文档库 最新最全的文档下载
当前位置:文档库 › 分压器

分压器

分压器
分压器

电阻分压电路及原理

分压电路工作原理解析 分压电路在电子电路中很常见,应用广泛,掌握分压的工作原理及分压电路的变形电路,对分析许多电子电路有着举足轻重的影响。 电阻分压电路是各种分压电路中最基本的电路,如上图所示是用电阻构成的分压电路,Rl和R2是分压电路中的两只电阻。 分析分压电路的关键点有两个: (1)找出输入端。需要分析输入信号电压从哪里输入到分压电路上,具体的输入电流回路如何。电路分析中确定输入信号电流回路的方法是这样:从信号电压的输入端出发,沿至少两个元器件(不一定非要是电阻器)到达地线。 (2)找出输出端,即输出电压取自于电路的哪个端点。

分压电路输出的信号电压要送到下一级电路中,理论上分压电路的下一级电路输入瑞是分压电路的输出端,但是识图中用这种方法的可操作性差,因为有时分析出下一级电路的输入端比较困难,所以可以采用更为简便的方法进行分析:找出分压电路中的所有元器件,从地线向上端分析,发现某元器件与分压电路之外的其他电路相连时,这一连接点是分压电路的输出端,这一点的电压就是分压电路的输出电压。 电阻分压电路分析 1.电阻分压电路组成 图2-43所示是典型的电阻分压电路,LM324N电路由Rl和R2两只电阻构成。电路中有电压输入端和电压输出端。 由此电路特征可以在众多电路中分辨出分压电路。 输入电压酣加在电阻Rl和R2上,输出电压Uo取自串联电路中下面一只电阻R2,这种形式的电路称为分压电路。 2.电阻分压电路的工作原理

分析分压电路的关键点有两个:一是分析输入电压回路及找出输入端;二是找出电压输出端。 图2-44是电阻分压电路输入回路示意图。输入电压加到电阻Rl和R2上,它产生的电流流过Rl和R2。 3.找出分压电路的输出端 分压电路输出的信号电压要送到下一级电路中,理论上分压电路的下一级电路其输入端是分压电路的输出端(前级电路的输出端就是后级电路的输入端)。图2-45是前级电路输出端与后级电路输入端关系示意图。但是,识图中用这种方法的可操作性差,因为有时分析出下一级电路的输入端比较困难。 更为简便的方法如下:

PMT基础知识之三(分压器设计)

光电倍增管基础知识之三 (分压器设计) 1基本原则: 合理设计分压器对正确使用光电倍增管是非常重要的,不恰当的分压器会引起管子的分辨率,线性和稳定性变化。分压器的设计应根据对管子的要求(最佳信噪比,高增益,大电流输出等)来考虑。光电倍增管的分压器可细分为三个部分:前级(阴极—第一倍增极),中间级,末级。 A 阴极—第一倍增极 维持阴极与第一倍增极之间具有适当高的电场是很重要的。前级电压的分配是由电子收集效率,第一倍增极二次电子发射系数和时间特性,信噪比决定的,应用于能谱分析的光电倍增管前级电压应从脉冲幅度分辨率或噪声这些参数来确定。 B 中间倍增极 中间倍增极的电压可根据需要的增益来选择。在某些场合,希望降低管子的增益而不改变总电压,简单方法是调节中间倍增极之间的电位来达到(在一定范围内是适用的)中间倍增极一般采用均匀分压器,但对聚焦型结构(直线聚焦结构)。前面几个倍增极之间的电压,对脉冲幅度分辨率和时间特性等参数仍有相当大的影响,应仔细挑选。 C 末级倍增极 末级倍增极分压器由输出线性决定。在一些应用中(如高能物理)有强的脉冲信号输出,为了降低空间电荷效应,在电荷密度较高的后几个倍增极和阳极上所加电压应适当的提高,增加后几个倍增极和阳极的电位梯度,基本这种考虑,一般采用锥形分压器(图13)。 为了避免在最后几个倍增极由于信号脉冲电流过大而影响倍增极电位分布,往往需要在最后若干个倍增极接上去耦电容(脉冲信号型分压器)电容值依赖于输出电荷。如果线性要求优于10%,电容的取值要达到每个脉冲的输出电荷的至少100倍,即 V It C 100 这里I 为峰值输出电流(安培)t 为脉冲宽度(秒)V 是电容上所加的电压(伏)。 图13基本分压器电路图

分压电路设计经验

前些天有人问我如何实现精密的分压,他认为电阻分压不够精密.其实分压的目的就是为了符合AD转换的输入围,但其实有时候不但输入围超出AD量程,甚至会是一个负电压,这个时候需要将电压平移.反正今天双 休有空,我就说说自己的做法,疏漏之处敬请谅解 现今大多数的AD芯片都采用单电源+5V、+3.3V甚至更低的+1.8V供电,其差模输入围一般是±Vref(差分输入)、0~ +Vref,部分允许使用外部基准的芯片允许0~ VDD的输入围,但是无论如何无法对一个负的输入电压进行A to D的转换(也许有一些双电源的AD芯片可以,但我是个新手没仔细研究过)。如果要对一个过零的正负信号进行AD转换就必须进行电平的平移。理论上如图1所示的差分放大器就可以完成电平平移的效果,差分放大器的增益等于1,因此Vout = Vin + 5.000。 Vin = -5 ~ +5V,因此经过平移后Vout = 0 ~ 10V,再经过电阻R18、R19二分压到符合AD系统输入围的电压。 但是图1所示的电路并不理想。第一,放大电路的输入阻抗约等于R16 + R17 = 20K,低的输入阻抗要求信号源必须是低阻具有衡压输出特性的信号源,否则将造成很大的误差;第二,R8 R9 R16 R17的匹配程度将直接影响增益精度;第三,R18 R19的二分压也将带来2%的最大误差,如果并非二分压那么R18≠R19,由于消耗的功率不一样导致R18温度与R19不相等,温漂将使得分压误差加大;第四,任何接入的电路将等效

成一个负载,即使AD系统只吸收很低的电流,等效阻抗很大,也将进一步加大分压的误差。 对于第一个问题,可以在差分放大前加入一级电压跟随器作为缓冲,利用运放的高输入阻抗减少对信号源的影响,并且运放的低输出阻抗衡压输出的特性可以很好的满足差分放大级的“特殊”要求。对于第二和第三个问题,使用0.1%低温漂的精密电阻器可以大为改善。对于第四个问题,再运放负载能力允许的情况下使用阻值更小的电阻器可以将影响降低,但是应当注意的是-----使用阻值更小的电阻器将会使消耗功率增加,而消耗功率的增加又使得温度上升,温漂问题加重。经过改进的电路如图2所示: 当然,你还可以使用单片集成差分放大器去替换后端的用精密运放和精密电阻器构建的差分放大电路,例如单位增益的AMP03。其高共模抑制比(CMRR):100 dB(典型值) 、低非线性度:0.001%(最大值) 、低失真:0.001%(典型值) 、总增益误差0.0080% 的性能是绝对优胜于分立器件构建的差分放大电路的。然而成本是否增加很多我就不知道了,我不是采购不知道价格,哈哈。

ABB机器人零点校准方法

FlexPendant 的操作方式 1、操作 FlexPendant 时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图 13 3、控制柜上的主要按钮和端口如图14所示 图 14 4、控制柜上钥匙开关的位置于意义如图15所示 图15 注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法: 1> 点击 ABB 2> 点击手动操纵

图 1第二步:选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 - 3 或者轴4 - 6 3> 点击确定 第三步:选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击 tGripper 3> 点击确定 图2图3第四步:选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小 3> 点击确定 图 4 图 5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意: 如果先前选择轴1 - 3 则 1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 - 6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 图 6 A(六轴机器人) 图 6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击 ABB 2> 点击校准 3> 点击 ROB_1 (参看图7)

一体化高压数字表(分压器)

一体化高压数字表(分压器) 一、概述 一体化高压数字表(分压器)又称高压数字高压表或阻容分压器,客户可根据所测量电压精度要求,来选择不同的准确度。该系列最高准确度分别为:AC:0.5%/DC:0.5%,若需更高准确度,可选择我公司的高精度、高稳定度的交流标准核查器和直流核查器;采用电位屏蔽式高压测量装置,是我公司最新研发的产品,与其他公司同类产品相比,国电西高采用美国进口的填充介质,内部采用多种专利屏蔽技术,使该系列产品有更长的使用寿命和更高的稳定性,在该领域拥有绝大部分的市场占用量和市场美誉度。 二、主要技术指标

三、产品特点 1、采用平衡式等电位屏蔽结构。 2、完全密封的绝缘筒内部采用优质电子元件,而使整个装置具有测试准确、线性好。 3、高精度,高线性度,高稳定度,抗干扰。 4、采用进口填充材料,使结构更小,重量更轻,可靠性更高,内部

局部放电量降到最低。 5、体积小,重量轻,便于携带,为现场工地的检测工作带来极大的便利。 6、内屏蔽抗干扰系统,全方位均压措施,单节或分节结构。 7、分压比比例可定做,便于校验。 8、可选择增加峰值功能。 9、可选配智能高压测量表(可显示交流有效值,峰值√2,峰值系数,平均值、峰峰值等)。 10、可选配屏显电压波形及其频率。 四、使用说明 1、将标准分压器接地端安全接地。 2、将高压线接在均压球上方,用接线螺旋栓将高压线拧紧。 3、将仪表底座上的输入端插入数字高压表测量端,测量直流时将钮子开关切换到“DC”档,测量交流时将钮子开关切换到“AC”档。 4、所测电压为小于20kV 时选择“LOW”档,当超过20kV 时请选择“HIGH”档,从而获取更高精度的测试值。 5、打开“Power”开关,选择合适档位,此时数字高压表上将显示“0.00”或“00.0”,此时即可开始测量。 6、待测试完毕后,切断高压,等标准分压器上读数为“0.00”或“00.0”时方才进入现场(交流试验时,仪表会缓慢回零,但高压电源已经没有电了,故在这种情况下请注意交流和直流试验的区别)。

分压电路设计经验

前些天有人问我如何实现精密的分压,他认为电阻分压不够精密.其实分压的目的就是为了符合AD转换的输入范围,但其实有时候不但输入范围超出AD量程,甚至会是一个负电压,这个时候需要将电压平移?反正今天双休有空,我就说说自己的做法,疏漏之处敬请谅解 现今大多数的AD芯片都采用单电源+5V、+3.3V甚至更低的+1.8V供电,其差模输入范围一般是土Vref(差分输入)、0?+Vref,部分允许使用外部基准的芯片允许0?VDD的输入范围,但是无论如何无法对一个负的输 入电压进行A to D的转换(也许有一些双电源的AD芯片可以,但我是个新手没仔细研究过)。如果要对一个过零的正负信号进行AD转换就必须进行电平的平移。理论上如图1所示的差分放大器就可以完成电平平移 的效果,差分放大器的增益等于1,因此Vout = Vin + 5.000。Vin = -5?+5V,因此经过平移后Vout = 0?10V, 再经过电阻R18、R19二分压到符合AD系统输入范围的电压。 但是图1所示的电路并不理想。第一,放大电路的输入阻抗约等于R16 + R17 = 20K,低的输入阻抗要求信 号源必须是低内阻具有衡压输出特性的信号源,否则将造成很大的误差;第二,R8 R9 R16 R17的匹配程度 将直接影响增益精度;第三,R18 R19的二分压也将带来2%的最大误差,如果并非二分压那么R18工R19,由于消耗的功率不一样导致R18温度与R19不相等,温漂将使得分压误差加大;第四,任何接入的电路将等效成一个

负载,即使AD系统只吸收很低的电流,等效阻抗很大,也将进一步加大分压的误差。 对于第一个问题,可以在差分放大前加入一级电压跟随器作为缓冲,利用运放的高输入阻抗减少对信号源 的影响,并且运放的低输出阻抗衡压输出的特性可以很好的满足差分放大级的“特殊”要求。对于第二和第三个问题,使用0.1%低温漂的精密电阻器可以大为改善。对于第四个问题,再运放负载能力允许的情况下使用阻值更小的电阻器可以将影响降低,但是应当注意的是-----使用阻值更小的电阻器将会使消耗功率增加,而消耗功率的增加又使得温度上升,温漂问题加重。经过改进的电路如图2所示: 当然,你还可以使用单片集成差分放大器去替换后端的用精密运放和精密电阻器构建的差分放大电路,例如单位增益的AMP03。其高共模抑制比(CMRR): 100 dB(典型值)、低非线性度:0.001%(最大值)、低失真:0.001%(典型值)、总增益误差0.0080% 的性能是绝对优胜于分立器件构建的差分放大电路的。然而成本是否增加很多我就不知道了,我不是采购不知道价格,哈哈。

KUKA机器人 轴零位校准方法 EMT

KUKA机器人6轴零位校准方法(EMT) Lyq 20150108 一.手动状态T1,在轴坐标系,将机器人1到6轴分别移动到其原始零点附近,目测每个轴上的两个零位观察缺口要对准。 二.将EMT安装在轴1的校零槽位内,将另一端连接到机器人底座上的X32插口 三.操作KUKA控制手柄,依次选择如下菜单进入零位校准模式 1. 配置,用户组

2. 选专家,密码kuka 3. 选择准备运行,零点校正,电子测量器 4. 标准,检查零点校正 5. 选择机器人轴1,将下方报警栏信息清空,左手按住手柄背面的驱动按键,等驱动 图标“I”变成绿色,按”检查“按钮对应的软键,报警栏会出现准备就绪字样。此时轴1已经开始微动,可以观察到EMT上的两个绿色指示灯会由两个全亮变为只有1个亮,伴随着咔嗒一声,校准结束。这时如果校准后零位与现零位偏差很小,报警栏直接会显示”轴1零位校准结束“,如果校准后零位与现零位偏差超限,则会

在右侧信息栏显示校准前后的数据差别,包括编码器码值差和角度差,需要选择” 存储”后才能完成零位校准。 6. 将EMT移动到轴2的校零槽位内,另一端依然连接到机器人底座上的X32插口; 在右侧信息栏选择机器人轴2,按照上述步骤对轴2进行零位校准 7. 依次对余下的4个轴进行零位校准 四.都较准完毕后,手动模式慢速运行“维修”程序,将机器人打到维修位,观察行程和位置是否正常,若正常,之后再运行主程序,手动慢速回HOME点,观察行程和位置是否正常,若正常,则进行过料测试。 五.因本次进行零位校准的是KR150割带机器人,那么在解包系统电控柜操作屏上选择“启用KR150机器人”,在机器人KCP上选择main程序,自动,启动,等待自动对烟包割带,看是否正常。若一切正常,则本次零位校准结束。

电阻分压器-3 dB频率与上升时间的关系

第17卷第7期强激光与粒子束V o l.17,N o.7 2005年7月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S J u l.,2005文章编号:1001-4322(2005)07-1065-05 电阻分压器-3d B频率与上升时间的关系* 曾创 (电子科技大学光电信息学院,四川成都610054) 摘要:研究了无电感补偿和有电感补偿的一级和两级电阻分压器的幅频特性-3d B频率与阶跃响应10%~90%上升时间的关系。无电感补偿一级分压器的-3d B频率与阶跃响应上升时间之积为常数0.350; 对无电感补偿两级分压器,该乘积在0.349附近很小范围内变动;对电感补偿一级分压器,该乘积由过冲决定, 当过冲在0~10%范围内变化时,该乘积在0.35~0.29之间线性变化;对电感补偿两级分压器,该乘积随过冲 和分压器参数变化,在不大于10%的确定过冲下,变化范围约为±10%;当两级分压器第一级的时间常数远大 于第二级的时间常数时,可能难以在第二级进行有效的电感补偿。 关键词:电阻分压器;幅频特性;-3d B频率;上升时间 中图分类号:TM83文献标识码:A 电阻分压器是常用的高电压脉冲测量探头[1~6]。在分压器的设计、分析和使用中,经常需要知道它的特征频率(通常用幅频特性的-3d B频率表示)与阶跃响应上升时间(通常用相对于稳定值的10%~90%响应上升时间表示)的关系。当测量上升很快的脉冲时,往往需要进行电感补偿,以得到较好的分压器响应特性。文献[7]对部分电路系统的幅频特性-3d B频率与10%~90%阶跃响应上升时间的关系进行了报道,并给出其乘积(近似等于0.45);在宽带示波器技术中取这一乘积近似等于0.35[8,9];但对于电阻分压器尤其是电感补偿电阻分压器这一关系如何尚需深入研究。本文分析计算了无电感补偿和有电感补偿的一级和两级电阻分压器的幅频特性-3d B频率与10%~90%阶跃响应上升时间的关系,给出了不同情况下二者乘积的近似值,并且讨论了电阻分压器能够获得有效电感补偿的条件。 1电阻分压器的等效电路 电阻分压器通常有一级和两级构型,其集总参数等效电路分别见图1和图2[4~6],其中C*为一级分压器等 效对地分布电容,C* 1和C* 2 分别为两级分压器第一级和第二级的等效对地分布电容。当采用电感补偿时,一 级和两级电阻分压器的等效电路分别见图3和图4(对于第一级采用电解质溶液电阻的两级分压器,补偿电感通常只能置于第二级)[4~6]。以下将针对这4种分压器的等效电路进行幅频特性-3d B频率与10%~90%阶跃响应上升时间关系的分析计算。 F i g.1E q u i v a l e n t c i r c u i t f o r o n e-s t a g e r e s i s t i v e d i v i d e r 图1一级电阻分压器等效电路F i g.2E q u i v a l e n t c i r c u i t f o r t w o-s t a g e r e s i s t i v e d i v i d e r 图2两级电阻分压器等效电路 F i g.3E q u i v a l e n t c i r c u i t f o r o n e-s t a g e r e s i s t i v e d i v i d e rw i t h i n d u c t a n c e c o m p e n s a t i o n 图3电感补偿一级电阻分压器等效电路F i g.4E q u i v a l e n t c i r c u i t f o r t w o-s t a g e r e s i s t i v e d i v i d e rw i t h i n d u c t a n c e c o m p e n s a t i o n 图4电感补偿两级电阻分压器等效电路 *收稿日期:2005-02-23;修订日期:2005-06-16 基金项目:电子科技大学学生创新研究课题 作者简介:曾创(1984-),男,本科生,光电工程与光通信专业;E-m a i l:z c h126e b o x@126.c o m。

爱普生机器人原点校准方法

爱普生机器人原点校准 方法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

EPSON机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用,需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 2.点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 3.手动将机械手调整到脉冲零点位置;如下图所示: +Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:( U轴0位,丝杆端面对应外套上的指针;丝杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手伺服马达刹车;接着点击“motor off”按钮,即关闭机械手;具体如图:

4. 保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在软件中打开命令窗口(ctrl+M)中输入: Encreset 1 按回车 Encreset 2按回车 Encreset 3按回车 Encreset 3,4按回车 如图: 5. 保持机械手目前手动零点位置不动,重启控制器,具体操作如图: 6. 保持机械手目前手动零点位置不动,在命令窗口中输入Calpls(脉冲零点位置的正确脉冲值)回车,具体如下: Calpls 0,0,0,0 回车.如下图: 8.保持机械手目前手动零点位置不动,保存各个轴当前的脉冲值,具体是在软件中打开命令窗口(ctrl+M)中输入: calib 1 按回车 1轴 calib 2按回车 2轴 calib 3按回车 3轴 calib 3,4按回车 4轴 (如只需校第一轴,calib 1即可,以上将4个轴都校正) 机械手脉冲零点的脉冲保存完成,效正基本完成。 7.保持机械手目前手动零点位置不动,打开机器人管理器,点击motor on后,在步进示教可看到如下界面: 其当前世界坐标值x:400 y:0 z:0 u:0 当前关节及脉冲值均为0, 8.验证,将机械手的位置移动,是x、y、z、u的值均有很大变化后,在软件打开命令窗口(ctrl+M)中输入:pulse 0,0,0,0 回车。此时机械手会自动回到刚校正的脉冲原点位置。

校准机器人零点位置的具体方法

校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置)方法: 1> 点击ABB 2> 点击手动操纵 图 1 第二步: 选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 -3 或者轴4 -6 3> 点击确定 第三步: 选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击tGripper

图 2 图 3 第四步: 选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小

图 4 图 5 第五步: 手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系注意: 如果先前选择轴1 -3 则

1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 -6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色 胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各 自机械绝对零点

图 6

移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步: 更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击ABB 2> 点击校准 3> 点击ROB_1 (参看图7) 图7 4> 点击转数计数器(参看图8) 5> 点击更新转数计数器…(会弹出一个警告界面) 6> 点击是

限流电路和分压电路

图3 限流电路和分压电路 1. 限流和分压接法的比较 (1)限流电路:如图2所示,实际上滑动变阻器的右边部分并没 有电流流过。该电路的特点是:在电源电压不变的情况下,R 用两端的 电压调节范围:U ≥U 用≥UR 用/(R 0+R 用),电流调节范围:U /R 用≥I 用 ≥U /(R 0+R 用 )。即电压和电流不能调至零,因此调节范围较小。要使 限流电路的电压和电流调节范围变大,可适当增大R 0。另外,使用该电 路时,在接通电前,R 0 应调到最大。 (2)分压电路:如图3所示,实质上滑动变阻器的左边部分与R 用并联后再与滑动变阻器的右边串联。注意滑动变阻器的两端都有电流流 过,且不相同。该电路的特点是:在电源电压不变的情况下,R 用两端 的电压调节范围为U ≥U 用≥0,即电压可调到零,电压调节范围大。电 流调节范围为E /R 用≥I 用≥0。 使用分压电路,在当R 0

电阻分压的10kV电子式电压互感器分析

电阻分压的10kV电子式电压互感器分析 摘要:基于电阻分压器的电子式电压互感器的原理、结构和输出信号等与传统的电压互感器有很大不同,其性能主要受电阻特性和杂散电容的影响。从等效电路的角度分析了电阻特性和杂散电容对电子式电压互感器测量准确度的影响;利用Ansoft 软件包建立分压器的有限元模型对杂散电容进行了计算分析,并根据杂散电容分布对屏蔽罩进行了设计。在理论分析基础上,研制了一台电阻分压式的10kV 电子式电压互感器,并进行了准确度测试。 关键词:电阻分压器;电子式电压互感器;杂散电容 1 引言 为了能够电能正常的使用,不影响电网供电的稳定安全带的工作,所以需要用电压互感器来对其进行保护,无论是测量的准度还是自身使用的可靠方面都能够成为保护电能的重要组成并且对于电力的及时供应起到了一定的作用。最多使用在电力系统的电业互感器是电磁式,它的优点是能够测量到相对更大的范围,测量的结果准确度可以符合电能保护的需要,对于该种电压互感器生产技术比较成熟,自身性能很好,以及规范化的校验。因为受到了传感机理的约束使其也存在着诸多的不便,首先体积庞大不易随时移动、其次动态范围小、最后容易因磁力震动导致短路现象的出现。之后出现的微电子技术虽然在一定程度上克服了电磁式装置的缺点,却不能够与电力的自动化相匹配。相继出现的集中形式都不同程度上存在着工作缺陷,最终出现了电阻式,它体积小重量轻可进行移动、但依然存在着影响因素不能使结果更精准。本文将着重分析其影响因素并对此进行解决分析。 2 原理及结构 10kV电子式电压互感器的结构如图1所示。互感器主要由电阻分压器、传输系统和信号处理单元组成。电阻分压器由高压臂电阻R1、低压臂电阻R2 和过电压保护的气体放电管S 构成,低压臂电阻R2 的下端与带螺纹的接地嵌件连接,从而通过接地嵌件实现可靠接地。电阻分压器作为传感器头,主要将一次母线电压成比例转换为小电压信号输出;传输单元由双层屏蔽绞线和连接端子构成,主要将分压器输出信号传递到信号处理单元,同时实现外界电磁干扰屏蔽功能;信号处理单元主要由电压跟随、相位补偿和比例调节电路组成,实现电压互感器的阻抗变换、相位补偿和幅值调节功能,使得互感器输出信号满足IEC6004?7 的准确度要求。 3、传感器误差分析 3.1 电阻特性影响 由图1 可知,理想电阻分压器的二次输出电压为

爱普生机器人原点校准方法

EPSON机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用, 需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图: 2.点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图:

— 3.手动将机械手调整到脉冲零点位置;如下图所示: +Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:( U轴0位,丝杆端面对应外套上的指针;丝

—杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手 伺服马达刹车;接着点击“motor off”按钮,即关闭机械手;具体如图: 4. 保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在 软件中打开命令窗口(ctrl+M)中输入: Encreset 1 按回车 Encreset 2按回车 Encreset 3按回车 Encreset 3,4按回车 如图: 5. 保持机械手目前手动零点位置不动,重启控制器,具体操作如图:

爱普生机器人原点校准方法

E P S O N机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用,需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 2.点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 3.手动将机械手调整到脉冲零点位置;如下图所示:

+Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示:2)同理,手动移动丝杆使3、4轴如图所示:(U轴0位,丝杆端面对应外套上的指针;丝杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手伺服马达刹车;接着点击“motoroff”按钮,即关闭机械手;具体如图: 4.保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在软件中打开命令窗口(ctrl+M)中输入: Encreset1按回车 Encreset2按回车 Encreset3按回车

Encreset3,4按回车 如图: 5.保持机械手目前手动零点位置不动,重启控制器,具体操作如图: 6.保持机械手目前手动零点位置不动,在命令窗口中输入Calpls(脉冲零点位置的正确脉冲值)回车,具体如下: Calpls0,0,0,0回车.如下图: 8.保持机械手目前手动零点位置不动,保存各个轴当前的脉冲值,具体是在软件中打开命令窗口(ctrl+M)中输入: calib1按回车1轴 calib2按回车2轴 calib3按回车3轴 calib3,4按回车4轴 (如只需校第一轴,calib1即可,以上将4个轴都校正) 机械手脉冲零点的脉冲保存完成,效正基本完成。 7.保持机械手目前手动零点位置不动,打开机器人管理器,点击motoron后 ,在步进示教可看到如下界面:

电阻分压器的设计与标定

电阻分压器的设计与标定 分压器按其结构可以分为电阻式分压器,电容式分压器,串联电容分压器和并联阻容分压器 电阻式分压器高低压臂均为电阻,为了使阻值稳定,电阻通常用康铜电阻以无感绕法绕制电阻分压器的误差主要是由分压器各部分对地杂散电容引起.这些杂散电容对变化很快的高频电压来说,会形成不可忽略的电纳分支,其值与被测电压中各谐波频率有关,将会使其输出波形失真,并产生幅值误差. 在电压不很高,频率不很高时,可以达到较高的准确度,所以本电路采用电阻分压器.在工频电压下,电阻分压器可以使用在低于100KV的电压情况. 在结构设计上,对高压部分采用隔离、屏蔽、绝缘等措施,在材料选择、装配、元件筛选、焊接等方面严格注意工艺要求,高压部分完全消除了打火放电现象。 1)为了防止湿度的影响,提高电路对机壳的绝缘性,整个分压电路置于绝缘密封盒内,密封盒由聚四氟乙烯绝缘板用胶粘合而成,内置吸湿剂,保证盒内干燥。 2)盒的底板与机壳间隔5 cm,机壳底板上又覆盖一层高压绝缘橡胶,盒内电阻端与机壳底板之间接大的绝缘电阻 3)输入端的连线,采用耐高压的绝缘电缆,直接与电阻相连,两个输入接线柱用高压陶瓷管封装,再用密封胶封灌,保证了很高的绝缘强度。 图1 电阻分压器原理图 目前主要有两种实现电阻型分压器的方式:通过将两个分立的片状电阻连接

到公共端,或者通过使用分压器封装在内部的电阻网络进行连接。你所选择的类型可能会对分压器的性能有很大的影响。普通电阻型分压器由两个电阻串联而成(如图1所示)。电压从分压器的顶端输入,由两个电阻之间的节点输出,而参考电压则连接在分压器的底端。分压器的工作原理遵从欧姆定律:V=I R。当电压(输入电压)施加在分压器输入端时,电流(I)会同时流过两个电阻。因此,根据欧姆定律,每个电阻两端所形成的电压将是输入电压的一部分。这样,输入电压被“分”成两个电压。输出电压除以输入电压,可以得到分压器的传输函数: U2/ U1= I Rm2 / ( I ( Rm1 + Rm2 ) ) = Rm2 /(Rm1+Rm2) 传输函数表示,输出电压取决于输入电压以及Rm1和Rm2的阻值。 分压器是一种将高压电波转化成低压电波的转化装置,由高压臂和低压臂组成.输入电压加到整个装置上,而输出电压取自低压臂.图1为分压器的原理图,Rm1为高压臂的高阻抗,Rm2为低压臂的低阻抗.测电压时,大部分压降落在Rm1上,Rm2上仅分到一小部分电压,该电压乘上分压比就得到高压值. PLC模拟量输入电压为0V到10V,本实验电容上的电压为0V到50KV,因此需要电阻分压器完成高电压到低电压的转换.电阻分压器的分压比为1:5000,如果Rm2选择为100KΩ电阻,则Rm1 + Rm2 =500MΩ期中Rm1由多个电阻组成.考虑到分压电阻的耐压性,Rm1分压电阻采用49只10 MΩ、耐压为1500 V的电阻和9只1MΩ,一只0.9MΩ的串联组成,每只10MΩ电阻上承受电压最大约为1000 V,只占额定电压的66%,具有足够的安全余量。额定功率的选择主要考虑到电阻自身发热产生的阻值变化。因此应降低电阻耗散功率,限制电阻的自身发热。在10 MQ电阻上最大承受电压为1000V,功耗为0.1W,选择额定功率为3 W 的电阻,其功耗约为额定值的3%,自热效应的影响很小,可以忽略不计。 电阻分压器使高电压测量达到了较高的技术指标,大大提高了直流高电压的测量准确度,具有很好的应用价值。

水平仪零位误差的检定方法

水平仪零位误差的检定方法 一、水平仪零位误差产生的原因 运输、放置、震动、温度、磨损以及黏胶老化等因素都会造成水平仪零位不准确,因而在使用前应进行水平仪零位示值误差正确性检查。在实验室校准的过程中,也是先检查零位正确性,再进行下一步校准工作。 二、水平仪零位校准方法 框式、条式水平仪零位校准有两种方法:一是在大致水平的平板(或机床导轨)上对零位误差的正确性进行检查;二是依据JJF1084-2002《框式水平仪和条式水平仪校准规范》校准零位误差。现分述如下: 1.在大致水平的平板(或机床导轨)上检查零位误差的正确性。如图1所示,将水平仪放在基础稳固、大致水平的平板(或机床导轨)上,待气泡稳定后,在一端(如左端)读数,且定为零。再将水平仪调转180°,仍放在平板原来的位置上,通常放一个定位块为宜,待气泡稳定后,仍在原来一端(左端)读数(A格),则水平仪零位示值误差为1/2A格,该值应符合表1的规定。 图1 表1 水平仪零位误差 2.依据JJF1084-2002在水平仪零位检定器上进行零位误差校准。 JJF1084-2002介绍了以5种不同工作面为基准的零位误差校准方法,下面以6.2.4.1款为例说明,即采用下平工作面为基准的零位误差进行介绍。 如图2所示,测量前将(经过打磨清洗)量面清洁的被校水平仪放在水平仪零位检定器的工作台上,紧靠定位块,待气泡稳定后在气泡的一端读数a1;然后将水平仪调转180°,准确地放在原位置,按照第一次读数的一边记下气泡另一端的读数a2,两次读数差的一半为零位误差。根据表1要求,进行合格与否的判断。 图2 如果零位误差超过表1许可范围,则需调整水平仪零位调整机构(调整螺钉或螺母),使零位误差减小至允许范围以内。不得随意拧动非规定调整的螺钉、螺母。校准、调整前水平仪工作面与平板等校准台面必须擦拭干净。调整后螺钉或螺母等件必须固紧。 三、水平仪零位误差调整方法 水平仪零位调整以零位调整装置数量及所在部位分类,大致归为以下两类: 1.一侧可调式 两侧均有两个固定螺钉,一端起固定作用,另一端作为调整机构,如图3所示。可用专

交直流分压器正确使用方法及使用注意事项

交直流分压器正确使用方法及使用注意事项交直流分压器使用方法: 1、打开箱盖,箱盖上装有多值千伏表及专用电缆,提起箱体,分压器就安装在箱底上。 2、先将地线与分压器接地柱接牢,再将专用电缆的一端接分压器,另一端接多值千伏表。 3、将被试品与分压器均压环牢固联接。 4、检查接线无误,严守操作距离,接通高压即可进行测量。 5、交直流高压分压器高压测量分压器多值千伏表读数单位为“KV”首先按下电源键,显示“O”。按下DC 直流键显示直流电压值;按下AC峰值键显示交流峰值;按下AC真有效值键显示交流真有效值;按下AC 峰值键显示峰值电压值。 6、多值千伏表显示窗口,若左上角显示“←”时,说明9V电池应更换。 交直流分压器使用注意事项: 1. 使用中,100KV以下分压器周围2米内不得有杂物,(150KV-200KV分压器为3米,300KV分压器为4米)仪表与分压器、人员应按照电力行业标准中数字高压表的操作规程来确定距离,我公司建议至少保持在5-6米的安全操作距离。 坚持轻拿轻放原则,切不可碰撞,挤压等。的检测工作带来大大的便利。 2、该标准分压器应该放在干燥的空气中,使用完毕后应将放回

铝合金机箱中,以免受潮。 3、当听到有较明显的放电声音时,说明标准分压器可能受潮了,应该有干燥吹风机至上而下吹1-2分钟。 4、在完成交流试验后,专用显示表上不会立即归零,而是缓慢下降,这是由于采用真有效值的测量方式,归零时间一般在10-15分钟,若不完全归零,也不影响测量精度。因为交流没有“正”或“负”极性,但在交流试验时仪表显示仍然有“-”号,这是TMS转换芯片为了提高抗电磁干扰的能力而设计的负信号输出,对测试精度没有影响;同时在交流测量中,仪表在没有归零的情况下重复测量也是不会影响准确度的。

分压电路

1、通常情况下(满足安全),由于限流电路的能耗小,结构连接简单,所以优先考虑限流接法 2、有以下3种情况就必须采用分压接法 (1)、要使某部分电路的电压或电流从0开始调节,只有分压电路才能满足 (2)、如果实验所提供的电压表,电流表的量程或电阻元件允许最大的电流较小,采用限流接法,无论怎样调节,电路中实际电流(压)都会超过电流表的量程或电阻元件允许的最大电流(压),为保持电表和电阻元件免受损害,必须采用分压法;(3)、伏安法测电阻实验中,若所用的变阻器阻值远小于待测电阻阻值,采用限流接法即使变阻器触头从一端滑至另一端,待测电阻上的电流(压)变化也很小,不利于多次测量平均值或用图象处理数据,为了在变阻器阻值远小于待测电阻的情况下能大范围地调节待测电阻上的电流(压),应选择变阻器分压的接法 3、分压电路 电阻器在分压电路中的作用 分压电路实际上是电阻的串联电路,如图1所示。它有以下几个特点: ①通过各电阻的电流是同一电流,即各电阻中的电流相等I=I1=I2=I3; ②总电压等于各电阻上的电压降之和,即V=V1+V2+V3; ③总电阻等于各电阻之和,即R=R1+R2+R3。 在实践中可利用电阻串联电路来进行分压以改变输出电压,如收音机和扩音机的音量调节电路、半导体管工作点的偏置电路及降压电路等.

图1电阻的串联电路 研究滑动变阻器的限流电路和分压电路 滑动变阻器在电路中可以作限流器用,也可以作分压器用,应当如何选用这两种不同的形式呢?这首先是由电路中的需要来决定的,例如,有时需要负载电压有较大幅度的变化,有时需要能够做到细微的调节。哪一种电路能满足这些要求,这就需要我们研究两种电路的输出特性。 实验前取滑动变阻器(20Ω/0.5A)、直流电流表、直流电压表、直流电源(6伏)、电阻箱(0-9999Ω)、开关、直尺各1个备用。 分压电路及其应用 湖南彭友山 在《恒定电流》一章中,经常用到分流和分压电路,特别是利用串联电路的分压作用,可以将滑动变阻器接成分压器来调节用电器两端的电压。这种电路在实际中用得较多,学生对于该问题常常出错。本文就该问题进行一些探讨。 1.分压电路的分析 如图1所示,滑动变阻器两端接在电源的正负极上,固定端和滑动端P分别跟用电器的 两端连接,这样就组成分压器。在空载时,

相关文档