打开开关“K1”、“K2”,观察并记录电机的运转情况。 六、实验总结 1.总结使用变频器外部端子控制电机正反转的操作方法。 2.总结变频器外部端子的不同功能及使用方法。

单片机控制直流电机正反转资料

目录 第1章总体设计方案 (1) 1.1 总体设计方案 (1) 1.2 软硬件功能分析 (1) 第2章硬件电路设计 (2) 2.1 单片机最小系统电路设计 (2) 2.2直流电机驱动电路设计 (2) 2.3 数码管显示电路设计 (4) 2.4 独立按键电路设计 (5) 2.5 系统供电电源电路设计 (5) 2.5.1直流稳压电路中整流二极管的选取: (6) 2.5.2直流稳压电路中滤波电容的选取: (6) 第3章系统软件设计 (7) 3.1 软件总体设计思路 (7) 3.2 主程序流程设计 (7) 附录1 总体电路图 (10) 附录2 实物照片 (11) 附录3 C语言源程序 (12)

第1章总体设计方案 1.1 总体设计方案 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。所以,本次实习采用了驱动芯片来驱动直流电机,并运用单片机编程控制加以实现。 系统设计采用驱动芯片来控制的,所以控制精度和可靠性有了大幅度的提高,并且驱动芯片具有集成度高、功能完善的特点,从而极的大简化了硬件电路的设计。 图1.1 直流电机定时正反转方案 1.2 软硬件功能分析 本次实习直流电机控制系统以STC89C52单片机为控制核心,由按键输入模块、LED显示模块及电机驱动模块组成。采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L293D直流电机驱动芯片发送PWM波形,H型驱动电路完成电机正,反转控制;同时单片机不停的将变化的定时时间送到LED数码管完成实时显示。

电机正反转实验

电机正反转实验 一.实验目的 1.了解机床电气中三相电机的正反转控制和星三角启动控制。 2.掌握电动机的常规控制电路设计。 3.了解电动机电路的实际接线。 4.掌握GE FANUC 3I系统的电动机启动程序编写。 二.实验原理和电路 交流电动机有正转启动和反转启动,而且正反转可以切换,启动时,要求电动机先接成星型连接,过几秒钟再变成三角形连接运行。PLC控制电动机的I/O 地址如下表所示: PLC模拟控制电动机I/O地址表 输入输出 器件(触摸屏M)说明器件说明I1(M21)正转Q2 正转 I2(M22)反转Q3 星形 I3(M23)停止Q4 三角形 Q5 反转 电动机星三角启动电气接口图:

模块的现场接线 接线前请熟悉接线图,我们在这里简单介绍下输入输出模块的接线方法,在接下来的实验中不再赘述。详细请见第一章的模块介绍。 ●输入模块现场接线 IC694MDL645,数字量输入模块,提供一组共用一个公共端的16个输入点,如图所示。该模块即可以接成共阴回路又可以接成共阳回路,这样在硬件接线时就非常灵巧方便。但在本系统中,我们统一规定本模块接成共阳回路,即1号端子由系统提供负电源,外部输入共阳。 IC694MDL645数字量输入模块现场接线 ●输出模块现场接线 IC694MDL754,数字输出模块,提供两组(每组16个)共32个输出点。每组

有一个共用的电源输出端。这种输出模块具有正逻辑特性;它向负载提供的源电流来自用户共用端或者到正电源总线。输出装置连接在负电源总线和输出点之间。这种模块的输出特性兼容很广的负载,例如:电动机、接触器、继电器,BCD 显示和指示灯。用户必须提供现场操作装置的电源。每个输出端用标有序号的发光二极管显示其工作状态(ON/OFF)。这个模块上没有熔断器。接线必须注意。 即:17端接正电源,18端接负电源及外部负载的共阴端。 IC694MDL754数字量输出模块现场接线 三:实验步骤: 1.编写PLC程序,可参照参考程序,并检查,保证其正确。 2.按照电器接口图接线。 3.下载程序。 4.置PLC于运行状态,按下启动键,观察电机运行。 5.实验结束后,关电源,整理实验器材。 四:实验器材 1.GE FANUC 3I系统一套 2.PYS3电机正反转模块一块 3.网线一根 4.KNT连接导线若干

15_三相异步电机的正反转控制线路_实验报告

1.掌握单台电动机正反转控制方法; 2.进一步熟练掌握板前明配线的接线工艺; 3.加强训练学生排除电动机基本控制线路故障的能力。 实验工具:万用表、尖嘴钳、偏口钳、螺丝刀、剥线钳、试电笔等。 实验器材:试验安装板一块,低压电器元件若干,导线若干。 实验主要内容实验要求 1(1)老师简要讲解正反转控制线路的工作原 理。回顾读图识图中“屏蔽无用信息”的思维 习惯。 (2)老师强调控制线路的布线原则和低压电器 的安装工艺。 (1)学生在实验前预习教材171页“正反转 控制”的内容。 (2)学生认真听讲并做好笔记。 2三相交流电动机正反转控制线路接线接线时,应严格遵循板前明线布线的工艺要 求和原则。 3自检与通电试车(1)排除故障前先停电,并在电气原理图上用虚线标出故障电路中最短的故障线段。(2)故障分析、故障排除的思路及方法应正确无误。 4老师作实验总结 5学生填写实验报告回答思考题并写出实验报告 1.在实验教师的指导下,分析电气控制线路原理图。 2.用万用表检查各元器件的质量。 3.读懂电气元件布置图,并依此安装和固定电器元件。 4.读懂电气安装接线图,并依此布线。 (1)主电路接线要注意接触器主辅触点的分辨和选用以及热继电器的连接; (2)控制线路接线时要注意按钮常开和常闭触点的分辨、选择和接线。 5.通电检查并排除电路故障 三相交流电动机正反转控制线路接线 ① 在未通电情况下,用万用表电阻档初步检查控制线路是否正确。 ② 接通电源,操作相关按钮,验证电路的工作情况。 1.接线后要认真逐线核对线号,重点检查控制电路中按钮和接触器的触点选择。 2.通电试车必须经指导老师的同意,并在指导老师监护下进行。 3.通电调试时,不许用手触及电气元件的导电部分,以免触电及意外损伤。

单片机课设步进电机控制正反转(单片机爱好者)

单片机课程设计报告设计题目:步进电机控制系统 学院机械工程学院 专业机械设计制造及其自动化 班级 姓名 学号 指导教师 湖北工业大学 2010 年秋季学期

目录 1.设计目的 (2) 2.设计的主要内容和要求 (2) 3.题目及要求功能分析 (2) 4.设计方案 (5) 4.1 整体方案 (5) 4.2 具体方案 (5) 5.硬件电路的设计 (6) 5.1 硬件线路 (6) 5.2 工作原理 (7) 5.3 操作时序 (8) 6. 软件设计 (8) 6.1 软件结构 (8) 6.2 程序流程 (9) 6.3 源程序清单 (9) 7. 系统仿真 (9) 8. 使用说明 (10) 9. 设计总结 (10) 参考文献 (11) 附录 (12)

步进电机的控制 1.设计目的 (1)熟悉单片机编程原理。 (2)熟练掌握51单片机的控制电路和最小系统。 (3)单片机基本应用系统的设计方法。 2.设计的主要内容和要求 (1)查阅资料,了解步进电机的工作原理。 (2)通过单片机给参数控制电机的转动。 (3)通过按钮控制启停及反转。 (4)其他功能。 3.题目及要求功能分析 步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。 三相单、双六拍步进电机的结构和工作原理: 三相单、双六拍步进电机通电方式:这种方式的通电顺

电机正反转接线实验报告

电机正反转接线实验报告 电机正反转接线实验报告 电机正反转接线实验报告 实验目的 1、掌握三相异步电动机正反转的原理和原理。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等三、实验方法 1.为了使电动机能够止跌正转和反转,可使用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将产生电源的短路事故,为了防止这种事故,在电阻器中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向高速运行的控制电路。 2.为了使电动机能够能正转和反转,可使用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在 ABCFR1KM1KM2Q1L1220VL2L3FU1FU2FU3FU4KM2KM1KM1KM1KM电路中应采取可靠的互锁,上图为采用按钮和接触器双重采行互锁的电动机正、反两方向运行的控制电路。 三、互锁环节:具有禁止功能禁止在线路中起安全保护作用 1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。当正转接触器KM1线圈通电动作后,KM1的辅助工具常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须

先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时 吸合造成相间短路,这线路环节叫做互锁环节。 四、电动机正向(或反向)启动运转后,不必先按停止按钮或使 电动机停止,可以直接按反向(或正向)启动按钮,而使电动机变为 反方向运行。五、电动机的过载保护由热继电器FR完成。三.注意事 项 1、检查主回路路的接线是否正确,为了保证两个接触器动作时能 够可靠这时调换电动机的相序,接线时应使接触器的上口接线保持致,在接触器的若丽鱼调相。 2、检查接线无误后,通电试验,通电试验时为防止意外,应先将 电动机的接线断裂。 扩展阅读:电机正探底回升接线图5 电工正反转接线图 为了使电动机需要正转和反转,可装配两只接触器KM1、KM2换接 电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造 成电源的短路事故,为了防止这种事故,在电路中应阿提斯鲁夫尔谷 采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反 两方向运行的控制电路。 线路分析如下:、正向启动: 1、合上空气开关QF接通三相电源 2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接 通电动机,电动机这时的相序是L1、L2、L3,即正向运行。 二、反向启动: 1、合上空气开关QF接通三相电源

基于单片机的直流电机控制(正反转、开关控制)

基于单片机的直流电机控制(正反转,开关控制)原理图如下: 程序如下: /*用电机来代表门的转动情况*/ #include //定义变量 sbit kaimen=P0^0; sbit zanting=P0^1; sbit fanxiang=P0^2; sbit P2_0=P2^0; sbit P2_1=P2^1; bit Flag = 1;//定义电机正反向标志 //函数声明 void motor_turn(void); //正反向控制 void Timer0_init(void); //定义定时器0初始化 /******************************延时处理***************************/ void Delay(unsigned int z)

{ unsigned int x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } /***************************************************************/ void Timer0_int(void) interrupt 1 using 1//定时器0中断处理主要用来处理换方向的时候 { TR0 = 0; TL0=(65536-50000)/ 256; //定时50ms TH0=(65536-50000)% 256; TR0 = 1; if(Flag == 1)//代表改变方向 { P2_0 = 0; P2_1 = 1; } else //方向不变 { P2_1 = 0; P2_0 = 1; } } /****************开始转动:人满时候开始转动**************/ void motor_start(void) { if(kaimen==1) { //Delay(10); if(kaimen==1) { P2_0 = 0; P2_1 = 1; } } } /***************有人但是人未满时或者有夹到人的时候暂停*************/ void motor_pause(void) { if(zanting==1) { Delay(10);

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

课程名称: 电气原理与应用 指导老师: _____________ 成绩: _____________________ 实验名称:三相异步电动机点动控制和自锁及正反转互锁控制 实验类型: ______ 同组学生 姓名: ~~ 七、讨论、心得 一、 实验目的 1通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图 变换成安装接线图的知识; 2 ?通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。 3?掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互 锁等环节的理解; 4?掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中 有哪些不同之处; 5?通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接 成实际操作电路的方法。 6.学会分析、排除继电--接触控制线路故障的方法。 二、 实验原理 1继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主 要设备是交流接触器,其主要构造为: (1) 电磁系统一铁心、吸引线圈和短路环; (2) 触头系统一主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动 合(常 开)、动断(常闭)两类; (3) 消弧系统一在切断大电流的触头上装有灭弧罩以迅速切断电弧; (4) 接线端子,反作用弹簧等。 2?在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。要求接触器线圈得电 后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并 联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。使两个电器不能 同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三 相电源短路事故,必须增设互锁控制环节。为操作的方便,也为防止因接触器主触头长期 大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线 路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控 制环节 3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执 行部件的起、停或正、反转控制。按钮是专供人工操作使用。对于复合按钮,其触点的动 作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动 断触头后合。 4. 在电动机运行过程中,应对可能出现的故障进行保护。采用熔断器作短路保护,当电 动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。熔体熔断时间 与流过的电流关系称为熔断器的保护特性,这是选择熔体的主要依据。 采用热继电器实现过载保护,使电动机免受长期过载之危害。其主要的技术指标是整 定电流值, 即电流超过此值的 20%时,其动断触头应能在一定时间内断开, 切断控制回路, 动作后只能由人工进行复位。 沖戸乂唆实验报告 专业: 姓名: 学号: 日期: 地点: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)

基于单片机原理的步进电机的正反转程设计报告书

基于单片机原理的步进电机的正反转程设计报告书

电机控制课程设计报告书题目基于单片机原理的步进电机的正反转

目录....................................................................... 错误!未定义书签。摘要...................................................................... 错误!未定义书签。 1.概述................................................................... 错误!未定义书签。 1.1课程设计的任务和要求 ............................ 错误!未定义书签。 1.2设计思路框架............................................ 错误!未定义书签。 1.3设计方案的模块解释................................ 错误!未定义书签。 2.系统硬件设计 ..................................................... 错误!未定义书签。 2.1单片机最小系统原理介绍 ........................ 错误!未定义书签。 2.1.1 AT89C51的工作原理 ....................... 错误!未定义书签。 2.1.2复位电路的工作原理 ...................... 错误!未定义书签。 2.1.3晶振电路的工作原理 ...................... 错误!未定义书签。 2.2电机驱动电路原理介绍 ............................ 错误!未定义书签。 3.系统软件设计 ..................................................... 错误!未定义书签。 3.1系统流程图 ............................................... 错误!未定义书签。 3.2系统程序分析............................................ 错误!未定义书签。4.调试过程与结果 .............................................. 错误!未定义书签。5.总结与体会 ...................................................... 错误!未定义书签。 6.参考资料............................................................. 错误!未定义书签。 7.附录.................................................................... 错误!未定义书签。

浙师大 机电传动实验报告 实验2 三相异步电动机的正反转

试验二 三相异步电动机的正反转控制 一、实验目的: 1、对接触器、热继电器、开关、按扭的外观和功能进行认识,可以通过简单的电路来测试其功能,借助万用表或其它指示工具来加深直观认识; 2、学会异步电动机正反转控制线路的接线方法; 3、按照电动机正反转控制电路接线,组成实际控制电路,并通电试运行,通电时要注意安全,以防触电。 二、实验仪器和设备: 1、DT31继电器-接触器1套 2、D21三相异步电动机1台 3、机电传动试验平台1套(含电流表电压表) 4、接线若干 三、实验原理:

图1 三相异步电动机正反转控制线路 1、继电接触器控制大量应用于对电动机的启动、停止、正反转、调速、制动等控制。从而使生产机械按规定的要求动作;同时,也能对电动机和生产机械进行保护。 2、图1是三相异步电动机正反转控制线路。 生产机械往往要求运动部件可以正反两个方向运行,这就要求电机可以正反转控制。 任意将电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。 正反转控制电路如图1所示,采用两个接触器,即正转用的接触器KM1

和反转用的接触器KM2。KM1和KM2这两个动断辅助触点在线路中所起的作用称为互锁作用,这两个动断触点就叫互锁触点。 3、操作流程: 正转:按下常开按钮SB2后,接触器KM1线圈得电,主触点KM1闭合,电动机M起动正转;同时KM1的自锁触点闭合,互锁触点断开。 反转:先按停止按钮SB1,接触器KM1线圈断电释放,KM1触点复位,电动机M断电;然后按反转按钮SB3,接触器KM2线圈获电,KM2主触点闭合,电动机反转,同时KM2自锁触点闭合,互锁触点断开。 实验步骤注意,要改变电机方向,必须先按停止按钮SB1,再按反转按钮SB3才能使得电动机反转。 四、实验内容和步骤: 1、分别用继电器、接触器、按钮开关、热继电器、时间继电器构成独立功能的电路观察,这些元件的工作方式和外部要求; 2、按照电动机正反转控制电路图连线; 3、完成接线后,对现接线图检查有无错误,通电试运行; 4、观察电路是否按照设计意图运行; 5、线路断电并拆线,恢复现场。 五、实验总结: 在空载情况下,接通电源,调节三相电源逐渐升压至额定电压,按下正向起动按钮SB3,使电机成正向启动运行,经过一定时间后,按下按钮SB1停机,然后按动反向启动按钮SB2。观察电机的旋转方向是否发生变化。注意:在试验过程中,试观察电机的完全静止和残余速度较大的情况下切换旋转方向,其瞬间电流值的差异。 完全静止时:切换方向,电流值由0立刻上升到电流稳定值。 残余速度较大时:切换方向,电流值一瞬间上升超过电流稳定值,之后回到电流稳定值。 六、个人总结: 三相异步电动机的正反转控制线路,接线较上一个点动实验要复杂一些。主触点有两组,得注意反转触点连线是任意反接其中两条,不可接错。接错容易短路,试验台会出现报警警告。控制电路接线也有一点需要注意,就是分清楚常开与常闭辅助触点,这个也经常容易弄错,导致实验不成功。 总体来说,正反转控制电路是非常经典,实用性比较高的电路。但是这个电路有个缺点,就是操作不怎么方便,每次正反转转换,都需要先按停止按钮,再反向运转。多了一步操作,便捷性和工作效率上都会

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

实验报告 课程名称: 电气原理与应用 指导老师: 成绩:__________________ 实验名称:三相异步电动机点动控制和自锁及正反转互锁控制 实验类型:____同 组学生姓名:______ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气 原理图变换成安装接线图的知识; 2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应 用。 3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自 锁、互锁等环节的理解; 4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作 过程中有哪些不同之处; 5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原 理图接成实际操作电路的方法。 6. 学会分析、排除继电--接触控制线路故障的方法。 二、实验原理 1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电 专业: 姓名: 学号: 日期: 地点:

路的主要设备是交流接触器,其主要构造为: (1) 电磁系统─铁心、吸引线圈和短路环; (2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类; (3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧; (4) 接线端子,反作用弹簧等。 2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。 3. 控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。按钮是专供人工操作使用。对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。 4. 在电动机运行过程中,应对可能出现的故障进行保护。采用熔断器作短路保护,当电动机或电器发生短路时,及时熔断熔体,达到保护线路、保护电源的目的。熔体熔断时间与流过的电流关系称为熔断器的保护特性,这是选择熔体的主要依据。

单片机控制三相异步电动机正反转

摘要 我的这次毕业设计论文主要介绍了三相异步电动机的发展史,及国的现状和单片机远距离控制三相异步电动机未来的应用前景。并且阐述了三相异步电动机正转、反转、停止的控制原理,如何用红外遥控设备实现电动机的正转、反转、停止三种状态的切换。还阐述了单片机远距离控制三相异步电动机的设计方案,并绘制了原理图和PCB板图,撰写了程序源代码。实现了对三相异步电动机正转、反转、停止的控制。这期间主要使用protel99se 软件绘制原理图和制板,使用proteus7.1软件进行程序代码的仿真和功能的理论验证。最后通过硬件的调试验证程序代码的实际功能,完成对单片机远距离控制三相异步电动机的设计。 关键词 红外遥控设备、单片机;三相异步电动机电机、控制器。

目录 摘要 (Ⅰ) 第一章、引言 (1) 第二章、三相异步电机控制系统 (2) 第三章、 AT89C52 单片机 (4) 第四章、红外遥控器设计 (6) 第五章、三相异步电动机原理与控制 (8) 第六章、实现 (11) 第七章、结构图 (30) 结论 (31) 参考文献 (32) 致 (33) 附录 (34)

第一章、引言 1.1三相异步电动机发展史 在国外,费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电动机。并在后来得到了广泛的应用。三相异步电动机是交流电动机的一种,又称感应电机。具有结构简单,制造容易,坚固耐用,维修方便,成本低廉等一系列优点。因其具有较高的效率及接近于恒速的负载特性,故能满足绝大多部分工农业生产机械的拖动要求,从而成为各类电机中产量最大,运用最广的一种电动机。 1.2我国三相异步电动机发展 我国电动机的研究及制造起始于本世纪50年代后期。从50年代后期到60年代后期,主要是高等院校和科研机构为研究一些装置而使用或开发少量产品。这些产品以多段结构三相异步电动机为主。70年代初期,电动机的生产和研究有所突破。除反映在驱动器设计方面的长足进步外,对电动机本体的设计研究发展到一个较高水平。70年代中期至80年代中期为成品发展阶段,新品种高性能电动机不断被开发。80年代后三相异步电动机已经得到广泛的应用。 1.3单片机远距离控制三相异步电动机的应用前景 目前,随着电子技术、控制技术以及电动机本体的发展和变化,单片机远距离控制三相异步电动机系统已经受到广泛的应用。因为在很多工业生产中,很多工厂的环境很差,工人在现场工作,很容易患各种职业病,不管是对工厂还是对工人都是很大的损失。因此,随着社会的需要,机械设备的远程控制的出现对工厂的生产起到了很大的帮助。提高了社会生产力,对未来的社会发展有很深远的意义。因此,单片机远距离控制三相异步电动机的发展前景非常广。

基于单片机的电动机正反转控制

成绩 课程设计报告 题目:基于单片机的电动机正反转控制设计 学生姓名:xxx 学生学号:xxxxxxxxxxxx 系别:电气信息工程学院 专业:自动化 届别:2013 指导教师:xxx 电气信息工程学院 基于单片机的电动机正反转控制

学生:xxx 指导教师:xxx 电气信息工程学院自动化系 1 课程设计的任务与要求 1.1 课程设计的任务 利用AT89C51单片机设计并实现电动机正反转控制及其相关功能。通过本次设计了解并掌握51系列的单片机的结构及其使用方法。 1.2 课程设计的要求 该设计要求能够具有以下功能: (1)开启后器件没有任何反应。 (2)闭合正转开关按钮电动机开始正转。 (3)闭合反转开关按钮电动机开始反转。 (4)闭合停转开关按钮电动机停止转动。 1.3 课程设计的研究基础 该设计包括硬件和软件设计两部分。 硬件部分包括:直流电动机,电磁继电器,7路反相器,6路反相器。 软件部分包括:基于51单片机的c语言程序。 设计中的相关研究部分介绍如下: (1)直流电动机部分:更改直流电动机的正负极就可以实现对直流电动机的正反转控制,更改可以使用继电器实现。 (2)电磁继电器部分:通过更改电磁继电器的正负极可以实现对电磁继电器中电磁的有无进行控制。再间接通过电磁的有无控制继电器中开关的打开与闭合。 (3)7路反相器部分:通过反相器可以更改输入电平的高低与其高低值(即当输入为高电压输出为低电压并且低电压为接地电压,当输入为低电压是输出为高电压并且电压强度与接com端相同)。其实质就是为了供给与继电器相适合的高低电压,所以如果没有该部分,则供给继电器的高低电压就有单片机提供,而单片机的输出高低电平为定值,因此需要此部分。 (4)6路反相器部分:该部分是为了结合7路反相器部分使用的,因为负负得正,正正得正。 2 电动机正反转系统方案制定

相关文档
相关文档 最新文档