文档库 最新最全的文档下载
当前位置:文档库 › 楚科奇海及其邻近海域表层沉积物的元素地球化学特征

楚科奇海及其邻近海域表层沉积物的元素地球化学特征

楚科奇海及其邻近海域表层沉积物的元素地球化学特征
楚科奇海及其邻近海域表层沉积物的元素地球化学特征

第26卷 第2期

海 洋 学 报

Vol.26,No.22004年3月

ACTA OCEANOLO GICA SIN ICA

March 2004

楚科奇海及其邻近海域表层沉积物的

元素地球化学特征

高爱国1,2,韩国忠1,3,刘 峰1,2,张德玉1,3,孙海青1,2

(11国家海洋局第一海洋研究所,山东青岛266061;21海洋生态环境科学与工程国家海洋局重点

实验室,山东青岛266061;31海洋资源与环境地质国家海洋局重点实验室,山东青岛266061)

收稿日期:2002-09-06;修订日期日期:2003-12-05.

基金项目:国家自然科学基金资助项目(49873015,40176017,40376017);中国首次北极科学考察专项资助项目.

作者简介:高爱国(1959—

),男,浙江省杭州市人,研究员,博士,从事海洋地球化学研究1E -mail :aggao @https://www.wendangku.net/doc/c66417872.html, 关键词:楚科奇海;表层沉积物;元素地球化学

中图分类号:P73614 文献标识码:A 文章编号:0253-4193(2004)02-0132-08

1 引言

北极地区不仅具有丰富的矿产资源,而且在全球变化研究中具有极为重要的地位[1],同

时由于其极端环境下的物理、化学作用与中低纬度有较大的差别,导致了这里的海洋地球化学

图1 楚科奇海取样站位及沉积物类型示意图S 1砂,TS 1粉砂质砂,ST 1砂质粉砂,

STY 1砂粉砂黏土,YT 1黏土质粉砂

过程的特殊性,因此在基础理论研究中也扮演着

十分重要的角色.1999年中国首次北极科学考察对位于北冰洋的楚科奇海及其邻近海域进行了沉积物取样,开展了地球化学研究,并已取得了部分成果[2~4].本文从沉积物元素地球化学分析出发,探讨了楚科奇海及其邻近海域表层沉积物中的主要元素组成及其分布规律,以便为北极的全球变化研究,尤其为该地区的古海洋学研究提供基础资料.

2 材料和方法

表层沉积物样品是中国首次北极科学考察期

间利用箱式取样器在楚科奇海及其邻近海域采集

的[2](图1).样品在4℃以下保存,运回陆地实验

室后在低于105℃温度下烘干,并在玛瑙研钵中

研磨,过200目筛备测.样品前处理及分析方法分别是:样品经粉末压片法制成样片后用日本理学公司生产的3080E Ⅱ型X 射线荧光光谱仪测定硅,铝,铁,钛,钾,钠,钙,镁,锰.为了保证分析数据质量,在样品测试过程中采用盲样和实验室内部两级质量监控,采用了三个国家一级沉积物标准物质(G BW07408,G BW07309,G BW07314)进行质量分析控制,结果表明所分析的数据符合质量控制要求,数据准确可靠.样品的分析由国土资源部物化探研究所中心实验室完成.

沉积物的粒度分析按照国标《海洋调查规范》进行.对于粒径小于01063mm 的沉积物样品,用激光粒度分析法(仪器为GSL -101B 激光颗粒分布测量仪)进行分析;对于粒径大于01063mm 的沉积物样品采用筛析法与激光粒度仪法相结合的方法分析.

3 结果和讨论

311 表层沉积物中主要元素的含量及其分布

为了对楚科奇海及其邻近海域沉积物中元素的含量特征有较清晰的认识,将各元素的分析结果进行了统计,并与中国大陆、中国浅海、冲绳海槽、西太平洋褐色黏土中的元素含量[5]进行对比(表1).从表1可看出:(1)楚科奇海及其邻近海域沉积物具有高硅、钠,低铝、钾、钙、镁、铁、锰的特征,钛含量与中国浅海相同;(2)各元素的变异系数均较小,从小到大的排列为硅、铝、钾、钙、钛、铁、钠、锰、镁,这表明主要元素的分布差异较小,元素分异不明显.

表1 楚科奇海及其邻近海域各类沉积物中元素的含量(%)特征

元素楚科奇海及其邻近海域(n =26)最小值

最大值

平均值

变异系数

中国大陆中国浅海冲绳海槽

西太平洋褐色黏土

硅261234011131187011030291221912127158铝21256182517401185182518751937114钾0172212611630119118119311832132钠01874171216901301126114811931193镁012511501990132112111111152111钙01591181133012021223179111441143铁112341062191012631153113419锰67503266013065053020204580钛0118

0142

0135

0120

0142

0135

0131

0144

备注

本文赵一阳等[5]

注:锰含量的数值应乘以10-6.

楚科奇海表层沉积物中各主要元素的平面分布情况如下:

楚科奇海的硅含量高值区主要位于赫雷德浅滩(Herald Shoal )附近(见图2).该区沉积物主要为砂(见图1),矿物成分以石英及长石为主,因此表现为碎屑态硅的富集.另一方面该处有一定的上升流存在,为生物的繁衍提供了物质基础,适合硅质生物生存.众所周知,在全球大洋中由硅藻、放射虫等硬壳所形成的硅质生源沉积物具有向两极增高的趋势,因此两种来源的硅的叠加,导致了本区沉积物中具有较高含量的硅.据赵一阳等[5]的研究结果,中国浅海砂

3

312期 高爱国等:楚科奇海及其邻近海域表层沉积物的元素地球化学特征

类沉积物中硅含量为9158%~40185%,平均为31120.Darby等[6]在加拿大海盆及附近海域获得的硅在2110%~3515%内波动.古森昌等[7]在南极普里兹湾测得硅的浓度为26145%~37185%,与其他海区相比,本次调查的硅相对较高.造成硅含量高的原因有三个:(1)这与沉积物中砂含量较高有关;(2)同时也可能预示周边源区物质中硅的含量较高;(3)与生源硅的含量较高也有密切关系.海区硅含量从砂、砂质粉砂、粉砂质砂、砂粉砂黏土到黏土质粉砂中呈降低趋势.

铝是沉积物中含量仅次于硅、氧的造岩元素.主要以各种铝硅酸盐矿物及其风化产物存在,在沉积物中有广泛分布,楚科奇海沉积物中铝含量为2125%~6182%,平均为5174%,低于Darby等报道的加拿大海盆沉积物中铝的含量(611%~816%),这与研究区硅含量高是相符的,是硅对铝“稀释作用”的结果.显然铝含量的平面变化也将与硅相反,随着沉积物粒度变

粗,铝的含量降低,在赫雷德附近表现为一低值区(图3)

.

图2 

楚科奇海沉积物中硅的平面分布图3 楚科奇海沉积物中铝的平面分布

铁和锰是典型的变价元素,其迁移富集过程与环境关系密切.铁在楚科奇海沉积物中的含量为1123%~4106%,平均为2190%,低于加拿大海盆中的含量(3168%~6105%,平均为5113%).铁在沉积物中的含量与海区沉积物粗细程度有关,沉积物由粗到细,铁含量呈增高趋势(见图4).铁在砂、砂质粉砂、粉砂质砂三类沉积物中的含量较为接近,表明有相似的物质来源.与中国浅海不同类型沉积物中铁含量相比,研究海区的铁含量相对较低,这可能与海区所处环境温度较低、化学风化作用较弱有关.Darby等对加拿大海盆沉积物中铁的形态分析结果表明,铁在加拿大海盆主要以碎屑态存在,可提取态占20%左右,表明沉积物通过吸附所获得的铁量较少.

锰在楚科奇海沉积物中含量为67×10-6~503×10-6,平均为266×10-6,低于中国浅海(530×10-6)及加拿大海盆(0104%~0158%,平均为0140%),甚至低于中国浅海砂类沉积物中的含量(140×10-6~5720×10-6,平均为456×10-6).这与海区沉积物颗粒较粗、对锰的吸附量较少以及海区的低温环境、化学风化较弱相一致.锰在海区的平面分布状况见图5.

431海洋学报 26卷

图4 

楚科奇海沉积物中铁的平面分布图5 楚科奇海沉积物中锰的平面分布

楚科奇海沉积物中钠的含量为0187%~4171%,平均为2169%;钾的含量为0171%~2126%,平均为1163%.钠、钾作为碱金属类造岩元素,在岩石圈上部富集.在风化过程中钠、

钾极易淋滤析出,钠、钾的淋滤程度与化学风化程度密切相关,北极地区由于气温低,化学风化弱,钠的淋滤与钾的吸附均较少,较接近源区成分,所以研究区钾的含量低于中国浅海的,而钠的含量明显高于中国浅海的.通过钠、钾两元素在不同类型沉积物中的含量对比发现两元素在细粒沉积物中富集.在平面分布图上钾具有与铝等元素相似的分布,钠虽然在大的分布格局上与上述元素相同,但在局部区域如阿拉斯加沿岸的分布与铝的分布稍有不同(图6,7)

.

图6 

楚科奇海沉积物中钠的平面分布图7 楚科奇海沉积物中钾的平面分布

钙、镁为碱土类造岩元素,在风化过程中容易进入溶液,并随溶液一起发生搬运,另一方面水体中的钙、镁易为生物吸收,形成碳酸盐骨骼,或者当溶液中的钙镁离子与碳酸根离子的浓度达到溶度积时,形成碳酸盐沉积,因此其在沉积物中的含量受控于物源、沉积环境及生物活动因素.钙在楚科奇海沉积物中含量为0159%~1180%,平均为1133%;镁的含量为0125%~

5

312期 高爱国等:楚科奇海及其邻近海域表层沉积物的元素地球化学特征

1150%,平均为0199%,两元素的含量均低于中国浅海沉积物中的含量(钙:0150%~

23151%,平均为3179%;镁:0115%~1185%,平均为1110%).它们在沉积物中的分布与铝

等元素相似,均表现为富集于细粒沉积物中.这与中国浅海沉积物中钙富集于粗粒沉积物中正好相反,这表明其控制因素与中国浅海环境存在差异.钙、镁在沉积物中的分布见图8

,9.

图8 

楚科奇海沉积物中镁的平面分布图9 

楚科奇海沉积物中钙的平面分布

图10 楚科奇海沉积物中钛的平面分布

钛在地壳中虽然分布广泛,但在表生作用中

比较稳定,属惰性元素,风化后难以形成可溶性化合物,基本上是以碎屑矿物的形式被搬运,因此化学风化的强弱与否对其影响不大,从而表现出平面分布上的“均匀性”.楚科奇海沉积物中钛含量为0118%~0142%,平均为0135%,与中国浅海沉积物基本一致(0102%~0179%,平均为0135%).在不同类型沉积物中的分布表明其在细粒沉积物中富集,在平面分布上具有与硅相反的分布格局(图10).

对元素的空间变化分析显示,元素的平面分布主要有两种类型,即硅分布型和铝分布型(见图2,3).硅在海区中部的赫雷德浅滩及白令海峡附

近较高,其余区域的含量较低,而铝及其他元素则相反,两者在空间上呈互补关系.由表1和图2~10可看出,沉积物中元素组成相对较为均一,分异程度较差,表现出分异程度低的浅海沉积物特征,在成分上具有对陆源物质的继承性,这与研究区纬度高、气候寒冷、化学风化作用较弱、元素分异差的结果相吻合.312 表层沉积物类型与元素含量的关系

沉积物中元素的粒度控制效应[5]是控制元素分布的一种重要因素,楚科奇海及其邻近海

631海洋学报 26卷

域沉积物中元素含量与沉积物类型间有非常密切的关系.

楚科奇海及其邻近海域表层沉积物由于受阿拉斯加沿岸流及西伯利亚海沿岸流的影响,粒度较粗,分别是砂、粉砂质砂、砂质粉砂、砂粉砂黏土和黏土质粉砂,平面分布见图1.粗粒沉积物主要分布在白令海峡附近和海区中部的赫雷德浅滩附近海域,细粒沉积物主要分布在海区北部、巴罗角(Pt.Barrow )北部海域、弗兰格尔岛东南及霍普角(Pt.Hope )西部海域.现场调查表明在赫雷德浅滩及其附近还有漂砾出现[2].Grantz 等对这一海区的沉积物研究后认为这些沉积物可能是经冰川和海流簸选后的残留沉积物[8].Greager 和McManus [9]指出楚科奇海陆架南部的年轻沉积物大部分来自育空河,当育空河水进入白令海后,向北通过白令海峡进入楚科奇海,其后随着流速的减缓,所携带的物质沉降在楚科奇海陆架上[10],其他来源包括诺阿塔克河和科伯克河以及K otzebue Sound 北部进入楚科奇海的一些小河[8].因此,研究区沉积物包括现代沉积物和残留沉积物两部分,作为沉积物主体的陆源物质来源包括河流输入,冰筏搬运物及风尘搬运物,其中河流般运物对本区沉积物的分布影响最大,此外风尘对本海区的沉积物也有一定贡献[11].因此,本区不同类型沉积物对元素的影响实际上包含了物源与粒度双重因素.

为了摸清元素在各粒级中的分布情况,计算了楚科奇海及其邻近海域不同类型沉积物中各元素的含量(表2).硅的含量在砂中最高,黏土质粉砂中最低;铝、钠、铁、钙、镁、钛、锰等元素则相反;钾在粉砂质砂中最高,低值出现在砂质粉砂中.

表2 楚科奇海及其邻近海域各类沉积物中元素的含量(%)特征

沉积物类型样品数

砂4351904157113511882102110501630125176粉砂质砂3331815150118021372128113501740131246砂质粉砂3341654161112521332133113001750131210砂粉砂黏土1321975168115311892162112801940134260黏土质粉砂

15

29178

6134

1175

3109

3140

1142

112

014

305

注:锰含量的数值应乘以10-6.

313 元素的相关性分析

从元素间的相关系数来看(见表3),铝、铁、镁、钠、锰、钛、钾等元素之间具有较好的正相关性,并且与黏土或粉砂含量呈正相关,与砂含量呈负相关;硅与砂呈强正相关,而与粉砂、黏土及其他元素呈明显的负相关,显示硅与其他元素的互补关系.钙和其他元素的相关性相对较差.研究区各元素与水深的关系实际上是与沉积物粒度关系的另一种表现形式,即随着水深增加,沉积物粒度将变细,粉砂或黏土含量将增加,除硅外的其他元素含量也将增加.

元素的高度相关(许多元素对之间的相关系数大于01607,表明在置信水平为9919%以上的高度相关)说明沉积物的物源组成较为相近,沉积物在风化迁移过程中所经受的分异作用较小,这与研究区的低温环境、化学风化作用弱相一致.

7

312期 高爱国等:楚科奇海及其邻近海域表层沉积物的元素地球化学特征

831海洋学报 26卷表3 元素及其与水深、沉积物不同粒级含量之间的相关系数

元素水深粉砂黏土硅铝铁钙镁钠钾锰钛硅-0167701695-01600-01781

铝01552-015870151801654-01932

铁01633-016820160901768-0196001885

钙01292-014020145201323-015430169701512

镁01637-016890160901762-01980019060198001555

钠01757-015860152001612-0173901666016740164301729

钾01591-013470125301473-016510174301536013750152101458

锰01803-015710150501648-01850017820182901605018590185901518

钛01435-017100169101712-0189301911019050175101928016780144101777

注:n=26时置信水平为98%,99%,9918%和9919%的相关系数判别值分别为01453,01496,01578和016071

4 结论

对楚科奇海表层沉积物中硅、铝、铁、钙、镁、钠、钾、锰、钛等元素的地球化学性质进行了分析研究.通过与中国大陆、中国浅海、冲绳海槽、西太平洋褐色黏土对比发现楚科奇海及其邻近海域沉积物具有高硅、钠,低铝、钾、钙、镁、铁、锰的特征,钛含量与中国浅海相同.沉积物中元素变异系数较小,元素组成相对较为均一,分异程度较差,表现出分异程度低的浅海沉积物特征,在成分上具有对陆源物质的继承性,这与研究区纬度高、气候寒冷、化学风化作用较弱、元素分异差的结果相吻合.

楚科奇海表层沉积物共有五种类型,分别是砂、粉砂质砂、砂质粉砂、砂粉砂黏土和黏土质粉砂.硅主要富集于粗粒沉积物中,其他元素趋向于在细粒沉积物中富集.从元素之间以及元素与沉积物类型之间的相关性来看,铝、铁、镁、钠、锰、钛等元素与黏土或粉砂含量之间具有较好的正相关性,与硅及砂含量呈负相关,这表明这些元素在细粒沉积物中富集;硅与砂呈强正相关,而与粉砂、黏土及其他元素呈明显的负相关,这表明它在粗粒沉积物中富集,显示硅与其他元素的互补关系.钙、钾和其他元素的相关性相对较差.本区不同类型沉积物对元素的影响实际上包含了物源与粒度的双重因素.

综上所述,作为高纬度低温环境的楚科奇海,物理风化强、化学风化弱、元素分异差是其地球化学过程的特色.通过对其作更深入地研究,结合中低纬度化学风化强的沉积物地球化学特点,有助于更全面地了解海洋地球化学过程,为资源勘察及古气候变化研究提供基础资料.

粒度分析由王慧艳、任红两同志完成,在此表示感谢.

参考文献:

[1] 高爱国,刘焱光,孙海青.与全球变化有关的几个北极海洋地质问题[J].地学前缘,2002,9(3):201—207.

[2] 高爱国,陈荣华,程振波,等.楚科奇海及白令海海洋地质研究进展[J].海洋科学,2001,25(12):41—45.

[3] 高爱国,刘焱光,孙海青.楚科奇海与白令海沉积物中碘的纬度分布[J].中国科学(D辑),2003.33(2):155—162.

[4] 高爱国,陈志华,刘焱光,等.楚科奇海表层沉积物的稀土元素地球化学特征[J].中国科学(D辑),2003,33(2):

148—154.

[5] 赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.

[6] DARB Y D A.,NAIDU A S ,MOWATT T C ,et al.Sediment composition and sedimentary processes in the Arctic Ocean

[A ].Herman Y.The Arctic Seas :Climatology ,Oceanography ,G eology ,and Biology[M ].New Y ork :Van Nostrand Rein 2hold Company ,1989.657—720.

[7] 古森昌,颜 文.南极普里兹湾NP951柱样元素地层与古环境初步研究[J ].极地研究,1997,9(2):112—118.[8] GRAN TZ A ,EITTREIM S ,WHITN EY O T.G eology and Physiography of the Continental Margin North of Alaska and

Implications for the Origin of the Canada Basin[A ].NAIRN A E M ,CHUR KIN M ,STEHL I F G.The Ocean Basins and Margins[M ].New Y ork ,London :Plenum Press ,1981.439—489.

[9] CREA GER J S ,MCMANUS D A.G eology of the floor of Bering and Chukchi Seas ———American studies[A ].HOP KINS D

M.The Bering Land Bridge[M ].California :Stanford University Press ,1967.7—31.

[10] N ELSON H C ,CREA GER J S.Displacement of Yukon 2derived sediment from Bering Sea to Chukchi Sea during Holocene

time[J ].G eology ,1977,5:141—146.

[11] DARB Y D A ,BURCK L E L H ,CLAR K D L.Airborne dust on the Arctic pack ice ,its composition and fallout rate[J ].

Earth and Planetary Science Letters ,1974,24:166—172.

The elemental geochemistry of the surface sediments

in the Chukchi Sea and its adjacent areas

G AO Ai 2guo 1,2,HAN Guo 2zhong 1,3,L IU Feng 1,2,ZHAN G De 2yu 1,3,SUN Hai 2qing 1,2

(1.Fi rst Instit ute of Oceanography of State Oceanic A dmi nist ration ,Qi ngdao 266061,Chi na ,2.Key laboratory of Science and Engi neeri ng f or M ari ne Ecological Envi ronment ,State Oceanic A dmi nist ration ,Qi ngdao 266061,Chi na ,3.Key labora 2tory of M ari ne Sedi mentary and Envi ronmental Geology ,State Oceanic A dmi nist ration ,Qi ngdao 266061,Chi na )

K ey w ords :Chukchi Sea ;surface sediments ;elemental geochemistry

9

312期 高爱国等:楚科奇海及其邻近海域表层沉积物的元素地球化学特征

地球化学复习题(推荐文档)

地球化学复习题 绪论 1、地球化学的定义。 答:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。 2、地球化学的任务。 答:1)地球及其子系统中元素及其同位素的组成,即元素的分布和分配问题;2)元素的共生组合和赋存形式;3)元素的迁移和循环;4)地球的历史和演化。5)基础理论和应用的发展。 3、地球化学的研究思路和工作方法。 答:研究思路:以化学、物理化学等基本原理为基础,以研究原子(包括元素和同位素)的行为为手段,来认识地球的组成、历史和地球化学作用。工作方法:野外:地质考察+样品采集(代表性、系统性、统计性、严格性)。 室内: --岩矿鉴定 --分析测试:早期容量法、离子色谱法和比色法,现今X射线荧光光谱XRF、ICPAES、--ICPMS、固体质谱、AAS等。 --元素结合形式和赋存状态的研究:化学分析、晶体光学、X射线衍射、拉曼谱、微区分析(电子探针、离子探针)等。 --作用过程的物理化学条件的测定:温度(包裹体、矿物、同位素)、压力、pH、Eh、盐度等。 --自然作用的时间参数:同位素测年。 --模拟实验。 --多元统计计算和数学模型。 4、地球化学学科的特点。 答:1、基础科学成果的应用.2、地质科学的发展.3、更广泛的数字模拟。 第一章太阳系和地球系统的元素丰度 1、对比元素在地壳、地球和太阳系中分布规律的异同点,并解释其原因。 答:相同点:元素的丰度均随原子系数增大而减小。均符合奇偶定律。 不同点:与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K和N a。 原因: 2、研究克拉克值有何地球化学意义。 答:可作为元素集中、分散的标尺。控制元素的地球化学行为。A)影响元素参加地壳中地球化学过程的浓度。B)限定自然界的矿物种类及种属。C) 限制了自然体系的状态。 3、地球各圈层化学组成的基本特征。 答:地壳:①地壳中元素的相对平均含量是极不均一的。②元素的克拉克值大体上随原子序数的增大而减小。地幔:元素分布不均,铁镁含量增高。地核:铁镍含量占绝大部分,其它元素仅占极少部分。水圈、大气圈和生物圈在地球总质量中所占的比例很小,对地球总体成分的影响不大。 4、陨石研究的意义 答:①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;

土壤水系沉积物具体采样方法

(一)水系沉积物测量 1:5万水系沉积物测量的工作布置是在充分研究区域地质矿产资料,根据区域矿产分布特征及已知矿化点分布情况进行的。其基本原则是:在区域上有足够的采样点控制异常围,圈定异常位置,查明异常分布及组合特征。 根据《地球化学普查规》和《关于〈地球化学普查规样品分析技术要求补充规定〉的通知》要求,结合景观地球化学条件、区域成矿规律、通行难易程度,围绕测区地质矿产调查目标任务,在本区开展1:5万水系沉积物测量,结合实际情况布设样点。 化探采样工作采用GPS全航迹管理,GPS定位数据采用随机配备的软件进行处理。成果中的坐标单位一律以米计。样品布设、采样要求和样品加工与测试分析按《地球化学普查规》、《地球化学普查规样品分析技术要求补充规定》(中地调发[2007]220号)、中国地质调查局《关于青藏高原区域化探方法技术问题的函》等执行,样品分析单位选择具有“CMA”计量资质的检测单位承担。 样品的采集关系到化探质量的好坏,从采样点的布置、取样介质选取和采集、样品编号、加工、包装、送样到测试各个环节必需严格按照有关规执行。 1、采样点布置原则 1.采样密度:采样点布设密度为4-8个点/km2,平均密度不小于4个点/km2。采样布局应兼顾均匀性与合理性,根据测区实际情况,以最大限度控制汇水域面积和取得具有代表性样品为原则。

2.采样点的布设以4个小方格(1km2)作为采样大格,在全区围分布基本均匀,大格中样品一般应兼顾控制效果和样点基本均匀两方面。 3.采样点尽量布设在最小水系(大于300m)—即一级水系末端和分支水系口上。如果水系较长(大于1km),在水系首尾之间增加采样点,使每一个采样点控制的汇水盆地面积大致在0.25km2之间。原则上不出现5个以上的连续空小格,每个小格的样品不超过2件。水系极不发育地区可以土壤样代替水系沉积物样品,但土壤样应控制在1%以。 4.采样点的布设应避开自然和人工污染地段,如公路、村庄、采矿(石)场等。水系不发育地段,样点布设在受水面积大的冲沟、凹地中。 5.由于设计点位是在未进行实地踏勘的情况下,在1:5万地形图上布设的,个别点位可能不尽合理,允许工作人员在实施过程中结合实际情况适当调整,但变动率应控制在10%以下。 (二)布点方法 在地形图上按1km2为单元进行大格编号,以1:5万图幅为单位,由左至右再自上而下的顺序编排大格号,每个大格分为a、b、c、d 四个小格,图幅边缘按大格中心点所在位置编号。每小格中采集的第一号样品为1,第二号样品为2,每个采样点按上述顺序进行编号。 重复样按工作总量的3%布设。重复样编号方法与上述方法相同,但应为采样小格中最后样号的样品。重复样主要用来检查野外取样的

元素地球化学背景特征

一、元素地球化学背景特征 工区对Au、Ag、Cu、Pb、Zn、As、Sb、Bi、W、Sn、Mo等十一种元素的含量进行了统计分析,其地球化学特征参数见表3-1。 1、全区内背景值对比特征, (1)从1∶5万水系沉积物测量—土壤测量—岩石测量,背景值逐渐增高的有Sb、Pb、Ag、Cu、Zn等元素,其中以Pb、Ag、Zn变化最为显著,Pb在1∶5万水系沉积物测量中最低为17.36×10-6,到1∶1万土壤地球化学测量中增加到40.64×10-6,在岩石中最高为85.45×10-6;Ag在1∶5万水系沉积物测量中最低为0.06×10-6,到1∶1万土壤地球化学测量中增加到0.10×10-6,在岩石中最高为0.13×10-6,增加了一个数量级;Zn在1∶5万水系沉积物测量中最低为72.78×10-6,到1:1万土壤地球化学测量中增加到96.38×10-6,在岩石中最高为537.88×10-6, 增加了一个数量级,是正常的成矿序列,反映了是区内的主成矿元素,从岩石中迁移进入土壤经次生变化后迁移到水系中进一步的贫化。 (2)区内从岩石测量或土壤测量—1∶5万水系沉积物测量,背景值逐渐增高的有Sn、Au等元素,Sn在岩石中最低为1.72×10-6; 到1:1万土壤地球化学测量中增加到 2.21×10-6,在1∶5万水系沉积物测量中最高为2.51×10-6,是一个反正常的变化序列,但同处一个数量级;Au在岩石中为0.97×10-9; 到1:1万土壤地球化学测量中减少到0.54×10-9,在1∶5万水系沉积物测量中最高为1.22×10-9,反映出Sn、Au元素从岩石中迁移进入土壤经次生变化后,迁移到水系中富集。 (3)区内从土壤测量—1∶5万水系沉积物测量—岩石测量,背景值逐渐增高的有Bi、W、Mo等元素,这类均是高温元素,其中Bi在土壤中最低0.36×10-6,在1∶5万水系沉积物测量中为0.46×10-6, 在岩石中最高为0.50×10-6; W在土壤中最低2.19×10-6,在1∶5万水系沉积物测量中为2.29×10-6, 在岩石中最高为3.18×10-6; Mo在土壤中最低0.51×10-6,在1∶5万水

东华理工大学水文地球化学试卷

2006-2007第一学期《水文地球化学》期末试卷(B)-参考答案班级()学号()姓名() 一、名词解释(每题3分,共21分) 1、盐效应:矿物在纯水中的溶解度低于矿物在高含盐量水中的溶解度,这种含盐量升高而使矿物溶解度增大的现象。 2、阳离子交替吸附作用:在一定条件下,岩石颗粒吸附地下水中的某些阳离子,而将其原来吸附的某些阳离子转入水中,从而改变了地下水的化学成分,这一作用即为阳离子交替吸附作用。 3、氧化垒:在还原条件被氧化条件激烈交替的地段上所形成的地球化学垒。 4、侵蚀性CO2:当水中游离CO2大于平衡CO2时,水中剩余部分的CO2对碳酸盐和金属构件等具有侵蚀性,这部分即为侵蚀性CO2。 5、TDS:指水中溶解组分的总量,它包括溶于水中的离子、分子及络合物,但不包括悬浮物和溶解的气体。 6、硅质水与硅酸水:SiO2含量大于50mg/L的水称为硅质水(1.5分);在阴离子中,HSiO3-占阴离子首位(按mol%计算)的水称为硅酸水(1.5分)。 7、硬度:是以水中Ca2+和Mg2+来量度,其计算方法是以Ca2+和Mg2+的毫克当量总数乘以50,以CaCO3表示,其单位为mg/L。 二、填空(每题1分,共14分) 1、Fe2+在(酸)性中迁移强,而在(碱)性中迁移弱。 2、地球化学垒按成因可分为(机械)垒、(物理化学)垒、(生物)垒和(复合)垒。 3、碱度主要决定于水中的(HCO-3,CO2-3)的含量。硬度是以(Ca2+,Mg2+)的毫克当量总数乘以50,而暂时硬度是以(HCO-3,CO2-3)的毫克当量总数乘以 50。 4.大气CO2的δ13C平均值是(-7‰),而土壤CO2的δ13C平均值是( -25‰)。5.标型元素的标型程度取决于(元素的克拉克值)和(它的迁移能力)。 6.弥散作用包括(分子扩散),(对流扩散迁移)和(渗透分散)。 7、SiO2和Na/K地热温度计适用的温度范围分别为(0~250℃)和(150~350℃)。8.近代火山型浅部地下热水的水化学类型为(SO2-4SO2-4 -Cl),而深部地下热水的水化学类型为(Cl-HCO-3)。 9.海水的水化学类型为(Cl-Na),而海成存封水的水化学类型为(Cl-Na -Ca)。 10、水对离子化合物具有较强的溶解作用,是由于水分子具有较强的(介电)效应所致,水的沸点较高,是由于水分子间(氢键)的破坏需要较大的能量。 11、在35℃下,pH=7的地下水是(碱)性。在天然水化学成分的综合指标中,体现水的质量指标的有(TDS,硬度,含盐量或含盐度,电导率),而表征水体系氧化还原环境状态的指标有(COD,BOD,TOC,Eh)。 12、迪拜—休克尔公式的使用条件是离子强度小于(0.1mol/L),而戴维斯方程的使用条件是离子强度小于(0.5mol/L)。 13、空气迁移的标型元素主要决定环境的(氧化还原)条件,而水迁移的标型元素主要决定环境的(酸碱)条件 14、在氮的化合物中,(NO-2,NH4+)可作为地下水近期受到污染的标志,而(NO-3)可作为地下水很早以前受到污染的标志。

《地球化学》练习题2剖析

恩《地球化学》练习题 第一章太阳系和地球系统的元素丰度(答案) 1.概说太阳成份的研究思路和研究方法。 2.简述太阳系元素丰度的基本特征。 3.说说陨石的分类及相成分的研究意义. 4.月球的结构和化学成分与地球相比有何异同? 5.讨论陨石的研究意义。 6.地球的结构对于研究和了解地球的总体成分有什么作用? 7.阐述地球化学组成的研究方法论。 8.地球的化学组成的基本特征有哪些? 9.讨论地壳元素丰度的研究方法。 10.简介地壳元素丰度特征。 11.地壳元素丰度特征与太阳系、地球对比说明什么问题? 12.地壳元素丰度值(克拉克值)有何研究意义? 13.概述区域地壳元素丰度的研究意义。 14.简要说明区域地壳元素丰度的研究方法。 15.岩浆岩中各岩类元素含量变化规律如何? 16.简述沉积岩中不同岩类中元素含量变化规律。 第二章元素结合规律与赋存形式(答案) 1.亲氧元素和亲硫元素地球化学性质的主要差异是什么? 2.简述类质同像的基本规律。 3.阐述类质同像的地球化学意义。 4.简述地壳中元素的赋存形式及其研究方法。 5.举例说明元素存在形式研究对环境、找矿或农业问题的意义。 6.英国某村由于受开采ZnCO3矿的影响,造成土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异,为什么? 第三章自然界体系中元素的地球化学迁移(答案) 1.举例说明元素地球化学迁移的定义。 2.举例说明影响元素地球化学迁移过程的因素。 3.列举自然界元素迁移的标志。 4.元素地球化学迁移的研究方法。 5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么? 6.解释络离子的稳定性及其在地球化学迁移中的意义。 7.简述元素迁移形式的研究方法。 8.什么是共同离子效应?什么是盐效应? 9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义? 10.举例说明Eh、pH值对元素迁移的影响。 11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用? 12.试述影响元素溶解与迁移的内部因素。 13.自然界中地球化学热力学体系基本特点是什么? 14.自然体系中哪些特征可作为体系达到平衡态的证据与标志? 15.讨论相律及其应用。

土壤水系沉积物具体采样方法

土壤水系沉积物具体采样方法(一)水系沉积物测量 1:5万水系沉积物测量的工作布置是在充分研究区域地质矿产资料,根据区域矿产分布特征及已知矿化点分布情况进行的。其基本原 则是:在区域上有足够的采样点控制异常范围,圈定异常位置,查明异常分布及组合特征。 根据《地球化学普查规范》和《关于〈地球化学普查规范样品分析技术要求补充规定〉的通知》要求,结合景观地球化学条件、区域成矿规律、通行难易程度,围绕测区地质矿产调查目标任务,在本区开展1:5万水系沉积物测量,结合实际情况布设样点。 化探采样工作采用GPS全航迹管理,GPS定位数据采用随机配备的软件进行处理。成果中的坐标单位一律以米计。样品布设、采样要求和样品加工与测试分析按《地球化学普查规范》、《地球化学普查规范样品分析技术要求补充规定》(中地调发[2007]220号)、中国地质调查局《关于青藏高原区域化探方法技术问题的函》等执行,样品分析单位选择具有“ CMA计量资质的检测单位承担。

样品的采集关系到化探质量的好坏,从采样点的布置、取样介质选取和采集、样品编号、加工、包装、送样到测试各个环节必需严格按照有关规范执行。 1、采样点布置原则 1.采样密度:采样点布设密度为4- 8个点/km2,平均密度不小于4个点/km2。采样布局应兼顾均匀性与合理性,根据测区实际情况,以最大限度控制汇水域面积和取得具有代表性样品为原则。 2.采样点的布设以4个小方格(1km2)作为采样大格,在全区范围内分布基本均匀,大格中样品一般应兼顾控制效果和样点基本均匀两方面。 3.米样点尽量布设在最小水系(大于300m)—即一级水系末 端和分支水系口上。如果水系较长(大于1km),在水系首尾之间增加采样点,使每一个采样点控制的汇水盆地面积大致在0.25km2之 间。原则上不出现5个以上的连续空小格,每个小格的样品不超过 2 件。水系极不发育地区可以土壤样代替水系沉积物样品,但土壤样应控制在1%以内。 4.采样点的布设应避开自然和人工污染地段,如公路、村庄、采矿(石)场等。水系不发育地段,样点布设在受水面积大的冲沟、凹地中。 5.由于设计点 位是在未进行实地踏勘的情况下,在1:5万地形图上布设的,个别点位可能不尽合理,允许工作人员在实施过程中结合实际情况适当调整,但变动率应控制在10%以下。 (二)布点方法 在地形图上按1km2为单元进行大格编号,以1:5万图幅为单位,由左至右再自上而下的顺序编排大格号,每个大格分为a、b、c、d

勘查地球化学习题集答案

地球化学找矿习题集 一、填空题 1.地球化学找矿具有对象的微观化,分析测试技术是基础,擅于寻找隐伏矿体和准确率高、速度快、成本低。的特点。 2.地球化学找矿的研究物质主要是岩石、土壤、水系沉积物、水、气体和生物。 3.地球化学找矿的研究对象是地球化学指标(或物质组成)。 4.应用地球化学解决地球表层系统物质与人类生存关系。 5.应用地球化学研究方法可以分为现场采样调查评价研究与实验研究。 6.元素在地壳的分布是不均匀的,不均匀性主要表现在空间和时间两方面。 7.克拉克值在0.1%以下的元素称为微量元素,其单位通常是ppm(或10-6)。 8.微量元素的含量不影响地壳各部分基本物理、化学性质,但是在特定的条件下,可以富集而形成矿床。 9.戈尔德施密特根据元素的地球化学亲和性,将元素分为亲铁元素、亲硫(亲铜)元素、亲氧(亲石)元素、亲气元素和亲生物元素。 10.元素迁移的方式主要有化学-物理化学迁移、机械迁移和生物-生物化学迁移。 11.热液矿床成矿过程中,成晕元素主要呈液相迁移,迁移方式主要有渗透迁移和扩散迁移两种。 12.影响元素沉淀的原因主要有PH变化、Eh变化、胶体吸附、温度变化和压力变化。 13.地壳中天然矿物按阴离子分类,常见有含氧化合物、硫化物、卤化物和自然元素。 14.地球化学异常包括异常现象、异常范围、异常值三层含义。 15.地球化学省实质是以全球地壳为背景的规模巨大的一级地球化学异常。 16.地壳元素的丰度是指地壳中化学元素的平均含量,又称为克拉克值。 17.地壳中元素的非矿物赋存形式包括超显微非结构混入物、类质同象结构混入物、胶体或离子吸附和与有机质结合。

勘探地球化学复习资料

化探复习 1、勘查地球化学的概念; 在地质与地球化学的理论指导下,在各种介质(包括岩石、土壤、水、水系沉积物、生物、气体等)中系统地在不同比例尺与规模上采集地球化学样品,经测试分析与数据处理,发现地球化学异常与其它地球化学指标,据此作为找矿的线索与依据,进而寻找矿床;同时用以解决一些地质等其它问题。 2、勘查地球化学的分类; 丰度(Abundance):泛指元素在一定的自然体系中的平均含量,也叫克拉克值。 浓集系数:它就是某元素在矿体中的含量(通常以最低可采平均品位作标准)与其地壳丰度的比值。 浓集系数反映了元素在地壳中局部集中(成矿)的能力。 浓集系数较大的元素在矿体周围呈现的地球化学异常强度较大。 对于某些伴生的微量元素,如果其浓集系数较主要成矿元素明显地大,则这些伴生元素便就是寻找该矿床的良好指示元素。Hg、Sb、Bi、As成为金矿床的指示元素便就是这个原因。浓度克拉克值:即地质体中某元素的平均含量与其克拉克值的比值。浓度克拉克值>1,说明元素富集,反之则分散。 化学元素在不同成分岩浆岩中的丰度变化,反映了岩浆成因与物质来源的差异,以及结晶分异与地球化学演化过程中元素的分配;同时也体现出造岩元素对微量元素含量变化的制约作用。 研究岩浆岩中化学元素的丰度变化具有重大找矿意义。 2、化学元素在各类沉积岩中的分布 (1)碱金属元素(2)碱土金属(3)亲氧元素 元素在地质体内的分布形态一般有五种情况:

①结合在多种矿物中的元素一般服从正态分布; ②集中在一、二种矿物内的元素呈对数正态分布; ③多次地化作用迭加形成的含量呈正态分布;单一作用呈正态分布。 ④扩散作用形成的含量呈对数正态分布;对流混匀作用呈正态分布。 ⑤两次不同地质作用,可引起两种类型相同而参数不同的分布形式。 研究分布类型的目的就是:正确选择背景值、背景上限以及各种数据处理方法。 通过对分布形式检验直接得到某些地化信息。 地壳中元素的存在形式与元素的迁移 地球化学环境就是使元素所在的地球化学系统得以保持平衡的各种物理化学条件的总合 原生环境,就是指从天然降水循环面以下直到能够形成正常岩石的最深水平的环境; 次生环境,就是地表天然水、大气所能够影响范围的环境 丰度研究的意义 1.判断特殊地球化学过程 2.衡量研究区化学元素富集或贫化的程度 3.作为选择分析方法灵敏度的依据 4.作为矿产资源评价预测的依据 地球化学系统中元素的总量称为地球化学储量。 在地球化学储量中,能被人类开采利用的部分叫作资源,资源中被探明的部分叫作矿产储量。资源量占地球化学储量的百分比叫作矿化度。 短吨= 907、18474 公斤=0、91吨 岩石的酸度,就是指岩石中含有SiO2 的重量百分数。 岩石的碱度即指岩石中碱的饱与程度 通常把Na2O+K2O的重量百分比之与,称为全碱含量 各岩类的标型元素组合为: 1、超基性岩元素,典型代表就是Cr、Ni、Co、Mg及Pt族。 2、基性岩元素,Cu、Fe、V、Ti、P、Mn、Ca、Sc、Sb等。 3、亲中性岩元素,Al、Ga、Zr、Sr等。 4、亲酸性岩元素,种类最多,以Li、Be、Ta、U、Th、K、Rb、Cs、F、B为代表。 5、碱性岩以富含Nb、Ta、Be及REE(稀土元素)为特征。 沉积岩可以分为碎屑岩、泥质岩与化学沉积岩三个类型 二、元素的赋存形式 1、矿物形式:独立矿物(主要造岩矿物)、副矿物、主矿物中的机械包裹体、固熔体分解物、液相包裹体中的子矿物; 2、非矿物形式:类质同象混入物,元素呈离子、分子、胶体被矿物表面吸附,超显微非结构混入物,有机结合物。 三、元素迁移 元素迁移的方式 1、化学及物理化学迁移 2、机械迁移 3、生物及生物地球化学迁移 地球化学异常:就是指某些天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的含量偏离正常含量或某些化学性质明显的发生变化的现象。 地球化学背景及背景区: 在化探中将无矿或未受矿化影响的天然物质(岩石、土壤、水系沉积物、生物等)中某一特征元素的正常含量(一般含量)称为背景。 而将那些具有正常含量的地区称为背景区或正常区。

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

地球化学复习题汇总

地球化学赵伦山张本仁 韩吟文马振东等 P 1:地球化学基本问题) P 5:克拉克值,地球化学发展简史(几个发展阶段) P31:元素丰度,表示单位元素在地壳平均化学丰度―――确定方法,克拉克值, P37:元素克拉克值的地球化学意义 P68:类质同象和固溶作用 P81:元素的赋存状态――1,5种 P88: 元素迁移 P 123: 相律 P169: 衰变定律 P181:痕量元素地球化学,稀土元素的研究方法和意义(痕量元素=微量元素) 复习内容及答案汇总 一、地球化学研究的基本问题、学科特点及其在地球科学中的地位(P1-) 地球化学是研究地球及相关宇宙体的化学组成、化学作用和化学演化的科学,在地球化学发展历史中曾经历了较长时间的资料积累过程,随后基于克拉克、戈尔施密特、维尔纳茨基、费尔斯曼等科学家的出色工作,地球化学由分散的资料描述逐渐发展为有系统理论和独立研究方法的学科。目前地球化学已发展成为地球科学领域的重要分支学科之一,与岩石学、构造地质学等相邻学科相互渗透与补充,极大地丰富了地球科学研究内容,在地质作用过程定量化研究中已不可或缺。 地球化学的研究思路和学科特点是:(1)通过分析常量、微量元素和同位素组成的变化,元素相互组合和赋存状态变化等追索地球演化历史;(2)利用热力学等现代科学理论解释自然体系化学变化的原因和条件,探讨自然作用的机制;(3)将地球化学问题置于地球和其子系统(岩石圈、地壳、地幔、地核等)中进行分析,以个系统的组成和状态约束作用过程的特征和元素的行为。 围绕原子在自然环境中的变化及其意义,地球化学研究主要涉及四个基本问题:(1)研究地球和动质体中元素和同位素的组成;(2)研究元素的共生组合和赋存形式;(3)研究元素的迁移和循环;(4)研究元素和同位素迁移历史和地球的组成、演化历史、地球化学作用过程。 二、简述痕量元素地球化学研究解决的主要问题 痕量元素地球化学理论使许多地质难题迎刃而解,其可解决的主要问题有:

环境水文地球化学 第一篇 第一次作业

1.地下水的主要组成成分是什么? 答:地下水是组成成分复杂的溶液,近八十种天然元素以离子、原子、分子、络合物和化合物等形式存在于地下水中,有些已溶解和活动于地下水中的有机质、气体、微生物和元素同位素的形式存在。这些可溶物质主要是岩石风化过程中,经过水文地球化学和生物地球化学的迁移、搬运到水中的地壳矿物质。 地下水中溶解的无机物主要组分(即浓度>5mg/L)为:HCO3-、Cl-、SO42-、Na+、K+、Ca+、Mg2+、SiO2。占地下水中无机物成分含量的90-95%,决定着地下水的化学类型。 地下水中有机组分种类繁多,主要有:氨基酸、蛋白质、糖(碳水化合物)、葡萄糖、有机酸、烃类、醇类、醚类、羧酸、苯酚衍生物、胺等。各种不同形式的有机物主要由C、H、O组成,这三种元素占全部有机物的98.5%,另外还存在有少量的N、P、K、Ca等元素。 地下水中常见溶解气体有:O2、CO2、CH4、N2、H2以及惰性气体Ar、Kr、He、Ne、Xe等。 微生物成分主要有三种类型:细菌、真菌和藻类。微生物在地下水化学成分的形成和演变过程中起着重要的作用。地下水中存在各种不同的细菌。有在氧化环境中的硝化菌、硫细菌、铁细菌等喜氧细菌;有在还原环境的脱氮菌、脱硫菌、甲烷生成菌、氨生成菌等。这些微生物活动可以发生脱硝酸作用、脱硫酸作用、甲烷生成作用和氨生成作用等还原作用,也可以发生硫酸根生成、硝酸根生成和铁的氧化等作用等,从而导致地下水化学成分的相应变化。 2.举例论述络合作用有何环境意义? 答:地下水中大多数金属能与配体形成各种各样的络合物,这些络合物可能是电中性的,也可能是带正电或者带负电。金属络合作用对环境的意义在于:络合物的溶解度是影响金属形态迁移的重要因素;重金属离子与不同配体的配位作用,改变其化学形态和生化毒性,如铝离子(毒性很强)、有机铝络合物(毒性很弱)的生物毒性相差很大;络合作用影响络合剂的性质,如配位体的氧化还原性、脱羧及水解等;有些络合物可以通过化学絮凝、活性炭吸附或离子交换等方法容易地从水中去除。但有些重金属形成螯合物后很难用常规办法去除,影响水处理中对重金属的排除效率;络合作用会加速金属的腐蚀,比如氯离子和氨的作用。 3.胶体的稳定性和ζ电位有什么关系?研究胶体的ζ电位有何环境意义? 答:ζ电位是胶体稳定性的一个重要指标,因为胶体稳定是与离子键的经典排斥力密切相关的。ζ电势的降低会使静电排斥力减小,致使粒子之间范德华力占优势,从而引起胶体的聚沉难和破坏。故研究ζ电势的变化规律是十分重要的。 4.地球化学垒和水文地球化学分带形成的原因是什么? 答:地球化学垒是正在表生带内,因为短间隔内化学元素迁徙环境显然变迁,迁徙强度突然削弱而招致某些化学元素浓集的地段;水文地球化学分带是地下水化学成分和水中总溶解固体沿着水平或者垂直方向呈现有规律的带状分布和变化的现象。故它们共同形成成因都是地下

水文地球化学习题讲解学习

水文地球化学习题 第一章 第二章水溶液的物理化学基础 1.常规水质分析给出的某个水样的分析结果如下(浓度单位:mg/L): Ca2+=93.9;Mg2+=22.9;Na+=19.1;HCO3-=334;SO42-=85.0;Cl-=9.0;pH=7.2。求: (1)各离子的体积摩尔浓度(M)、质量摩尔浓度(m)和毫克当量浓度(meq/L)。 (2)该水样的离子强度是多少? (3)利用扩展的Debye-Huckel方程计算Ca2+和HCO3-的活度系数。 2.假定CO32-的活度为a CO32- =0.34?10-5,碳酸钙离解的平衡常数为4.27?10-9,第1题中的水样25℃时CaCO3饱和指数是多少?CaCO3在该水样中的饱和状态如何? 3.假定某个水样的离子活度等于浓度,其NO3-,HS-,SO42-和NH4+都等于10-4M。反应式如下: H+ + NO3- + HS- = SO42- + NH4+ 问:25℃和pH为8时,该水样中硝酸盐能否氧化硫化物? 4.A、B两个水样实测值如下(mg/L): 组分Ca2+Mg2+Cl-SO42-HCO3-NO3- A水样706 51 881 310 204 4 5.请判断下列分析结果(mg/L)的可靠性,并说明原因。 组分Na+K+Ca2+Mg2+Cl-SO42-HCO3-CO32-pH A水样50 6 60 18 71 96 183 6 6.5 B水样10 20 70 13 36 48 214 4 8.8 6.某水样分析结果如下: 离子Na+Ca2+Mg2+SO42-Cl-CO32-HCO3-含量(mg/l) 8748 156 228 928 6720 336 1.320 试计算Ca2+的活度(25℃)。 4344 含量(mg/l)117 7 109 24 171 238 183 48 试问: (1)离子强度是多少? (2)根据扩展的Debye-Huckel方程计算,Ca2+和SO42-的活度系数? (3)石膏的饱和指数与饱和率是多少? (4)使该水样淡化或浓集多少倍才能使之与石膏处于平衡状态? 8.已知温度为298.15K(25℃),压力为105Pa(1atm)时,∑S=10-1mol/l。试作硫体系的Eh-pH图(或pE-pH图)。 9.简述水分子的结构。 10.试用水分子结构理论解释水的物理化学性质。 11.温、压条件对水的物理、化学性质的影响及其地球化学意义。 12.分别简述气、固、液体的溶解特点。

微量元素地球化学期末作业培训课件

西藏阿里多龙地区中侏罗统碎屑沉积岩的地球 化学特征及其构造环境分析 学号:120110100 姓名:胡维云专业:构造地质学 前言 班公湖—怒江成矿带西段位于西藏自治区西北部的阿里地区境内,跨班公湖—怒江缝合带南北两侧,由于仅开展过 1∶25 万区域地质调查、1∶20万区域化探等少量基础地质工作,是西藏地质工作程度最低的地区之一。近年来该成矿带内资源评价工作取得了突出的进展,多龙超大型斑岩铜金矿床和嘎尔穷、嘎拉勒、弗野、材玛等大型矽卡岩型铜铁多金属矿床的相继发现与评价,揭示出班公湖—怒江成矿带成矿条件优越,找矿潜力巨大。关于班公湖—怒江结合带所代表的特提斯洋盆的性质,打开、闭合的时限和多龙大型矿集区的构造背景、成矿作用,不同的学者存在很大的争议。目前,己有许多资料证明了该带代表了一个已消失的具有一定规模的洋壳盆地。王恒忠等(2005)认为班公湖--怒江缝合带内的早白奎世OIB型火山岩是班公湖—怒江洋盆演化晚期的洋岛(塔仁本区早白垩世OIB型玄武岩(主要依据于上覆灰岩中化石时代));而张玉修等(2004)研究认为该套玄武岩是早白垩世冈底斯弧弧后盆地的产物。 一、研究目的及意义 拟通过研究多龙地区中侏罗统地层的岩石类型及组合特征和岩石地球化学特征,分析该地区中侏罗统地层形成的大地构造环境,为正确认识多龙超大型斑岩铜金矿床的成矿地质背景和结合带的演化提供了新的线索。 二、研究区地质背景 构造位置上,多龙地区处于班公湖—怒江缝合带北侧, 羌塘地块的南缘;地理位置上处于西藏自治区阿里地区。该区构造以断裂为主,呈近东西向带状断续展布。断裂构造主要表现为一系列走向近东西向且大致平行的北倾逆冲断层,并控制着地层和岩浆岩的分布。沿构造-岩浆带,大规模的岛弧火山活动发生在中—晚侏罗世,形成燕山早期陆缘火山弧,为一套含大量火山碎屑岩的以安山质为主的玄武—安山—流纹岩组合,火山作用晚期岩浆成分向碱性演化,以陆相中心式喷发为主,兼具熔岩溢流(西藏自治区区域地质志,2000)。岩浆的深成侵入作用发生在早白垩世至晚白垩世早期,以中酸性幕式侵入为特点,岩体一般呈岩珠或小岩基沿东西向呈带状分布,岩性主要有石英闪长岩、花岗闪长岩、二长花岗岩、似斑状花岗岩及花岗斑岩,年龄在70—140Ma之间(西藏自治区区域地质志,2000)。研究区地层主要为晚三叠统的日干配错组、中侏罗统的曲色组一段、色哇组、,早白垩统的美日切组,新近系中新统的康托组、更新统和全新统。地层属羌塘—昌都地层区内的羌南地层分区之多码分区,出露宽度大于10km。 三、研究依据 据现有资料研究表明:砂岩的TFe2O3+MgO、TiO2含量,以及Al2O3/SiO2、K2O/Na2O 和A12O3/(CaO+Na2O)等比值具有显著的构造背景差异,因而成为其形成的大地构造环境判别的重要参数(Bhatia,1983)。Roser等人(1986)认为,K2O/Na2O值与SiO2值可有效地示踪砂岩形成构造环境,并编制了构造判断图解。在Bhatia(1983)提出的TiO2-TFe2O3+MgO图解,Roser和Korsch(1988)提出了区分物源区是铁镁质的、中性的或长英质火成岩和石英沉积

中国地质大学地球化学习题及答案

中国地质大学《地球化学》练习题及答案 中国地质大学《地球化学》练习题绪论 1. 概述地球化学学科的特点。2. 简要说明地球化学研究的基本问题。3. 简述地球化学学科的研究思路和研究方法。4. 地球化学与化学、地球科学其它学科在研究目标和研究方法方面的异同。第一章太阳系和地球系统的元素丰度 1.概说太阳成份的研究思路和研究方法 2.简述太阳系元素丰度的基本特征.3.说说陨石的分类及相成分的研究意义.4.月球的结构和化学成分与地球相比有何异同?5.讨论陨石的研究意义.6. 地球的结构对于研究和了解地球的总体成分有什么作用?7. 阐述地球化学组成的研究方法论.8. 地球的化学组成的基本特征有哪些?9. 讨论地壳元素丰度的研究方法.10.简介地壳元素丰度特征.11. 地壳元素丰度特征与太阳系、地球对比说明什么问题? 12.地壳元素丰度值(克拉克值)有何研究意义?13.概述区域地壳元素丰度的研究意义.14.简要说明区域地壳元素丰度的研究方法.15.岩浆岩中各岩类元素含量变化规律如何?16.简述沉积岩中不同岩类中元素含量变化规律. 第二章元素结合规律与赋存形式1.亲氧元素和亲硫元素地球化学性质的主要差异是什么? 2.简述类质同像的基本规律. 3.阐述类质同像的地球化学意义. 4.简述地壳中元素的赋存形式及其研究方法. 5.举例说明元素存在形式研究对环境、找矿或农业问题的意义. 6.英国某村由于受开采ZnCO3矿的影响,造成住宅土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异。为什么? 第三章水-岩化学作用和水介质中元素的迁移 1.举例说明元素地球化学迁移的定义. 2.举例说明影响元素地球化学迁移过程的因素。 3.列举自然界元素迁移的标志. 4.元素地球化学迁移的研究方法. 5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么? 6.解释络离子的稳定性及其在地球化学迁移中的意义. 7.简述元素迁移形式的研究方法. 8.什么是共同离子效应?什么是盐效应?9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义?10.举例说明Eh、pH值对元素迁移的影响. 11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用?12.试述影响元素溶解与迁移的内部因素。 第四章地球化学热力学和地球化学动力学 1.自然界中地球化学热力学体系基本特点是什么? 2.自然体系中哪些特征可作为体系达到平衡态的证据与标志? 3.讨论相律及其应用。 4.编制相图的原理和方法。 6.简述化学反应制动原理的宏观解释7.简述热力学在地球化学中的应用。8.简述地球化学热力学与地球化学动力学的异同。9. 简述水溶液中元素的迁移方式。第五章微量元素地球化学 1.什么是微量元素地球化学?其研究意义是什么? 2.了解微量元素地球化学的研究思路及研究方法。 3.什么叫微量元素、什么是主量(常量)元素?微量元素的主要存在形式有哪些? 4.阐述能斯特分配定律、能斯特分配系数的概念及其研究意义。 5.稀土元素的主要特点是什么?其在地球化学体系中行为差异主要表现有哪些方面?。 6.讨论稀土元素的研究意义。7.你认为岩浆作用过程中决定元素浓集成矿的主要机制和决定因素是什么?8 根据微量元素的特点,说明那些元素适合于研究沉积岩物源区特征,为什么? 第六章同位素地球化学 1. 同位素地球化学在解决地学领域问题中有何独到之处? 2. 何谓稳定同位素、何谓轻稳定同位素和重稳定同位素。 3. 选择同位素标准样品的条件。 5. 造成稳定同位素组成变化的原因是什么? 6. 放射性同位素年龄测定公式,各符号的含义。

水系沉积物测量工作方法

.1/5万水系沉积物测量野外工作方法一.1/5万水系沉积物测量布点原则 以区景观条件、地质及地球化学特征为依据,并根据任务书要求完成本次布点: ⑴以1:5万地形图为工作手图,采样密度控制在6-8个点/Km2以,一般按每平方公里不少于7个点/Km2布置。主水系中均不布点,特别难以通行区可适当放稀布点。样点分布力求最大限度控制汇水域,兼顾样点均匀一、水系沉积物布点原则合理布设。 ⑵采样点主要布置在地形图上可以辨认的最小水系(>300m)即一级水系口上,对长度大于500米的水系,应溯源追加布点,二三级水系可适当控制。对原1:20万区域化探采样点应进一步布点。 ⑶最上游的采样点控制汇水域面积不小于0.125km2,不大于 0.25km2,要求每个样点都应控制一片特有的汇水域,力求采样点控制汇水域面积的均匀性。 ⑷避免不必要的重复控制及机械布点,布点时尽量兼顾减轻劳动强度,采样点尽量布置在易通行处。 ⑸在自然条件允许的情况下,尽量使95%以上的小格都有样点分布,不得连续出现五个以上的空白小格。 ⑹综合考虑上述原则的基础上,剔除不布样点格子之后,布点大格总数135个。测区平均采样密度7。1/km2,采样总面积113km2。设计采样点805个,样品931件(12元素),布点情况见表12。 采样大格编码、布点、分配一览表表12

二、样品编号 1、在放大1:5万地形图上,以高斯坐标网线划分成1Km2的采样大格,大格编号顺序从左到右,自上而下依次编排;每个大格再以奇数方里网为界,划分成0.25Km2的四个小格,编号顺序从左到右,自上而下划分为a、b、c、d,每个小格有两个样点时,按从上而下的顺序,以阿拉伯数字脚注,如8A2 为第8大格A小格2号样品。采样点预先设计标绘于地形图上。 2.含重复采样格子确定,在考虑图幅中均匀分布和不同地质构造单元的前提下,预先随机确定重复采样格且随机确定一重复样点。实际采样43个样品为一批,其中随机留取7个号,3个插入重复分析样品,4个供实验室插入二级标样作质量监控,以衡量各批次间的分析偏差,每个1:5万图幅随机抽取一批,供实验室插入12个一级标样。(含重复采样大格327个,重复采样点数327个,见表13。) 3.在统一采样点布局,确定采样点编码,计划样品分析批次和插入 一、二级标样(样品分析质量监控)及含重复样格子确定的基础上,完成样品编码图的编制。见附图3。 1.野外定点 ⑴以1:5万地形图作为野外工作手图,按布点原则布设采样点,野外实施中以采样点位图为指导,采用GPS定位和识图法相结合进行定点,定点误差在图上不大于2毫米。 ⑵为便于质量检查,每个采样点均应在固定物体上留有醒目标志。为确保采样到位,野外实施GPS航迹监控。 2.样点采集 ⑴野外采样是化探工作的重要环节,具体采样工作应严格质量要求。各采样组严格按1:5万化探工作规、工作细则等有关规定要求执行

成都市土壤元素地球化学背景

成都市土壤元素地球化学背景 四川省地质矿产勘查局区调队朱礼学刘志祥陈斌邮编610213 国土资源部成都岩矿测试中心李小英邮编610081 摘要:本文扼要介绍了成都市辖区环境背景及土壤环境地球化学背景的调查方法,重点介绍了成都市土壤第一环境、第二环境地球化学元素的背景值及元素分布特征,地球化学分区,首次揭示本区土壤的地球化学背景。 关键词:成都市,土壤,地球化学背景。 成都市位处四川省中部,四川盆地西部,成都平原腹地,地跨东经1020 55'—1050 53'北纬300 6'—310 26',东西长192km,南北宽148km,幅原12900多平方公里,境内有平原、台地、丘陵、山地等多种地貌,海拔387—5364m,气候属于亚热带湿润季风气候区,是四川省工农业、政治、经济文化中心,随着社会的进步与发展,资源与环境日渐成为人们关注的热点,土壤与水、大气、阳光一样是万物生长之源,其环境背景及现状倍受人们关注。由中国地调局部署,四川地勘局实施的国土资源大调查项目“成都平原多目标地球化学调查”首次揭示了成都市土壤环境地球化学背景值及元素分布特征。 一、成都市土壤环境背景 成都市辖区北西部为龙门山区,南东为龙泉山区,腹地为平原,平原与山地间分布有浅丘台地,龙门山区为浅覆盖深切割区或基岩裸露区. 龙泉山区为浅切割、浅覆盖地区,平原区为深覆盖地区,全区覆盖及切割特征见图1。 除龙门山基岩裸露区外,全市土壤是以第四系、第三系、侏罗系、白垩系母岩为基础发育而成的。主要有水稻土、紫色土、黄土、棕壤等主要土壤类型(图2)。 全市土地农业综合分区可划分为五大区: Ⅰ.近郊平原、浅丘粮、油副食品区;Ⅱ.中部平原农、牧、渔区;Ⅲ.中部丘陵粮、果(经作林、枚区);Ⅳ.远郊中低山林、土特产区,Ⅴ.远郊高山水源涵养区(图3)。 二、土壤环境元素地球化学背景调查方法 不同地球化学景观区,土壤成土母质、成土作用、覆盖厚度、农业土壤利用存在着较大差异。地球化学背景的影响因素亦较为复杂,用以确定本地区地球化学背景的样品的采集深度、层位、采集密度、样品分析介质的粒度等应力求一个科学的、经济可行的、易于实施的模式。经国土资源部物化探研究所(河北廊坊)周国华等人研究评估(2000年)认为:本地区土壤第二环境浅层采集深度0—0.2m ,第一环境(深层)深度在0.8m以下,分析样土壤粒度平原区过干筛-20目,低山丘陵区紫色土-40目,土壤样品中地球化学元素的分布能较好地反映采样区的土壤环境地球化学背景。 (一)采样方法技术 平原区采样深度1.50—1.80m,丘区紫色土地区采样深度0.40—0.80m,龙门山区0.80m以

相关文档
相关文档 最新文档