文档库 最新最全的文档下载
当前位置:文档库 › 红外通信原理

红外通信原理

红外通信原理
红外通信原理

红外通信原理

——NEC红外协议

IDEA 2012年8月4日星期六

红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。

1 红外遥控系统

通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如下所示。发射部分包括键盘矩阵、编码调制、LED 红外发射头;接收部分包括光、电转换放大器、解调、解码电路。

发射部分将扫描的键盘码值进行编码和调制通过LED红外发射头发射出去;接收部分的红外接收头对收到信号进行放大、检波、整形、解调,最后由解码电路进行解码。

2 红外遥控编码

现有的红外调制方式有2种:脉冲宽度调制(PWM)和脉冲位置调制(PPM)。PWM以发射红外载波的占空比的不同来代表“0”和“1”。比如使用NEC upd6121,其“0”为载波发射0.56ms,不发射0.56ms;其“1”为载波发射0.56ms,不发射1.68ms;PPM以发射载波的位置表示“0”和“1”。从发射载波到不发射载波为“0”,从不发射载波到发射载波为“1”。其发射载波和不发射载波的时间相同,也就是每位的时间是固定的。

常用的红外线信号传输协议有 ITT 协议、 NEC 协议、 Nokia NRC 协议、 Sharp 协议、Philips RC-5 协议、Philips RC-6协议,Philips RECS-80协议,以及 Sony SIRC 协议等。在东亚地区用得较多的有 NEC协议,故下面对NEC协议作主要介绍。

NEC协议由引导码,用户码(地址码),数据码,重复码或数据码的反码和结束码构成。

①引导码由一个9ms的载波波形和4.5ms的关断时间(低电平)构成;

②地址码共16bits,低8位在前,高8位在后。最低位LSB先传输(下图为AA59H)。

③8bit数据码及其反码,同样先传输最低位LSB(下图为16H及E9H)

④最后1bit停止码为 0.56ms的载波波形(如上图最后1位)

⑤如果第一次数据传输结束后,还检测到该按键仍然按着,则每隔108ms重复发送一

次重复码,如下:

⑥重复码由9ms的载波波形、2.25ms的低电平和0.56ms的载波波形构成。

⑦常使用占空比为1/3的38KHz载波。

⑧利用脉冲之间的时间间隔来区分“0”和“1”。逻辑“1”:0.56ms的载波波形 + 1.69ms

的低电平;逻辑“0”:0.56ms的载波波形 + 0.565ms的低电平。

3 红外遥控解码

红外接收器典型的模块框图如下所示:

上述框图的所有电路全部集成到了红外接收头里,红外信号由检波二极管接收,信号通过放大和限幅2个环节处理,使信号有稳定的脉冲电平。带通滤波器通过一定频带的信号,抑制这个频带外的信号,在一般的消费类电子产品中,这个频率的范围为30KHz到60KHz。接下来的三个模块检波,积分和比较,用于检出调制频率:若有调制频率信号,则比较器输出低电平,即红外一体化接收头的输出信号与发射端发射出的数据是反相的。

4 示波器实测波形

下图显示了一帧数据的部分波形:

图中的用户码为0x0080(8bits一读,16bits一起读的话就是0x1000了)注意是低权位在前(LSB)。

引导码(9ms的载波波形和4.5ms关断波形)

0.56ms载波波形

放大看:

38KHz载波(图中占空比为1/2)

重复码:9ms的载波波形+ 2.25ms的低电平+ 0.56ms的载波波形,如下图所示。

108ms的间隔周期,如下图所示:

通信原理考研知识点

By 夜阑寄语(yljy52725) 1绪论:1、了解通信的基本概念;2、了解通信中相关的消息、信息、信号之间的关系;3、正确区分数字信号和模拟信号;4、掌握各类通信系统(通信基本模型、模拟通信系统模型、数字通信系统模型);5、掌握数字通信的特点以及通信的方式(单工、双工、半双工);6、了解各类通信系统分类;7、信息的度量(信息量、熵);8、通信系统的性能指标(有效性、可靠性)。 2确知信号:1、了解确知信号概念以及信号类型;2、了解功率信号的频谱以及能量信号的频谱密度。 3随机过程:1、掌握随机过程的概念;2、了解各态历经的概念;3、掌握平稳随机过程的自相关函数的性质以及对应的功率谱密度;4、了解高斯随机过程的概念以及掌握其性质;5、平稳随机过程通过线性系统相关参数的变化; 6、掌握窄带随机过程的概念以及窄带随机过程对应的各类分量的统计特性; 7、掌握高斯白噪声(明确白噪声的概念)。 4信道:1、了解有线信道和无线信道的概念并且常见的该信道类型;2、掌握信道的数学模型(调制信道、编码信道);3、了解信道特性对信号传输特性的影响;4、了解信道中噪声的类型以及该噪声对信号传输所造成的影响; 5、掌握信道容量的概念以及计算式(Shannon公式)。 5模拟调制系统:1、掌握幅度调制(线性调制-AM、DSB、SSB、VSB)系统的概念及一般传输模型和解调模型(包络检波-非相干解调、相干解调);2、掌握各类线性调制系统(AM、DSB、SSB、VSB)的输出波形以及各类解调方式的抗噪声性能(信噪比增益);3、掌握判断各类线性调制系统性能的优劣;4、了解角度调制(非线性调制)的概念及对应的(FM、PM)传输模型; 5、掌握两类非线性调制之间的相互转换关系(PM->FM); 6、了解非线性调 制系统的解调模型及其抗噪性能(信噪比增益);7、掌握门限效应的概念以及产生的原因;8、了解信号的加重技术;9、掌握各类模拟调制系统的比较以及各自适用的实际情况。 6数字基带传输系统:1、了解基带信号的概念及其谱特性;2、掌握数字基带传输的几种常见码型(AMI、HDB3、Manchester、双相码、CMI)的编码规则以及各自的适用场合;3、掌握数字基带传输系统的传输模型以及理解码间串扰的概念;4、掌握数字基带传输系统的无码间串扰的时频条件;5、掌握数字基带传输系统的无码间串扰特性的设计;6、了解基带传输系统(二进制单极性/双极性)的抗噪声性能(判决门限);7、掌握眼图的产生以及由其可以确定的参数类型;8、理解部分响应系统和时域均衡的实际意义。7数字带通传输系统:1、掌握产生各类二进制数字调制(ASK、FSK、PSK、DPSK)的系统模型以及各自的解调模型;2、掌握DPSK系统的产生原因;3、掌握各类二进制数字调制的输出波形;4、掌握各类二进制数字调制系统的抗噪声性能及其相应比较。 8新型调制系统:1、了解QAM系统; 2、掌握MSK系统的特点;3、掌握OFDM 系统的特性及其传输特点。 9数字信号的最佳接收:1、掌握数字信号的最佳接收概念;2、掌握最佳接收机的模型(确知信号、随相信号、/起伏信号);3、掌握匹配滤波器的结构;3、了解最佳基带系统。 10信源编码:1、了解模拟信号数字化步骤(抽样、量化、编码);2、掌握各类抽样方式(理想抽样、自然抽样、平顶抽样—特点);3掌握各类量化(均匀量化、非均匀量化)方式;4、掌握PCM编码机及其编码方式;5、了解

红外通信电路

红外通信基本原理 红外通信是利用950nm近红外波段红外线作为传递信息媒体,即通信信道。发送端采用脉时调制(PPM)方式,将二进制数字信号调制成某一频率脉冲序列,并驱动红外发射管以光脉冲形式发送出去;接收端将接收到光脉转换成电信号,再经过放大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出。 简而言之,红外通信实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输;红外通信接口就是针对红外信道调制解调器。 https://www.wendangku.net/doc/c56079872.html,提示请看下 图: 2 红外通信接口硬件电路设计 单片机本身并不具备红外通信接口,但可以利用单片机串行接口与片外红外发射和接收电路,组成一个应用于单片机系统红外串行通信接口,如图1所示。 2.1 红外发送器

红外发送器电路包括脉冲振荡器、驱动管T1和T2、红外发射管D1和D2等部分。其中脉冲振荡器由NE555定时器、电阻(R1、R2)和电容(C1、C2)组成,用以产生38kHz脉冲序列作为载波信号;红外发射管D1和D2选用Vishay公司生产TSAL6238,用来向外发射950nm红外光束。 2.2 硬件电路 接口电路如图4所示,J1为红外发射/接收电路的发射信号和接收信号接口,可以用1 0Pi ns排线直接和SPCE061A的10B高8位相连,通过SPCE061A的IOB8输出38kHz的调制波,IOB8输出TimerA PW M脉宽调制输出。载波图如图3所示。 红外信号的调制主要有两种,一种是脉宽调制(PWM),一种是通过脉冲串的时间间隔实现信号调制的脉时调制(PPM),本文采用的方法是PPM。 61板是这个系统的控制核心,红外发射管选用的是由Visay公司生产的TSAL6238,用来发射940nm的红外光束,发射电路主要由电阻电容三极管和红外发射管组成,串行码的发送主要由TimerA定时器,IOB8编程为第二功能是由TimerA控制输出占空比可调的脉宽调制信号APWM0,产生38kHz的载波信号,如图5是38kHz的调制波。串行数据由单片机的串行输出端TXD送出并驱动三极管,利用两个红外发射管将38kHz的载波信号以光脉冲的形式向外发送。串行码为1时,打开输出,为0时,关闭APWM0输出(输出低电平)。用TimerB控制脉冲宽度。 红外发送器工作原理为:串行数据由单片机串行输出端TXD送出并驱动T1管,数位“0”使T1管导通,通过T2管调制成38kHz载波信号,并利用两个红外发射管D1和D2以光脉冲形式向外发送。数位“1”使T1管截止,红外发射管D1和D2不发射红外光。若传送波特率设为1200bps,则每个数位“0”对应32个载波脉冲调制信号时序,如图2所示。 https://www.wendangku.net/doc/c56079872.html,提示请看下 图:

通信原理知识点

第一章 1.通信的目的是传输消息中所包含的息。消息是信息的物理表现形式,信息是消息的有效内容。.信号是消息的传输载体。 2.根据携载消息的信号参量是连续取值还是离散取值,信号分为模拟信号和数字信号., 3.通信系统有不同的分类方法。按照信道中所传输的是模拟信号还是数字信号(信号特征分类),相应地把通信系统分成模拟通信系统和数字通信系统。按调制方式分类:基带传输系统和带通(调制)传输系统。 4.数字通信已成为当前通信技术的主流。 5.与模拟通信相比,数字通信系统具有抗干扰能力强,可消除噪声积累;差错可控;数字处理灵活,可以将来自不同信源的信号综合刭一起传输;易集成,成本低;保密性好等优点。缺点是占用带宽大,同步要求高。 6.按消息传递的方向与时间关系,通信方式可分为单工、半双工及全双工通信。 7.按数据码先排列的顾序可分为并行传输和串行传输。 8.信息量是对消息发生的概率(不确定性)的度量。 9.一个二进制码元含1b的信息量;一个M进制码元含有log2M比特的信息量。等概率发送时,信源的熵有最大值。 10.有效性和可靠性是通信系统的两个主要指标。两者相互矛盾而又相对统一,且可互换。在模拟通信系统中,有效性可用带宽衡量,可靠性可用输出信噪比衡量。 11.在数字通信系统中,有效性用频带利用率表示,可靠性用误码率、误信率表示。 12.信息速率是每秒发送的比特数;码元速率是每秒发送的码元个数。 13.码元速率在数值上小于等于信息速率。码元速率决定了发送信号所需的传输带宽。 第二章 14.确知信号按照其强度可以分为能量信号和功率信号。功率信号按照其有无周期性划分,又可以分为周期性信号和非周期性信号。 15.能量信号的振幅和持续时间都是有限的,其能量有限,(在无限长的时间上)平均功率为零。功率信号的持续时间无限,故其能量为无穷大。 16.确知信号的性质可以从频域和时域两方面研究。 17.确知信号在频域中的性质有4种,即频谱、频谱密度、能量谱密度和功率谱密度。 18.周期性功率信号的波形可以用傅里叶级数表示,级数的各项构成信号的离散频谱,其单位是V。 19.能量信号的波形可以用傅里叶变换表示,波形变换得出的函数是信号的频谱密度,其单位是V/Hz 。 20.只要引入冲激函数,我们同样可以对于一个功率信号求出其频谱密度。 21.能量谱密度是能量信号的能量在频域中的分布,其单位是J/Hz。功率谱密度则是功率信号的功率在频域中的分布,其单位是W/Hz。 22.周期性信号的功率谱密度是由离散谱线组成的,这些谱线就是信号在各次谐波上的功率分量|Cn|2,称为功率谱,其单位为w。但若用δ函数表示此谱线。则它可以写成功率谱密度|C(f)|2δ(f-nf0)的形式。 23.确知信号在时域中的特性主要有自相关函数和互相天函数。 24.自相关函数反映一个信号在不同时间上取值的关联程度。 25.能量信号的自相关函数R(O)等于信号的能量;而功率信号的自相关函数R(O)等于信

红外无线通信装置(非常详细的原理)

西南科技大学 自动化专业方向设计报告 设计名称:红外光通信装置 姓名:杨 * * 学号: 2 0 1 0 5 7 8 9 班级:自动 1 0 0 4 班 指导教师:武丽 起止日期: 2013年10月15日--11月9日 西南科技大学信息工程学院制

方向设计任务书 学生班级:自动1004 学生姓名:杨* * 学号:20105789 设计名称:红外光通信装置 起止日期:2013年10月15日---11月9日指导教师:武丽 方向设计学生日志

红外光通信装置 摘要:基于2013年电子设计大赛红外光通信装置题目的要求,设计了具有实际运用价值的红 外光无线扩音装置。该装置由音频放大滤波电路,SPWM音频信号比较调制器,红外载波信号发生器,红外接收器,功率放大电路,LC低通滤波等模块构成。由模拟电路搭建的红外光通信信道传送经过处理的连续的音频信号,并由后级电路还原传送出来的音频信号,让喇叭发出原始音频信号。该系统能够完整的将频率范围为300Hz-8KHz的音频信号通过红外光传送4m以 外并接收还原。 关键词:红外光通信;音频传送;SPWM载波 Design of Infrared Communication Device Abstract:The infrared communication device is based on the National Undergraduate Electronic Design Contest of 2013 , but it has more practical application value . This appliance contains an amplifier , SPWM modulator audio signal comparator , an infrared carrier signal generator , IR receiver , Power amplifier circuit , LC low-pass filter . The analog circuit structures of the infrared light transmitted through the communication channel continuous audio signal processed by the post-stage circuit to restore the audio signal sent out , so that the original audio signal horn . The system can be a complete frequency range of 300Hz-8KHz audio signals transmitted by infrared light and receive reduction up to 4m , temperature detection and transmission display . Keyword: Infrared light transmission ; Audio transmission ; SPWM 0 引言 现在市面上使用较为广泛的无线技术有红外光无线以及无线电技术。无线电技术是通过无线电波传播声音或其他信号的技术,无线电波是在自由空间(包括空气和真空)传播的射频频段的电磁波,频率为300MHz-300GHz的电磁波称为微波,也称为“超高频电磁波”。其特点是:只能进行可视范围内的通信;大气对微波信号的吸收与散射影响较大;主要用于几公里范围内,不适合铺设有线传输介质的情况,而且只能用于点到点的通信,速率也不高,一般为几百Kbps。红外是一种无线通讯方式,可以进行无线数据的传输。自1974年发明以来,得到很普遍的应用,如红外线鼠标,红外线打印机,红外线键盘等等。

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告学院:信息与通信工程学院 姓名: 班级: 学号:

红外通信收发系统的设计和实现实验报告 1、课题名称 红外通信收发系统的设计与实现 2、摘要 红外通信系统的设计是光通信系统的一个重要分支,红外数据传输,使用传输介质――红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75~25um之间。本实protel软件辅助设计,分析并设计了红外通信系统的发射电路与接收电路,实现了红外信号的无线传输功能和音乐信号的收发功能。 3、关键词 红外线、收发系统、音乐芯片 3、设计任务要求; 1、基本要求: (1)设计一个正弦波振荡器,f≥1kHz,Uopp≥3v; (2)所设计的正弦波振荡器的输出信号作为红外光通信收发系统发送端的输入信号,在接收端可收到无明显失真的输入信号; (3)要求接收端LM386增益设计G=200; (4)设计该电路的电源电路(不要求实际搭建),用软件绘制完整的电路原理图(PROTEL)及印制电路板图(PCB) 2、提高要求: 利用音乐芯片产生乐曲,调制LED后发出,接收端接收信号利用喇叭将发送的乐曲无失真的播放出来。 3、探究环节: 探索其它红外光通信收发系统的应用实例,数字调制的解决的方案,给出应用方案。 4、设计思路、总体结构框图;

1、设计思路 系统主要由信号产生电路,红外光发射系统,红外光接收系统三个模块完成基本实验要求,其中信号产生电路分别由信号发生器和音乐芯片代替,电信号经过发生系统转化为红外光信号,经接收系统接受后,光信号转化为电信号,再通过喇叭将其转化为语音信号,实现红外光通信的全过程。 首先主要用信号发生器发出电信号,微弱的电信号经过一个分压式共射电路适当放大,并通过LED红外发送管转化为光信号发送。 信号经接收管接收后,通过运放电路得到较高的输出功率,驱动喇叭发出声音。利用放大器LM386,调节电位器改变其增益,驱动喇叭得到所需功率。再将音乐芯片替代信号发生器重复上述过程即可驱动喇叭发出音乐芯片的声音(此实验为三声门铃声) 2.总体框架图 1、信号的产生 实验中使用了音乐芯片KD-9300或者LX-9300来完成。信号产生也可以使用RC振荡器构成,但信号的幅度不宜过大。 2、红外光发送模块的设计 设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大容易毁坏发光管。(要注意芯片的接法以及发送电路的连接。) 3、红外光接收模块的设计 1)高通滤波器:红外接收的二极管都是光敏二极管,这样普通光对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。 2)功率放大器:利用音频功率专用放大器LM386,可以得到50~200的增益,确保驱动喇叭。 所以设计框图如下 光通信收发系统原理图

通信原理复习资料(1)

第一章 1、模拟信号与数字信号的区别:取值个数是否连续变化。 2、信息源 →发送设备→信 道→接收设备→受信者 (发送端) ↑ (接收端) 噪声源 图1-1 通信系统一般模型 3、模拟信息源→调制器→信 道→解调器→受信者 ↑ 噪声源 图1-4 模拟通信系统模型 4、信息源→信源编码→加密→信道编码→数字解调→信道→数字解调→信道译码→解密→信源译码→受信者 ↑ 噪声源 图1-5 数字通信系统模型 ①单工、半双工、全双工通信(点对点之间的通信,按消息传递方向与时间关系来分) 单工:广播、遥测、遥控、无线寻呼。 5、通信方式 半双工:同一载频的普通对讲机(BB 机),问询和检索。 (P 8-9) 全双工:电话,计算机之间的高速数据通信。 ②并行传输和串行传输(在数据通信中,按数据代码排列方式不同来分) 6、信息量和平均信息量的公式(P10-11)(例题参见习题1-1和1-2) 信息量:①一般式 I=L a ) (1 x P = - Log a P(x) ②常用式 I=Log 2 ) (1 x P = - Log 2 P(x) 传送等概率的二进制波形之一的信息量为1b ,传送等概率的四进制波形之一的信息量2b ,此时,一个四进制波形需要用两个二进制脉冲表示,同理,传送等概率的八进制波形之一的信息量3b ,这时至少需要三个二进制脉冲。 综上,传送M 进制波形之一的信息量为:I=Log 2P 1= Log 2M /11 =Log 2M 若M 是2的整幂次,比如M=2k (k=1,2,3222) 则: I= - Log 22k =k 也就是说,传送每一个M (2k M )进制波形的信息量就等于用二进制脉冲表示该波 形所需的脉冲数目k.

红外物理特性及应用参考资料

红外物理特性及应用

红外通信特性实验 波长范围在0.75~1000微米的电磁波称为红外波,对红外频谱的研究历来是基础研究的重要组成部分。对热辐射的深入研究导致普朗克量子理论的创立。对原子与分子的红外光谱研究,帮助我们洞察它们的电子,振动,旋转的能级结构,并成为材料分析的重要工具。对红外材料的性质,如吸收、发射、反射率、折射率、电光系数等参数的研究,为它们在各个领域的应用研究奠定了基础。 现代红外技术的成熟已经打开了一系列应用的大门。例如红外通信,红外污染监测,红外跟踪,红外报警,红外治疗,红外控制,利用红外成像原理的各种空间监视传感器,机载传感器,房屋安全系统,夜视仪等。 光纤通信早已成为固定通信网的主要传输技术,目前正积极研究将光通信用于微波通信一直占据的宽带无线通信领域。无论光纤通信还是无线光通信,用的都是红外光。这是因为,光纤通信中,由石英材料构成的光纤在0.8~1.7微米的波段范围内有几个抵损耗区,而无线大气通信中,考虑到大气对光波的吸收,散射损耗及避开太阳光散射形成的背景辐射,一般在0.81~0.86,1.55~1.6微米两个波段范围内选择通信波长。因此,一般所称的光通信实际就是红外通信。 【实验原理】 1、红外通信 在现代通信技术中,为了避免信号互相干扰,提高通信质量与通信容量,通常用信号对载波进行调制,用载波传输信号,在接收端再将需要的信号解调还原出来。不管用什么方式调制,调制后的载波要占用一定的频带宽度,如音频信号要占用几千赫兹的带宽,模拟电视信号要占用8兆赫兹的带宽。载波的频率间隔若小于信号带宽,则不同信号间要互相干扰。能够用作无线电通信的频率资源非常有限,国际国内都对通信频率进行统一规划和管理,仍难以满足日益增长的信息需求。通信容量与所用载波频率成正比,与波长成反比,目前微波波长能做到厘米量级,在开发应用毫米波和亚毫米波时遇到了困难。红外波长比微波短得多,用红外波作载波,其潜在的通信容量是微波通信无法比拟的,红外通信就是用红外波作载波的通信方式。 红外传输的介质可以是光纤或空间,本实验采用空间传输。 2、红外材料 光在光学介质中传播时,由于材料的吸收,散射,会使光波在传播过程中逐渐衰减,对于确定的介质,光的衰减dI 与材料的衰减系数α ,光强I ,传播距离dx 成正比: dI Idx α=- (1) 对上式积分,可得: L o I I e α-= (2) 上式中L 为材料的厚度。 材料的衰减系数是由材料本身的结构及性质决定的,不同的波长衰减系数不同。普通的光学材料由于在红外波段衰减较大,通常并不适用于红外波段。常用的红外光学材料包括:石英晶体及石英玻璃,它在0.14~4.5微米的波长范围内都有较高的透射率。半导体材料及它们的化合物如锗,硅,金刚石,氮化硅,碳化硅,砷化镓,磷化镓。氟化物晶体如氟化钙,氟化镁。氧化物陶瓷如蓝宝石单晶(Al 2O 3),尖晶石(MgAl 2O 4),氮氧化铝,氧化镁,氧化钇,氧化锆。还有硫化锌,硒化锌,以及一些硫化物玻璃,锗硫系玻璃等。 光波在不同折射率的介质表面会反射,入射角为零或入射角很小时反射率:

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用()表示,即每秒最高可以传输的位数。模拟设备中带宽用表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M。带宽计算公式为:带宽=时钟频率*总线位数/8 。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率】数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒()”。其计算公式为1 。T 为传输1 比特数据所花的时间。 【波特率】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒()”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:*2 N。其中,N为进制 数。对于二进制的信号,码元速率和信息速率在数值上是相等的。

【奈奎斯特定律】奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924 年,奈奎斯特()推导出理想低通信道下的最高码元传 输速率公式:理想低通信道下的最高=2W。其中,W为理想低 通信道的带宽,单位是赫兹(),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2 个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高W ,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒 1 个码元。 符号率与信道带宽的确切关系为: (1+ a )。 其中,1/1+ a为频道利用率,a为低通滤波器的滚降系数, a取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或 码元速率)与信道带宽之间的关系。 【香农定理】香农定理是在研究信号经过一段距离后如何衰减以及一个给

通信原理知识点汇编

通信原理复习资料 一、基本概念 第一章 1、模拟通信系统模型 模拟通信系统模型 模拟通信系统是利用模拟信号来传递信息的通信系统 2、数字通信系统模型 噪声源 数字通信系统模型 数字通信系统是利用数字信号来传递信息的通信系统 3、数字通信的特点 优点: (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3 )便于处理、变换、存储 (4 )便于将来自不同信源的信号综合到一起传输 (5 )易于集成,使通信设备微型化,重量轻 (6)易于加密处理,且保密性好 缺点: 更多精品文档 (1) 需要较大的传输带宽 (2) 对同步要求高 4、 通信系统的分类 模拟信息源 * 调制器 信 道编码 数 字 调 制 信 道 译 码 信 源 译 码 受信者

(1)按通信业务分类:电报通信系统、电话通信系统、数据通信系统、图像通信系统 (2)按调制方式分类:基带传输系统和带通(调制)传输系统 (3 )调制传输系统又分为多种调制,详见书中表1-1 (4)按信号特征分类:模拟通信系统和数字通信系统 (5)按传输媒介分类:有线通信系统和无线通信系统 (6)按工作波段分类:长波通信、中波通信、短波通信 (7 )按信号复用方式分类:频分复用、时分复用、码分复用 5、通信系统的主要性能指标:有效性和可靠性 有效性:指传输一定信息量时所占用的信道资源(频带宽度和时间间隔),或者说是传输的速度”可题。 可靠性:指接收信息的准确程度,也就是传输的质量”问题。 (1 )模拟通信系统: 有效性:可用有效传输频带来度量。 可靠性:可用接收端最终输出信噪比来度量。 (2 )数字通信系统: 有效性:用传输速率和频带利用率来衡量。 可靠性:常用误码率和误信率表示。 码元传输速率R B :定义为单位时间(每秒)传送码元的数目,单位为波特(Baud ) 信息传输速率R b :定义为单位时间内传递的平均信息量或比特数,单位为比特/秒 6、通信的目的:传递消息中所包含的信息 7、通信方式可分为:单工、半双工和全双工通信 8、信息量是对信息发生的概率(不确定性)的度量。一个二讲制码元含1b的信息量;一个 M进制码元含有log z M比特的信息量。等概率发送时,信息源的熵有_________________________ 更多精品文档

红外基本原理介绍

自然界中的一切物体,只要它的温度高于绝对温度(-273℃)就存在分子和原子无规则的运动,其表面就不断地辐射红外线。红外线是一种电磁波,它的波长范围为0.78 ~ 1000um,不为人眼所见。红外成像设备就是探测这种物体表面辐射的不为人眼所见的红外线的设备。它反映物体表面的红外辐射场,即温度场。 注意:红外成像设备只能反映物体表面的温度场。 对于电力设备,红外检测与故障诊断的基本原理就是通过探测被诊断设备表面的红外辐射信号,从而获得设备的热状态特征,并根据这种热状态及适当的判据,作出设备有无故障及故障属性、出现位置和严重程度的诊断判别。 为了深入理解电力设备故障的红外诊断原理,更好的检测设备故障,下面将初步讨论一下电力设备热状态与其产生的红外辐射信号之间的关系和规律、影响因素和DL500E的工作原理。 一.红外辐射的发射及其规律 (一)黑体的红外辐射规律 所谓黑体,简单讲就是在任何情况下对一切波长的入射辐射吸收率都等于1的物体,也就是说全吸收。显然,因为自然界中实际存在的任何物体对不同波长的入射辐射都有一定的反射(吸收率不等于1),所以,黑体只是人们抽象出来的一种理想化的物体模型。但黑体热辐射的基本规律是红外研究及应用的基础,它揭示了黑体发射的红外热辐射随温度及波长变化的定量关系。 下面,我着重介绍其中的三个基本定律。 1.辐射的光谱分布规律-普朗克辐射定律 一个绝对温度为T(K)的黑体,单位表面积在波长λ附近单位波长间隔内向整个半球空间发射的辐射功率(简称为光谱辐射度)Mλb (T)与波长λ、温度T满足下列关系: Mλb (T)=C1λ-5[EXP(C2/λT)-1]-1 式中C1-第一辐射常数,C1=2πhc2=3.7415×108w·m-2·um4 C2-第二辐射常数,C2=hc/k=1.43879×104um·k 普朗克辐射定律是所有定量计算红外辐射的基础,介绍起来比较抽象,这里就不仔细讲了。2.辐射功率随温度的变化规律-斯蒂芬-玻耳兹曼定律 斯蒂芬-玻耳兹曼定律描述的是黑体单位表面积向整个半球空间发射的所有波长的总辐射功率Mb(T)(简称为全辐射度)随其温度的变化规律。因此,该定律为普朗克辐射定律对波长积分得到: Mb(T)=∫0∞Mλb(T)dλ=σT4 式中σ=π4C1/(15C24)=5.6697×10-8w/(m2·k4),称为斯蒂芬-玻耳兹曼常数。 斯蒂芬-玻耳兹曼定律表明,凡是温度高于开氏零度的物体都会自发地向外发射红外热辐射,而且,黑体单位表面积发射的总辐射功率与开氏温度的四次方成正比。而且,只要当温度有较小变化时,就将会引起物体发射的辐射功率很大变化。 那么,我们可以想象一下,如果能探测到黑体的单位表面积发射的总辐射功率,不是就能确定黑体的温度了吗?因此,斯蒂芬-玻耳兹曼定律是所有红外测温的基础。

通信原理复习

1.模拟通信系统我们讲了那些类别,可靠性最好的是有效性最好的是 在AM、DSB、SSB、FM四个通信系统中,可靠性最好的是(FM),有效性最好的是(SSB),有效性相同的是(DSB、AM),可靠性相同的是(SSB、DSB)。 2.在高信噪比下。接收端观察到的眼图的闭合程度的大小反映了什么 码间串扰 3.连续信道香农公式,及其讨论。 香农公式 假设连续信道的加性高斯白噪声功率为(W),信道的带宽为(Hz),信号功率为(W),则该信道的信道容量为 这就是信息论中具有重要意义的香农公式,它表明了当信号与作用在信道上的起伏噪声的平均功率给定时,具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。 由于噪声功率与信道带宽有关,故若噪声单边功率谱密度为(W/Hz),则噪声功率。因此,香农公式的另一种形式为 由上式可见,一个连续信道的信道容量受、、三个要素限制,只要这三个要素确定,则信道容量也就随之确定。 关于香农公式的几点讨论 香农公式告诉我们如下重要结论: (1)在给定、的情况下,信道的极限传输能力为,而且此时能够做到无差错传输(即差错率为零)。这就是说,如果信道的实际传输速率大于值,则无差错传输在理论上就已不可能。因此,实际传输速率一般不能大于信道容量,除非允许存在一定的差错率。 (2)提高信噪比(通过减小或增大),可提高信道容量。特别是,若,则,这意味着无干扰信道容量为无穷大;

(3)增加信道带宽,也可增加信道容量,但做不到无限制地增加。这是因为,如果、一定,有 (4)维持同样大小的信道容量,可以通过调整信道的及来达到,即信道容量可以通过系统带宽与信噪比的互换而保持不变。例如,如果=7,=4000Hz,则可得 =l2×b/s;但是,如果=l5,=3000Hz,则可得同样数值值。这就提示我们,为达到某个实际传输速率,在系统设计时可以利用香农公式中的互换原理,确定合适的系统带宽和信噪比。 通常,把实现了极限信息速率传送(即达到信道容量值)且能做到任意小差错率的通信系统,称为理想通信系统。香农只证明了理想通信系统的“存在性”,却没有指出具体的实现方法。但这并不影响香农定理在通信系统理论分析和工程实践中所起的重要指导作用。 4.在2ASK、2FSK、2PSK、2DPSK通信系统中,可靠性和有效性最好的是 在2ASK、2FSK、2PSK、2DPSK通信系统中,可靠性最好的是(2PSK),有效性最好的是(2ASK、2PSK,2DPSK) 5.数字带通传输系统的最高频带利用率是____1___B/Hz,8PSK系统的信息传输速率为1500b/s,其无码间干扰传输的最小带宽为__500Hz__ B= Rb/log2M= Rb/3=500Hz 6.高斯白噪声是指噪声的概率密度服从____正态________分布,功率谱密度服从_____均匀_______分布。 7.为了提高数字信号的有效性而采取的编码称为____信源编码_______,为了提高数字通信的可靠性而采取的编码称为___信道编码________。 8.从信息传输角度来看,数字通信系统的主要质量指标是____传输速率_______和____误码率_______ 1. PAM信号是一种什么信号 PAM是一种最基本的模拟脉冲调制。

基于51单片机控制红外通信

红外通信原理 红外遥控有发送和接收两个组成部分。发送端采用单片机将待发送的二进制信号编码调制为一系列的脉冲串信号,通过红外发射管发射红外信号。红外接收完成对红外信号的接收、放大、检波、整形,并解调出遥控编码脉冲。为了减少干扰,采用的是价格便宜性能可靠的一体化红外接收头(HS0038,它接收红外信号频率为38kHz,周期约26μs) 接收红外信号,它同时对信号进行放大、检波、整形得到TTL 电平的编码信号,再送给单片机,经单片机解码并执行去控制相关对象。具体实现过程如下: (在这里特别强调:编码与解码是一对逆过程,不仅在原理上是一对逆过程,在码的发收过程也是互反的,即以前发射端原始信号是高电平,那接收头输出的就是低电平,反之亦然。因此为了保证解码过程简单方便,在编码时应该直接换算成其反码。)

1.红外发射部分: 下图为红外发射部分的电路拟图: 编码过程: (1) 二进制信号的调制 二进制信号的调制由单片机来完成,它把编码后的二进制信号调制成频率为38kHz的间断脉冲串(用定时器来完成),相当于用二进制信号的编码乘以频率为38kHz的脉冲信号得到的间断脉冲串,即是调制后用于红外发射二极管发送的信号。 (2)PPM编码

这种遥控编码具有以下特征: ○1遥控编码脉冲由前导码、16 位地址码(8位地址码、8 位地址码的反码)和16 位操作码(8 位操作码、8 位操作码的反码)组成。前导码:是一个遥控码的起始部分,由一个9ms的高电平( 起始码) 和一个4. 5ms的低电平( 结果码)组成,作为接受数据的准备脉冲。16位地址码:能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。 16 位操作码:用来执行不同的操作。 ○2采用脉宽调制的串行码,以脉宽为0.56ms、间隔0.56ms、周期为1.12ms的组合表示二进制的“0”;以脉宽为1.68ms、间隔0.56ms、周期为2.24ms的组合表示二进制的“1”。 (3)发送程序 #include

红外通讯原理及实现详解

红外通讯原理及实现详解 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。 1红外通信原理介绍 红外通讯通过使用红外光进行通信,发送设备将电信号转成光信号,接收设备则再将光信号还原成电信号,红外收发系统的框图如图所示: 图 1 红外收发系统 目前基于红外通讯的通讯协议有上百种,这些协议大同小异,下面以飞利蒲的RC5协议为例来进行介绍。同别的红外协议一样,飞利蒲的RC5协议也是由下列几部分组成: 1 .1键码 之所以定义键码就是为了规范设计,至少保证飞利蒲公司内部的红外通信设备之间可以互通,不会出现混乱的情况,当然大家也可以自个定义,这有点像TCP/IP中的应用层,你可以自个定义一个协议,也可以用标准定义好的协议。键码是基于数字信号二进制的0/1而言的。比如0x12,换成二进制就是0b0001 0010。飞利蒲定义的键码如下所示。 1)地址设备对照表(下表中的不同地址用于给不同类型的设备使用) RC5 Address Device RC5 Address Device $00 - 0 TV1 |$10 - 16 Pre-amp $01 - 1 TV2 |$11 - 17 Tuner $02 - 2 Teletext |$12 - 18 Recorder1 $03 - 3 Video |$13 - 19 Pre-amp

$04 - 4 LV1 |$14 - 20 CD Player $05 - 5 VCR1 |$15 - 21 Phono $06 - 6 VCR2 |$16 - 22 SatA $07 - 7 Experimental |$17 - 23 Recorder2 $08 - 8 Sat1 |$18 - 24 $09 - 9 Camera |$19 - 25 $0A - 10 Sat2 |$1A - 26 CDR $0B - 11 |$1B - 27 $0C - 12 CDV |$1C - 28 $0D - 13 Camcorder |$1D - 29 Lighting $0E - 14 |$1E - 30 Lighting $0F - 15 |$1F - 31 Phone 2)命令功能对照表(下表中定应义了常用的遥控的命令) RC5 Command | TV Command | VCR Command ------------------------------------------------------ $00 - 0 | 1 | 1 $01 - 1 | 2 | 2 $02 - 2 | 2 | 2 $03 - 3 | 3 | 3 $04 - 4 | 4 | 4 $05 - 5 | 5 | 5 $06 - 6 | 6 | 6 $07 - 7 | 7 | 7 $08 - 8 | 8 | 8 $09 - 9 | 9 | 9 $0C - 12 | Standby Standby | $10 - 16 | Volume + | $11 - 17 | Volume - | $12 - 18 | Brightness + | $13 - 19 | Brightness - | $32 - 50 | | Fast Rewind $34 - 52 | | Fast Forward $35 - 53 | | Play $36 - 54 | | Stop $37 - 55 | | Recording ---------------------------------------------------------1 .2编码

通信原理知识

1、 信息源(也作发终端)的作用是把各种消息转换成原始电信号。发送设备对原始信号完成某种变换,使原始电信号适合在信道中传输。信道是指信号传输的通道,提供了信源与信宿之间在电气上的联系。信宿(也称收终端)是将复原的原始电信号转换成相应的消息。 2、通信系统分类: 按调制方式可分为:基带传输和频带传输。 按信道中所传信号的不同分:数字通信和模拟通信。 按传输媒质分:通信可分为有线通信和无线通信。 按工作频段分:长波通信、中波通信、短波通信、微波通信等。 按信号复用方式可分为FDM、时分复用方式(TDM)和码分复用方式(CDM)等; 3、信源编码和信源解码:信源编码有两个作用,其一,进行模/数转换;其二,数据压缩,即设法降低数字信号的数码率。 4、数字通信系统有如下优点:(1)抗干扰、抗噪声能力强,无噪声积累。(2)便于加密处理,保密性强。(3)差错可控。(4)利用现代技术,便于对信息进行处理、存储、交换。(5)便于集成化,使通信设备微型化。 主要有以下两个缺点。 (1)数字信号占用的频带宽。(2)对同步要求高,系统设备比较复杂。 5、通信系统的性能指标归纳起来有以下几个方面。 (1)有效性(2 可靠性(3)适应性(4)经济性 (5)保密性(6)标准性(7)维修性(8)工艺性 6、数字通信涉及的问题:(1)信道与噪声 (2)数字终端技术 (3)数字基带传输技术(4)数字频带传输技术 (5)数字同步技术 (6)差错控制编码技术 7、信道的定义及分类:信道是信号的传输媒质。具体地说,信道是指由有线或无线线路提供的信号通路;抽象地说,信道是指定的一段频带,它让信号通过,同时又给信号以限制和损害。信道的作用是传输信号。广义信道通常也可分成两种:调制信道和编码信道。编码信道是包括调制信道及调制器、解调器在内的信道。它与调制信道模型有明显的不同:即调制信道对信号的影响是通过k(t)和n(t)使调制信号发生“模拟”变化;而编码信道对信号的影响则是一种数字序列的变换,即把一种数字序列变换成另一种数字序列,故有时把编码信道看成是一种数字信道。 8、恒参信道对信号传输的影响不随时间而变,或者随时间变化很缓慢,通常若在数字信号中几个最长符号时间内,信道特性基本不变即可认为此信道为恒参信道。 恒参信道对信号传输的影响:恒参信道对信号传输的影响主要是线性畸变 (1)幅度-频率畸变 (2)相位-频率畸变(群迟延畸变) 随参信道对信号传输的影响:(1)一般衰落(频率弥散现象)(2)频率选择性衰落 9、信道内的噪声(干扰):(1)无线电噪声(2)工业噪声3)天电噪声(4)内部噪声 10、通信中常见的几种噪声:1. 高斯噪声2. 白噪声3. 高斯白噪声 4. 窄带高斯噪声 5. 余弦信号加窄带高斯噪声。 11、模拟信号数字化的基本原理:(一)模拟信号的抽样(1)抽样定理 (2)带通信号

通信原理有关概念、比较

传信率 传信率是数字系统中每秒所传送的bit数或平均信息量,单位为bit/s 或BPS,用符号R b 表示 码元传输速率 码元传输速率简称传码率,又称符号速率等。它表示单位时间内传输码元的数目,单位是波特(Baud ),记为B。这是为了纪念电报码的发明者 法国人波特(Baudot),故码元传输速率也称为波特率,用符号R B 表示。 在数字通信中,一个数字脉冲称为一个码元。如字母A的ASCII码是01000001,可用7个脉冲来表示,亦可认为由7个码元组成。码元携带的信息量由码元的离散值个数决定。 若1秒内传2400个码元,则传码率为2400B。数字信号有多进制和二进制之分,但码元速率与进制数无关,只与传输的码元长度T有关。通常在给出码元速率时,有必要说明码元的进制。由于M进制的一个码元可以用㏒2M 个二进制码元去表示,因而在保证信息速率不变的情况下,M进制的码元速 率R b 与二进制的码元速率R B 之间有以下转换关系: R b = R B ㏒2M ( B ) 在数字调制中,四相调制码元可以取4个相位值,一个码元代表两位二 进制数。即㏒2N=2。码元传输速率(波特率)B和数据速率R的关系是:R=B㏒2N(bps) 数据传输速率(Data Transfer Rate) 描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒钟传输构成数据代码的比特数,也是人们常说的“倍速”数。单倍数传输时,每秒可以传输150KB数据;四倍速传输时,每秒可以传输600KB数据;40倍速传输时,每秒可以传输6MB数据(Internet数据传输速率最高可达10Mbps)......以此类推。目前市场上常见的光盘光驱动器多为40倍速到50倍速。但要注意在实际使用中,受光盘读速度和CPU传输本身的影响,上述速率会大打折扣,而且倍速越高,所打折扣越大。通常,平均传输速率能达到3~4MB就不错了。 数据传输速率的定义:数据传输率是指单位时间内信道上所能传输的数据量。可用“比特率”和“波特率”来表示。数据传输速率在数值上,等于每秒钟传输构成数据代码的二进制比特数,单位为比特/秒(b/s),也记做bps; 常用的数据传输速率单位有:Kbps、Mbps、Gbps与Tb/s,目前最快的以太局域网理论传输速率(也就是所说的“带宽”)为10Gbit/s。其中:1Kbps = 10^3 bps 1Mbps = 10^6bps 1Gbps = 10^9 bps 1Tbps = 10^12 bps 数据传输速率计算公式:S=1/T(log 2 N),其中:T为一个数字脉冲信号的宽度(全宽码)或重复周期(归零码),单位为秒;N表示一个脉冲所能表示的有效值状态,通常N=2K(K为二进制信息的位数)。当N=2时,数据传

红外触摸屏的原理简述

红外触摸屏的原理简述 红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供 红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示: 微处理器电路: 微处理器在红外触摸屏硬件系统中起着核心的作用: 1、完成对红外发射电路的驱动; 2、完成对红外接收电路的驱动; 3、完成对是否被触摸的判断以及触摸位置信息的计算; 4、将触摸位置信息通过中P1传送给主机; 5、调试整个程序的运行。 本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口 SP1;多个32位定时器、1个10位8路ADC, 10位DAC,PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。 这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试部分。驱动红外发射部分是由芯片上的第4脚,第44脚,第48脚来完成的,它们分别用于控 制红外发射管亮暗状态的信号:DS、 SH -CP、ST - CP。电路原理理如下图所示:

相关文档
相关文档 最新文档