文档库 最新最全的文档下载
当前位置:文档库 › 数字信号处理实验报告(1)

数字信号处理实验报告(1)

数字信号处理实验报告(1)
数字信号处理实验报告(1)

河南工业大学电气工程学院 《数字信号处理》课程实验报告

学生姓名: 俞阳 学 号: 201323020620 专业班级: 自动1306 实验日期: 5月15日 成 绩:

实验一 离散时间信号与系统分析

一、实验目的

1.掌握离散时间信号与系统的时域分析方法。

2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。

3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。

二、实验原理

1.离散时间系统

一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示:

图 离散时间系统

输出与输入之间关系用下式表示

)]([)(n x T n y =

离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应

设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。

可得到:)()()()()(n h n x m n h m x n y m *=-=

∑∞

-∞

=

该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样

采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变

换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。

对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘

积,即:)()()(?t t x t x

T a a δ= 其中,)(?t x

a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞

-∞

=-=

m T mT t t )()(δδ

设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x

a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a

,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X

a

a

=Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域

为卷积运算,即

)]()([21)(?Ω*Ω=Ωj X j M j X a

a π

其中

?∞

-Ω-==Ωdt e t x t x F j X t j a a a )()]([)(

由此可以推导出∑∞

-∞

=Ω-Ω=Ωk s a a jk j X T j X )(1)(?

由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析

对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。

??

?-≤≤=n N n n x n x 其它0

1

0),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换:

∑-=-=1

)()(N n jn j k k

e n x e

X ωω

其中,M k k /2πω=,1,,1,0-=M k 。)(ω

j e X 是一个复函数,它的模就是幅频特

性曲线。

三、主要实验仪器及材料

微型计算机、Matlab 软件(或TC 编程环境)。 四、实验内容

1.知识准备

认真复习离散信号与系统、单位脉冲响应、抽样定理等有关内容,阅读本实验原理与方

法。

2.编制信号产生子程序,用于产生实验中要用到的信号序列 (1)单位脉冲序列

单位脉冲序列???≠===0

,00

,1)()(n n n n x b δ

(2)系统单位脉冲响应序列

)3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ

(3)理想采样信号序列

对信号)()cos()(t u t Ae t x t a Ω=-α进行理想采样,可以得到一个理想的采样信号序列

)()cos()(n u nT Ae nT x nT Ω=-α,1000≤≤n 。其中A 为幅度因子,α是衰减因子,Ω是

频率,T 为采样周期。这几个参数要在实验过程中输入,以产生不同的)(n x 。

首先产生理想采样信号序列a x (n),使A =444.128, a =50π2,Ω=50π2。 然后改变参数A =1,a =0.4,Ω=2.0734,产生理想采样信号序列a x (n)。

3.离散信号、系统和系统响应的分析

观察信号x b (n )和系统h b (n )的时域和频域特性;利用线性卷积求信号通过系统以后的响应。比较系统响应和信号的时域和幅频特性。注意它们之间有无差异,绘出图形。

4.分析理想采样信号序列的特性 产生理想采样信号序列,使:

(1)首先选用采样频率为1000Hz ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并作记录。 (2)改变采样频率为300Hz ,T=1/300,观察所得理想采样信号的幅频特性曲线的变化,并作记录。

(3)进一步减小采样频率为200Hz ,T=1/200,观察频谱混叠现象是否明显存在,说明原因,并记录此时的幅频特性曲线。 5. 卷积定律的验证。

采用参数A =444.128, a =50π2,Ω=50π2, T=1/1000,将)(n x a 和系统)(n h b 的傅氏变换相乘,直接求得)(k

j e

Y ω,将得到的幅频特性曲线和先求)(n y 后再求得的幅频特

性曲线进行比较,观察二者有无差异。验证卷积定律。

五、思考题

1.线性时不变系统的输出的长度与输入和系统的单位冲激响应的长度有什么关系? 2. 对信号进行理想抽样时,抽样频率不同,相应理想采样序列傅立叶变换频谱的数字频率度量是否都相同7它们所对应的模拟频率是否相同?为什么?

六、实验报告要求

1.简述实验原理及目的。

2. 总结在上机实验内容中要求比较时域、幅频曲线差异部分内容的结果,定性分析它

们正确与否,并简要说明这些结果的含义。

3.总结实验所得主要结论。

4.简要回答思考题。

的时域和幅频特性%单位脉冲序列)

(n

x

b

的时域和幅频特性

%以下是)

h

(n

b

2.(3)

3.

5.

%将以下验证的结果显示

实验二 用FFT 作谱分析

1、实验目的

(1)理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法及其程序的编写

(2)熟悉应用FFT 对典型信号进行频谱分析的方法

(3)了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 2、实验原理

如果用FFT 对模拟信号进行谱分析,首先要把模拟信号转换成数字信号,转换时要求知道模拟信号的最高截止频率,以便选择满足采样定理的采样频率。一般选择采样频率是模拟信号中最高频率的3~4倍。另外要选择对模拟信号的观测时间,如果采样频率和观测时间确定,则采样点数也确定了。这里观测时间和对模拟信号进行谱分析的分辨率有关,最小的观测时间和分辨率成倒数关系。要求选择的采样点数和观测时间大于它的最小值。

用FFT 作谱分析时,要求做FFT 的点数服从2的整数幂,这一点在上面选择采样点数时可以考虑满足,即使满足不了,可以通过在序列尾部加0完成。

如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍。如果不知道信号的周期,要尽量选择观测时间长一些,以减少截断效应的影响。

用FFT 对模拟信号作谱分析是一种近似的谱分析。首先一般模拟信号(除周期信号外)的频谱是连续频谱,而用FFT 作谱分析得到的是数字谱,因此应该取FFT 的点数多一些,用它的包络作为模拟信号的近似谱。另外,如果模拟信号不是严格的带限信号,会因为频谱混叠现象引起谱分析的误差,这种情况下可以预先将模拟信号进行预滤,或者尽量将采样频率取高一些。

一般频率混叠发生在折叠频率附近,分析时要注意因频率混叠引起的误差。最后要注意一般模拟信号是无限长的,分析时要截断,截断的长度和分辨率有关,但也要尽量取长一些,取得太短因截断引起的误差会很大。举一个极端的例子,一个周期性正弦波,如果所取观察时间太短,例如取小于一个周期,它的波形和正弦波相差太大,肯定误差很大,但如果取得长一些,即使不是周期的整倍数,这种截断效应也会小一些。

3、实验步骤及内容

(1)复习DFT 的定义、性质和用DFT 作谱分析的有关内容。 (2)复习FFT 算法原理与编程思想。

(3)编制信号产生程序,产生以下典型信号供谱分析用:

)()(41n R n x =

???

??-+=,0,8,1)(2n n n x n n n 其他7430≤≤≤≤

??

?

??--=,0,3,4)(3n n n x n n n 其他7430≤≤≤≤

n n x 4

cos

)(4π

=

)8/2sin()(5ππ+=ft t x 式中频率f 自己选择; )20cos()16cos()8cos()(6t t t t x πππ++=

(4)分别以变换区间8=N ,16,32,对)(1n x 进行FFT ,画出相应的幅频特性曲线。 (5)分别以变换区间8=N ,16,对)(2n x ,)(3n x 进行FFT ,画出相应的幅频特性曲线。 (6)分别以变换区间4=N ,8,16,对)(4n x 进行FFT ,画出相应的幅频特性曲线。 (7)分别对模拟信号)()(65t x t x 和选择采样频率和采样点数。

对)8/2sin()(5ππ+=ft t x ,周期f T /1=,频率f 自己选择,采样频率f f s 4=,观测时间T T p 5.0=,T ,T 2,采样点数用s p f T ?计算。

对)20cos()16cos()8cos()(6t t t t x πππ++=,选择采样频率Hz f s 64=,采样点数为

16,32,64。

(8)分别将模拟信号)()(65t x t x 和转换成序列,用)(5n x ,)(6n x 表示,再分别对它们进行FFT ,并画出相应的幅频特性曲线。

4、实验用MATLAB 函数介绍

fft(); figure(); plot(); stem(); abs();title(); xlabel(); ylabel(); text(); hold on; axis(); grid on; subplot(); sin(); cos(); 等。

5、思考题

(1)在N=8时,)(2n x 和)(3n x 的幅频特性会相同吗? 为什么? N=16呢? (2)如果周期信号的周期预先不知道,如何用FFT 进行谱分析?

6、实验报告要求

(1)简述实验目的及实验原理。

(2)编程实现各实验内容,列出实验清单及说明。 (3)将实验结果和理论分析结果进行比较,分析说明误差产生的原因以及用FFT 作谱分析时有关参数的选择方法。并总结实验所得的主要结论。 (4)简要回答思考题。

思考题

在N=8时,x2(n)和x3(n)的幅频特性会相同吗?为什么?N=16呢?

答:N=8时一样,N=16时不一样。因为DFT变换可以看成是将该序列进行周期延拓后的傅里叶级数变换的主值序列。当N=8时,两序列进行周期延拓后序列相同,所以其傅里叶级数变换的主值序列也相同,进而DFT变换也相同。而当N=16时,两序列进行周期延拓后序列不相同,所以其傅里叶级数变换的主值序列也相同,进而DFT变换也不相同。

实验三 IIR 滤波器的设计与信号滤波

1、实验目的

(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。 (2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

2、实验原理

利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。

如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为

)2

1

tan(2w T =

Ω。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一化低通滤波器参数表,得到归

一化传输函数)(p H a ;最后,将c

s

p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输

函数)(s H a 。之后,通过双线性变换法转换公式1

1

112--+-=z

z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。

利用所设计的数字滤波器对实际的心电图采样信号进行数字滤波器。

3、实验步骤及内容

(1)复习有关巴特沃斯模拟滤波器的设计和用双线性变换法设计IIR 数字滤波器的内容,用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为:在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 (2)以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特性曲线。 (3)用所设计的滤波器对实际心电图信号采样序列(实验数据在后面给出)进行仿真滤波处理,并分别绘制出滤波前后的心电图信号波形图,观察总结滤波作用与效果。 (4)编写程序完成各部分实验内容。

4、实验用MATLAB 函数介绍

buttord(); butter(); bilinear(); freqz(); freqs(); filter(); figure(); plot(); stem(); abs();title(); xlabel(); ylabel(); text(); hold on; axis(); grid on; subplot();

5、思考题

(1)用双线性变换法设计数字滤波器过程中,变换公式1

1

112--+-=z z T s 中T 的取值, 对

设计结果有无影响? 为什么?

(2)如果用脉冲响应不变法设计该IIR 数字低通滤波器,程序如何改动?

6、实验报告要求

(1)简述实验目的及实验原理。

(2)编程实现各实验内容,列出实验清单及说明。

(3)由绘制的)(jw

e H 特性曲线及设计过程简述双线性变换法的特点。

(4)对比滤波前后的心电图信号波形,说明数字滤波器的滤波过程与滤波作用。 (5)简要回答思考题。

7、心电图信号采样序列)(n x

人体心电图信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能作为判断心脏功能的有用信息。下面给出的数据是一实际心电图信号采样序列样本)(n x ,其中存在高频干扰。本实验中,以)(n x 作为输入序列,滤除其中的干扰成分。

]

2,-2,-2,02,0,0,-2,--,0,0,-2,,0,-2,-4,0,4,0,0,0,02,10,6,6,6,-4,8,12,1,-32,-4,-284,-90,-66-,16,-38,-60-,0,-2,6,12,84,-4,-6,-6-4,-6,-6,-,-6,-4,-2,-4,-2,0,-4[)( n x

% (1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为:在通带内频率低于0.2*pi 时,最大衰减小于1dB ;在阻带内[0.3*pi, pi] 频率区间上,最小衰减大于15dB 。

% (2)以0.02*pi 为采样间隔,绘制出数字滤波器在频率区间[0, pi/2]上的幅频响应特性曲线

理,并分别绘制出滤波前后的心电图信号波形图,观察总结滤波作用与效果。

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

图像处理实验报告

重庆交通大学 学生实验报告 实验课程名称数字图像处理 开课实验室数学实验室 学院理学院年级信息与计算科学专业 2 班学生姓名李伟凯学号631122020203 开课时间2014 至2015 学年第 1 学期

实验(一)图像处理基础 ?实验目的 学习Matlab软件的图像处理工具箱,掌握常用的一些图像处理命令;通过编程实现几种简单的图像增强算法,加强对图像增强的理解。 ?实验内容 题目A.打开Matlab软件帮助,学习了解Matlab中图像处理工具箱的基本功能;题目B.掌握以下常见图像处理函数的使用: imread( ) imageinfo( ) imwrite( ) imopen( ) imclose( ) imshow( ) impixel( ) imresize( ) imadjust( ) imnoise( ) imrotate( ) im2bw( ) rgb2gray( ) 题目C.编程实现对图像的线性灰度拉伸y = ax + b,函数形式为:imstrech(I, a, b); 题目D.编程实现对图像进行直方图均衡化处理,并将实验结果与Matab中imhist 命令结果比较。 三、实验结果 1).基本图像处理函数的使用: I=imread('rice.png'); se = strel('disk',1); I_opened = imopen(I,se); %对边缘进行平滑 subplot(1,2,1), imshow(I), title('原始图像') subplot(1,2,2), imshow(I_opened), title('平滑图像') 原始图像平滑图像

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

北邮dsp软件实验报告

Matlab仿真实验 实验报告 学院:电子工程学院 专业:电子信息科学与技术 班级: 学号: 姓名:

时间:2015年12月23日 实验一:数字信号的FFT分析 1.实验目的 通过本次试验,应该掌握: (a)用傅里叶变换进行信号分析时基本参数的选择 (b)经过离散时间傅里叶变换和有限长度离散傅里叶变换后信号频谱上的区别,前者DTFT时间域是离散信号,频率域还是连续的,而DFT在两个域中都是离散的。(c)离散傅里叶变化的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。(e)建立DFT从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用时数字音频压缩中的分析滤波器,例如DVD AC3和MPEG Audio。 2.实验容、要求及结果。 (1)离散信号的频谱分析: 设信号x(n)=0.001*cos(0.45n)+sin(0.3n)-cos(0.302n-) 此信号的0.3谱线相距很近,谱线0.45的幅度很小,请选择合适的序列长度N和窗函数,用DFT分析其频谱,要求得到清楚的三根谱线。 【实验代码】:

k=2000; n=[1:1:k]; x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); subplot(2,1,1); stem(n,x,'.'); title(‘时域序列'); xlabel('n'); ylabel('x(n)'); xk=fft(x,k); w=2*pi/k*[0:1:k-1]; subplot(2,1,2); stem(w/pi,abs(xk)); axis([0 0.5 0 2]); title('1000点DFT'); xlabel('数字频率'); ylabel('|xk(k)|'); 【实验结果图】:

数字图像处理实验报告 (2)

目录 实验一:数字图像的基本处理操作 (2) 1.1:实验目的 (2) 1.2:实验任务和要求 (2) 1.3:实验步骤和结果 (2) 1.4:结果分析 (6) 实验二:图像的灰度变换和直方图变换 (7) 2.1:实验目的 (7) 2.2:实验任务和要求 (7) 2.3:实验步骤和结果 (7) 2.4:结果分析 (11) 实验三:图像的平滑处理 (11) 3.1:实验目的 (11) 3.2:实验任务和要求 (11) 3.3:实验步骤和结果 (12) 3.4:结果分析 (15) 实验四:图像的锐化处理 (16) 4.1:实验目的 (16) 4.2:实验任务和要求 (16) 4.3:实验步骤和结果 (16) 4.4:结果分析 (18)

实验一:数字图像的基本处理操作 1.1:实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。 1.2:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 1.3:实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\tp.jpg'); i=rgb2gray(a); I=im2bw(a,0.5); subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图1.1 所示:

DSP实验报告-深圳大学-自动化

深圳大学实验报告课程名称:DSP系统设计 实验项目名称:DSP系统设计实验 学院:机电与控制工程学院 专业:自动化 指导教师:杜建铭 报告人1:. 学号:。班级:3 报告人2:. 学号:。班级:3 报告人3:. 学号:。班级:3 实验时间: 实验报告提交时间: 教务处制

实验一、CCS入门试验 一、实验目的 1. 熟悉CCS集成开发环境,掌握工程的生成方法; 2. 熟悉SEED-DEC2812实验环境; 3. 掌握CCS集成开发环境的调试方法。 二、实验仪器 1.TMS320系列SEED-DTK教学试验箱24套 2. 台式PC机24台 三、实验内容 1.仿真器驱动的安装和配置 2. DSP 源文件的建立; 3. DSP程序工程文件的建立; 4. 学习使用CCS集成开发工具的调试工具。 四、实验准备: 1.将DSP仿真器与计算机连接好; 2.将DSP仿真器的JTAG插头与SEED-DEC2812单元的J1相连接; 3.启动计算机,当计算机启动后,打开SEED-DTK2812的电 源。SEED-DTK_MBoard单元的+5V,+3.3V,+15V,-15V的电源指示灯及SEED-DEC2812的电源指示灯D2是否均亮;若有不亮,请断开电源,检查电源。 五、实验步骤 (一)创建源文件 1.进入CCS环境。

2.打开CCS选择File →New →Source File命令 3.编写源代码并保存 4.保存源程序名为math.c,选择File →Save 5.创建其他源程序(如.cmd)可重复上述步骤。 (二)创建工程文件 1.打开CCS,点击Project-->New,创建一个新工程,其中工程名及路径可任意指定弹 出对话框: 2.在Project中填入工程名,Location中输入工程路径;其余按照默认选项,点击完成 即可完成工程创建; 3.点击Project选择add files to project,添加工程所需文件;

图像处理实验报告

实验报告 实验课程名称:数字图像处理 班级:学号:姓名: 注:1、每个实验中各项成绩按照10分制评定,每个实验成绩为两项总和20分。 2、平均成绩取三个实验平均成绩。 2016年 4 月18日

实验一 图像的二维离散傅立叶变换 一、实验目的 掌握图像的二维离散傅立叶变换以及性质 二、实验要求 1) 建立输入图像,在64?64的黑色图像矩阵的中心建立16?16的白色矩形图像点阵, 形成图像文件。对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。 2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中 心化)都显示于屏幕上,比较变换结果。 3) 调整输入图像中白色矩形的尺寸(40?40,4?4),再进行变换,将原始图像及变 换图像(三维、中心化)都显示于屏幕上,比较变换结果。 三、实验仪器设备及软件 HP D538、MATLAB 四、实验原理 傅里叶变换作为分析数字图像的有利工具,因其可分离性、平移性、周期性和共轭对称性可以定量地方分析数字化系统,并且变换后的图像使得时间域和频域间的联系能够方便直观地解决许多问题。实验通过MATLAB 实验该项技能。 设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为 ∑∑ -=-=+-= 101 )],( 2ex p[),(1 ),(M x N y N yu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=101 )],( 2ex p[),(),(M x N y N uy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1 在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为 ,]) (2ex p[),(1 ),(101 ∑∑ -=-=+- = N x N y N yu xu j y x f N v u F π 1,0,=v u …,N-1 ,]) (2ex p[ ),(1 ),(101 ∑∑-=-=+= N u N v N vy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。将二维离散傅里叶变换的频谱的平方定义为),(y x f 的功率谱,记为 ),(),(|),(|),(222v u I v u R v u F v u P +== 功率谱反映了二维离散信号的能量在空间频率域上的分布情况。 五、实验步骤、程序及结果: 1、实验步骤: (1)、编写程序建立输入图像; (2)、对上述图像进行二维傅立叶变换,观察其频谱 (3)、改变输入图像中白框的位置,在进行二维傅里叶变换,观察频谱;

matlab图像处理综合实验实验报告

《数字图像处理》 实验报告 学院: 专业: 班级: 姓名: 学号: 实验一 实验名称:图像增强 实验目的:1.熟悉图像在Matlab下的读入,输出及显示; 2.熟悉直方图均衡化; 3.熟悉图像的线性指数等; 4.熟悉图像的算术运算及几何变换. 实验仪器:计算机,Matlab软件 实验原理: 图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。空间域的增强主要有:灰度变换和图像的空间滤波。 图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。 实验内容如下: I=imread('E:\cs.jpg');%读取图像 subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理 subplot(2,2,2),imshow(J) %输出图像 title('灰度图像') %在原始图像中加标题 subplot(2,2,3),imhist(J) %输出原图直方图

title('原始图像直方图') I=imread('E:\cs.jpg');%读取图像 subplot(1,2,1),imshow(I); subplot(2,2,1),imshow(I),title('源图像') J=rgb2gray(I)%灰度处理 subplot(2,2,2),imshow(J),title('灰度变换后图像') J1=log(1+double(J)); subplot(2,2,3),imshow(J1,[]),title('对数变换后') 指数运算: I=imread('E:\dog.jpg'); f=double(I); g=(2^2*(f-1))-1 f=uint8(f); g=uint8(g); subplot(1,2,1);subimage(f),title('变换一') 00100200 源图像灰度变换后图像对数变换后

数字图像处理实验报告

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对

dsp实验报告

DSP 实验课大作业实验报告 题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的: (1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程; (2)掌握C 语言与汇编语言混合编程的基本方法。 (3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。 (二)实验内容: 1. MATLAB 仿真 设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表: 对回波信号进行脉冲压缩,MTI ,MTD 。并且将回波数据和频域脉压系数保存供DSP 使用。 2.DSP 实现 在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。 (三)实验原理 1.脉冲压缩原理 在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c c R B τ?==。其中,τ表示脉冲时宽,B 表示脉冲带宽。从上式中我们可以看

出高的雷达分辨率要求时宽τ小,而要求带宽B大。但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。然而通过脉冲压缩技术就可以解决这个矛盾。脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。 在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。 从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。所以说脉冲压缩滤波器就是一个匹配滤波器。从而我们可以在时域和频域两个方向进行脉冲压缩。 滤波器的输出() h n= y n为输入信号() x n与匹配滤波器的系统函数() *(1) y n x n s N n =--。转换到频域就是--卷积的结果:* ()()*(1) s N n =。因此我们可以将输入信号和系统函数分别转化到频域:Y k X k H k ()()( Y k,然后将结果再转化到时域, h n H k →,进行频域相乘得() ()() x t X k →,()() 就可以得到滤波器输出:()() →。我们可用FFT和IFFT来实现作用域的 Y k y n 转换。原理图如下: 图1.脉冲压缩原理框图 2.MTI原理 动目标显示(MTI)技术是用来抑制各种杂波,来实现检测或者显示运动目标的技术。利用它可以抑制固定目标的信号,显示运动目标的信号。以线性调频

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

数字图像处理实验报告

数字图像处理实验 报告 学生姓名:学号: 专业年级: 09级电子信息工程二班

实验一常用MATLAB图像处理命令 一、实验内容 1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 实验结果如右图: 代码如下: Subplot (1,3,1) i=imread('E:\数字图像处理\2.jpg') imshow(i) title('RGB') Subplot (1,3,2) j=rgb2gray(i) imshow(j) title('灰度') Subplot (1,3,3) k=im2bw(j,0.5) imshow(k) title('二值') 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (3,2,1) i=imread('E:\数字图像处理 \16.jpg') x=imresize(i,[250,320]) imshow(x) title('原图x') Subplot (3,2,2) j=imread(''E:\数字图像处理 \17.jpg') y=imresize(j,[250,320]) imshow(y) title('原图y') Subplot (3,2,3) z=imadd(x,y) imshow(z)

title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果') Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果') Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果') 3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (2,2,1) i=imread('E:\数字图像处理 \23.jpg') imshow(i) title('原图') Subplot (2,2,2) J = imadjust(i,[],[],3); imshow(J) title('变暗') Subplot (2,2,3) J = imadjust(i,[],[],0.4) imshow(J) title('变亮') Subplot (2,2,4) J=255-i Imshow(J) title('变负') 二、实验总结 分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。 解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像X、Y的大小类型相同,但是图像减运算imsubtract()有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。 乘运算实际上是对两幅原始图像X、Y对应的像素点进行点乘(X.*Y),将结果输出到矩阵Z中,若乘以一个常数,将改变图像的亮度:若常数值大于1,则乘运算后的图像将会变亮;叵常数值小于是,则图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。 除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进行点(X./Y), imdivide()同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。 加法运算的一个重要应用是对同一场景的多幅图像求平均值 减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的分离。

DSP运行实验报告

DSP运行实验报告 一、实验目的 熟悉CCS软件仿真下,DSP程序的下载和运行;熟悉借助单片机的DSP程序下载和运行; 熟悉借助仿真器的DSP程序下载和运行;熟悉与DSP程序下载运行相关的CCS编程环境。 二、实验原理 CCS软件仿真下,借用计算机的资源仿真DSP的内部结构,可以模拟DSP程序的下载和运行。 如果要让程序在实验板的DSP中运行、调试和仿真,可以用仿真器进行DSP程序下载和运行。初学者也可以不用仿真器来使用这款实验板,只是不能进行程序调试和仿真。 在本实验板的作用中,单片机既是串口下载程序的载体,又是充当DSP 的片外存储器(相对于FLASH),用于固化程序。 三、实验设备、仪器及材料 安装有WINDOWS XP操作系统和CCS3.3的计算机。 四、实验步骤(按照实际操作过程) 1、CCS软件仿真下,DSP程序的下载和运行。 第一步:安装CCS,如果不使用仿真器,CCS 的运行环境要设置成一个模拟仿真器(软仿真)。

第二步:运行CCS,进入CCS 开发环境。 第三步:打开一个工程。 将实验目录下的EXP01目录拷到D:\shiyan下(目录路径不能有中文),用[Project]\[Open]菜单打开工程,在“Project Open”对话框中选 EXP01\CPUtimer\CpuTimer.pjt,选“打开”, 第四步:编译工程。 在[Project]菜单中选“Rebuild All”,生成CpuTimer.out文件。 第五步:装载程序。 用[File]\[Load Program]菜单装载第四步生成CpuTimer.out文件,在当前工程目录中的Debug 文件夹中找到CpuTimer.out文件,选中,鼠标左键单击“打开”。

图形图像处理实验报告

第四次实验报告 实验课程:图像图像处理实验人:尹丽(200921020047) 实验时间:2012年4月19日实验地点:5-602 指导老师:夏倩老师成绩: 一、实验内容: ⑴图像的锐化:使用Sobel,Laplacian 算子分别对图像进行运算,观察并体会运算结果。 ⑵综合练习:对需要进行处理的图像分析,正确运用所学的知识,采用正确的步骤,对图像进行各类处理,以得到令人满意的图像效果。 二、实验目的: 学会用Matlab中的下列函数对输入图像按实验内容进行运算;感受各种不同的图像处理方法对最终图像效果的影响。(imfilter;fspecial;) 三、实验步骤:

1、仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。 2、将Fig3.41(c).jpg 图像文件读入Matlab ,使用filter2函数分别采用不同的算子对其作锐化运算,显示运算前后的图像。 3、算子的输入可采用直接输入法。其中Sobel ,Laplacian ,也可用fspecial 函数产生。 4、各类算子如下: ???? ??????---121000121 ??????????-111181111 5、将Fig3.46(a).jpg 图像文件读入Matlab ,按照以下步骤对其进行处理: (1)用带对角线的Laplacian 对其处理,以增强边缘。 (2)用imadd 函数叠加原始图像。可以看出噪声增强了,应想法降低。 (3)获取Sobel 模板并用filter2对其进行5×5邻域平均,以减少噪声。 5(1)实验代码如图: 对角线Laplacian Sobel 垂直梯度

武汉科技大学 数字图像处理实验报告讲解

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

东北大学图像处理实验报告

计算机图像处理实验报告 哈哈哈哈哈哈实验台31 1.应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及 彩色图像的程序,并进行相互之间的转换 1)彩色图像转换为灰度图像、索引图像、二值图像 A=imread('F:\colorful.jpg'); subplot(221);imshow(A);title('彩色图像'); I1=rgb2gray(A); subplot(222);imshow(I1);title('灰度图像'); [X1,map]=rgb2ind(A,256); subplot(223);imshow(X1);title('索引图像'); BW=im2bw(A); subplot(224);imshow(BW);title('二值图像'); 彩色图像灰度图像 索引图像二值图像

2)灰度图像转换为索引图像、二值图像 clear A=imread('F:\colorful.jpg'); B=rgb2gray(A); subplot(131);imshow(B);title('灰度图像'); [X2,map]=gray2ind(B,128); subplot(132);imshow(X2);title('索引图像'); BW2=im2bw(B); subplot(133);imshow(BW2);title('二值图像'); 灰度图像索引图像二值图像 3)索引图像转为灰度图像、二值图像、彩色图像 clear A=imread('F:\colorful.jpg'); [X,map]=rgb2ind(A,256); subplot(221);imshow(X);title('索引图像'); I3=ind2gray(X,map); subplot(222);imshow(I3);title('灰度图像'); BW3=im2bw(X,map,0.5); subplot(223);imshow(BW3);title('二值图像'); RGB=ind2rgb(X,map); subplot(24);imshow(RGB);title('还原彩色图像'); 索引图像灰度图像 二值图像还原彩色图像

数字图像处理实验报告

- 院系:计算机科学学院专业:计算机科学与技术年级: 2012级 课程名称:数字图像处理组号: 姓名(学号): 指导教师:高志荣 2015年 5月 25日

实验原理(算法流程)2.运行结果 1-1-1图查看2012213500.png图片的基本信息和显示图片过程 1-1-2图将2012213500.png图片保存为2012213500.bmp图片3.实验分析

实验原理(算法流程) 先用imread()函数将2012213500.png存入I数组中,可见1-1-1图右上角的Workspace中的I。然后用imfinfo()函数和ans函数读取该图像的大小、类型等信息,具体在1-1-1图的Command Window中可见。至于图片格式的转换,就是用rgb2gray()函数将保存在I数组中的数据转换成灰度格式保存在原来的数组I中。最后将变换所得到的数据保存于2012213500.bmp文件中。 实验(2): 1.代码实现 I=imread(2012213500.bmp');%读取灰度图片 subplot(221),imshow(I,[]),title('256*256,256') I=I(1:2:end,1:2:end);%图片采样 subplot(222),imshow(I,[]),title('128*128,256') I=I(1:2:end,1:2:end);%图片采样 subplot(223),imshow(I,[]),title('64*64,256') I=I(1:2:end,1:2:end);%图片采样 subplot(224),imshow(I,[]),title('32*32,256') 2.运行结果 1-2 图图片空间分辨率对图片的影响 3.实验分析 由1-2图可以看出,在保持灰度级数一定的条件下,随着图片空间分辨率的减半,即256*256,128*128,64*64,32*32的图像,图中的各个区域边缘处的棋盘模式越来越明显,并且全图的像素颗粒越来越粗。证明了空间分辨率是影响图片清晰度的因素之一。 实验(3): 1.代码实现 I=imread('2012213500.bmp');%读取灰度图片 subplot(221),imshow(I,256),title('256*256,256')%灰度级为256 subplot(222),imshow(I,50),title('256*256,50') %灰度级为50 subplot(223),imshow(I,10),title('256*256,10') %灰度级为10 subplot(224),imshow(I,5),title('256*256,5') %灰度级为5

相关文档
相关文档 最新文档