文档库 最新最全的文档下载
当前位置:文档库 › 集合到函数单调性带答案

集合到函数单调性带答案

集合到函数单调性带答案
集合到函数单调性带答案

1、函数是R 上的偶函数,且在上是增函数,若,则实数a 的取值范围是( ) A . B . C . D . 【答案】D 【解析】

2、设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=+2x+m (m 为常数),则( )

A .3

B .1

C .

D . 【答案】D

【解析】 ∵是奇函数,故,故, ∴ ,故选D.

3、已知函数f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=( ).

A .1

B .-1 C.

D .- 【答案】B

【解析】∵f(x)为R 上的奇函数,∴f(-2)=-f(2).当x =2时,f(2)=22

-3=1,∴f(-2)=-1.

4、已知函数是偶函数,当时,有,且当,的值域是,则的值是( ) A .2

B .4

C .6

D . 8

【答案】B 【解析】

5、定义在上的函数满足,, 则( )

A .2

B .3

C .6

D .9

【答案】C 【解析】

6、已知全集U =R ,集合M ={y |y =x 2-1,x ∈R },集合,则(M )∩N

=( )

A .(-2,-1)

B .[-2,-1)

C .[-2,1)

D .[-2,1] 【答案】B

【解析】集合M 是函数的值域,M ={y |y ≥-1},M ={y |y <-1};集合N 是函数

)(x f y =]0,(-∞)2()(f a f ≤2≤a 2-≥a 22≤≤-a 22≥-≤a a 或2x (1)f -=1-3-()x f ()0020f m =+=1m =-()()()

3122111-=-+-=-=-f f 14114

()y f x =0x >x x f 2)(=[3,1]x ∈--()f x [,]n m m n -R ()f x ()()()2f x y f x f y xy +=++(1)2f =(3)f -=

的定义域,N ={x |-2≤x ≤2},所以(M )∩N =[-2,-1).故选B. 7、设,,若,则实数a 的取值范围是

( )

A .

B .

C .

D .

【答案】D

【解析】

8、已知全集=,或,,则

( )

A .

B .

C .

D .

【答案】C 【解析】

9、已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x -a -x

+2(a>0且a≠1),若g(2)=a ,则f(2)=( ). A .2 B.

C. D .a 2 【答案】B

【解析】依题意有f(-2)+g(-2)=-f(2)+g(2)=a -2-a 2

+2,① 又f(2)+g(2)=a 2-a -2+2,②

∴①+②得:2g(2)=2a =4,∴a =2,②-①得:2f(2)=2(a 2-a -2

),∴f(2)=4-

= 10、设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t 2-2at +1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t 的取值范围是( )

A .-2≤t≤2

B .-

≤t ≤ C .t ≤-2或t =0或t≥2 D .t ≤-或t =0或t≥

【答案】C

【解析】因为奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,所以最大值为f(1)=1,要使f(x)≤t 2-2at +1对所有的x ∈[-1,1]都成立,则1≤t 2-2at +1,

即t 2-2at ≥0,设gA .=t 2-2at(-1≤a≤1),欲使t 2

-2at≥0恒成立,则

即解得t≥2或t =0或t≤-2., 11、定义在R 上的偶函数f(x)在(0,+∞)上是增函数,且f(

)=0,则不等式的解集是( )

?

??

???

∈<<=Z x x x A ,521|{}a x x B >=|B A ?21<

a 2

1

≤a 1≤a 12{|430}N x x x =-+<()N M N ?e={|01}x x ≤<{|02}x x ≤≤{|12}x x <≤{|2}x x <15417

4

14154

1212121

2

1010g g ≥??

≥?(-),(),22 2020

t t t t ?≥??≥??+,-1

3

()0xf x >

A .(0,)

B .( ,+∞)

C .(-,0)∪(,+∞) D.(-∞,-)∪(0,)

【答案】C

【解析】∵偶函数f(x)在(0,+∞)上为增函数,又f()=

0,所以函数f(x)的代表图如图,解集是(-

,0)∪(,+∞),选C

12、已知减函数是定义在上的奇函数,则不等式的解集为( )

A .

B .

C .

D . 【答案】B

【解析】因为函数的图像向左平移一个单位得到函数的图像,由是定义在上的奇函数可知即,又因为是定义在上的减函数,

平移不改变函数的单调性,所以在上也单调递减,故不等式

,故选B.

13、已知偶函数f(x)当x ∈[0,+∞)时是单调递增函数,则满足f()<f(x)的x 的取值范围是( )

A .(2,+∞) B.(-∞,-1) C .[-2,-1)∪(2,+∞) D.(-1,2) 【答案】C

【解析】由“偶函数f(x)是单调递增函数”,可得<|x|,即解

得-2≤x<-1或x >2.

14、已知f(x+1)是偶函数,则函数y=f(2x)的图象的对称轴是 A .x=-1 B .x=1 C . D . 【答案】D 【解析】

15、设函数()f x 是定义在R 上的奇函数,且当0x ≥时,()f x 为单调递减,若

120x x +>,则12()()f x f x +的值( )

131

313131313

1

3

()0xf x >131

3

(1)y f x =-R (1)0f x ->(1,)+∞(2,)+∞(,0)-∞(0,)+∞(1)y f x =-()y f x =(1)y f x =-R (01)0f -=(1)0f -=(1)y f x =-R ()y f x =R (1)0(1)(1)f x f x f ->?->-112x x ?-<-?>2x +2x +2

202x x x

+≥??+

1=x

A .恒为正值

B .恒等于零

C .恒为负值

D .不能确定正负 【答案】C 【解析】

16、设偶函数()f x 在(0,+∞)上为增函数,且(1)0f =,则不等式()()

f x f x x

+-<的解集为( )

A .(-1,0)∪(1,+∞)

B .(-∞,-1)∪(0,1)

C .(-∞,-1)∪(1,+∞)

D .(-1,0)∪(0,1) 【答案】B 【解析】

17、若函数22()(1)3f x ax a x a =+--为偶函数,其定义域为2

41,1a a ??++??,则

()f x 的最小值为( )

A .3

B .0

C .2

D .-1

【答案】D 【解析】

评卷人 得分

二、填空题(注释)

18、已知2(1)3f x x

+=,则()f x =________. 【答案】()f x = 61

x - 【解析】

19、已知集合{1,2,3,4,5}的非空子集A 具有性质P :当a A ∈时,必有6a A -∈.则具有性质P 的集合A 的个数是 【答案】7 【解析】

20、设全集U=R,M ={|(3)0},{|1}x x x N x x +<=<-,则右图中阴影部分表示的集合为

【答案】{|10}x x -≤< 【解析】

21、集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =

【答案】{0}

【解析】 [0,4]A =,[4,0]B =-,所以{0}A

B =.

22、已知函数()2

21,2,2

x x f x x x -

≥?,则满足不等式()()2

43f x f x -≤的x 的取值范围是__________. (用区间表示) 【答案】[]1,4- 【解析】

23、设()f x 是R 上的奇函数,()g x 是R 上的偶函数,若函数()()f x g x +的值域为[)1,4-,则()()f x g x -的值域为___________. 【答案】(]4,1- 【解析】

评卷人 得分

三、解答题(注释)

24、设A ={2, -1, a 2-a +1},B ={b , 7, a + 1} ,M ={-1, 7},A ∩B =M .

(1)设全集U A =,求M C U ; (2)求a 和b 的值. 【答案】(1)}2{=M C U (2)1,3-==b a 或7,2,1,2-≠-=b a 【解析】

25、设函数2

()21

x f x a =-

+, (Ⅰ)求证: 不论a 为何实数()f x 总为增函数;(Ⅱ)确定a 的值,使()f x 为奇函数。

【答案】解:(Ⅰ)

()f x 的定义域为R, 12x x ∴<,

则121222

()()2121x x f x f x a a -=--+++=12122(22)(12)(12)x x x x ?-++, 12x x <, 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<

即12()()f x f x <,所以不论a 为何实数()f x 总为增函数. (Ⅱ)

()f x 为奇函数, ()()f x f x ∴-=-,即22

2121

x x a a --

=-+++,

解得: 1.a = 2

()1.21

x

f x ∴=-+ 【解析】

26、已知函数()f x 的定义域为()7,7-,且同时满足下列三个条件:

(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)(1)(25)0f a f a -+-<. 求a 的取值范围.

【答案】解:因为()f x 是奇函数,所以(1)(25)0f a f a -+-<可变为(1)(52)f a f a

-<- 所以717

7257152a a a a -<-

-<--?

解得:46a <<

所以a 的取值范围为46a <<. 【解析】

函数单调性讲解及常见类型(整理)

函数的单调性 题型一 判断、讨论、证明函数的 单调性 1 判断函数 y=x- 1 在其定义域上的单调性。 x 2 讨论并证明 y=x+ 1 在定义域上的单调性。 x 3 定义在R 上的函数 f (x )对任意不相等实数 a ,b 总有 f (a )- f (b ) >0成立,则必有 a -b A 、函数 f (x )是先增加后减小 B 、函数 f (x )是先减小后增加 C 、f (x )在R 上是增函数 D 、f (x )在 R 上是减函数 4已知 f (x ) =(2k +1)x + b 在实数R 是减函数,则k 的取值范围为( ) 5 已知函数 f (x ) = x 2 +bx +c ,x (0,+)是单调函数,则实数b 的取值范围为( ) A .b 0. B .b 0 C .b 0 D , b 0 6 已知 f (x ) = x 2 -2(1-a )x + 2在(- ,4]上是减函数,求实数a 的取值范围。 题型二 抽象函数的单调性 1、已知 f (x )是定义在[-1,1]上的增函数,且 f (x-2)f ( 8 ( x — 2))的解集是 A 、(2, 16 ) B 、( —∞, 7 ) C 、( 2 ,+ ∞) D 、(2, 16 )

题型四用图形讨论函数单调性 1 函数y=|x—3|—|x+1|的单调递减区间是。 2画出函数y=-x2+2x +3的图像,并指出函数的单调区间. 3 画出函数y=|x| 的图像,并判断其单调性。 4画出函数y=|x2+2x-1|的图像,并指出其在R 上的单调性。 题型五基本初等函数的单调性问题 1.设函数y = x2-4x+3,x[1,4],则f(x)的最小值和最大值为() A.-1 ,3 B.0 ,3 C.-1,4 D.-2,0 2.函数f(x)=—x2+2(a—1)x+2 在(—∞,4)上是增函数,则a 的范围是 A 、a≥5 B 、a≥3 C、a≤3 D、a≤—5

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升?哪些区间下降?

解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降? ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化? (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化? ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化? 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗? 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数.

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ?取值,即_____________________________; ?作差变形,作差____________,变形手段有__________、_____、_____、_______等; ?定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 搜集整理,仅供参考学习,请按需要编辑修改

函数单调性的判断或证明方法

函数单调性的判断或证明方法. (1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。例1.判断函数在(-1,+∞)上的单调性,并证明. 解:设-10,x2+1>0. ∴当a>0时,f(x1)-f(x2)<0,即f(x1)0,即f(x1)>f(x2), ∴函数y=f(x)在(-1,+∞)上单调递减. 例2.证明函数在区间和上是增函数;在 上为减函数。(增两端,减中间) 证明:设,则 因为,所以,

所以, 所以 所以 设 则, 因为, 所以, 所以 所以 同理,可得 (2)运算性质法. ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减) ②若. ③当函数. ④函数二者有相反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。(3)图像法.根据函数图像的上升或下降判断函数的单调性。 例3.求函数的单调区间。 解:

在同一坐标系下作出函数的图像得 所以函数的单调增区间为 减区间为. (4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表: 增增增 增减减 减增减 减减增 例4.求函数的单调区间

函数的单调性题型归纳

函数的单调性 一、教学目标:理解函数单调性的定义,会用函数单调性解决一些问题. 二、教学重点:函数单调性的判断和函数单调性的应用. 三、教学过程: (一)主要知识: 1、函数单调性的定义; 2、判断函数单调性(求单调区间)的方法: (1)从定义入手(2)从导数入手(3)从图象入手(4)从熟悉的函数入手 (5)从复合函数的单调性规律入手注:先求函数的定义域 3、函数单调性的证明:定义法;导数法。 4、一般规律 (1)若f(x),g(x)均为增函数,则f(x)+g(x)仍为增函数; (2)若f(x)为增函数,则-f(x)为减函数; (3)互为反函数的两个函数有相同的单调性; (4)设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是 减函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。 (二)主要方法: 1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数. 3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用. (三)例题分析: 例1.(1)求函数2 0.7log (32)y x x =-+的单调区间; (2)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性. 解:(1)单调增区间为:(2,),+∞单调减区间为(,1)-∞, (2)2 2 2 ()82(2)(2)g x x x =+---4228x x =-++,3 ()44g x x x '=-+, 令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<< ∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-. 例2.设0a >,()x x e a f x a e = + 是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数. 例3.若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ?<的解集为 (,2)(2,) -∞-+∞ . 例4.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有 1 21 2()()()f x x f x f x ?=+,且当 1x >时()0,(2)1f x f >=, (1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2 (21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-?=-+=,∴()f x 是偶函数. (2)设210x x >>,则221111 ()()()()x f x f x f x f x x -=? -22111 1 ()( )()( )x x f x f f x f x x =+-=

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

函数的单调性证明

函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)是增函数. 4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 7.证明:函数y=在(﹣1,+∞)上是单调增函数. 8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.

10.已知函数f(x)=x+. (Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,数a的取值围. 11.证明:函数f(x)=在x∈(1,+∞)单调递减. 12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性. 14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

15.求函数f(x)=的单调增区间. 16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数. 17.求函数的定义域. 18.求函数的定义域. 19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x)

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

函数单调性讲解及常见类型(整理)

函数的单调性 题型一 判断、讨论、证明函数的单调性 1判断函数y=x- x 1在其定义域上的单调性。 2讨论并证明y=x+ x 1在定义域上的单调性。 3定义在R 上的函数f (x )对任意不相等实数a ,b 总有 ()()b a b f a f -->0成立,则必有 A 、函数f (x )是先增加后减小 B 、函数f (x )是先减小后增加 C 、f (x )在R 上是增函数 D 、f (x )在R 上是减函数 4已知b x k x f ++=)12()(在实数R 是减函数,则k 的取值范围为( ) 5已知函数),0(,)(2 +∞∈++=x c bx x x f 是单调函数,则实数b 的取值范围为( ) .0.≥b A 0.≤b B 0.>b C 0,f (8(x —2))的解集是 A 、(2,716) B 、(—∞,716) C 、(2,+∞) D 、(2,7 16)

题型四 用图形讨论函数单调性 1函数y=|x —3|—|x+1|的单调递减区间是 。 2画出函数223.y x x =-++的图像,并指出函数的单调区间 3画出函数y=|x|的图像,并判断其单调性。 4画出函数y=|x 2+2x-1|的图像,并指出其在R 上的单调性。 题型五 基本初等函数的单调性问题 1.设函数243,[1,4]y x x x =-+∈,则()f x 的最小值和最大值为( ) A.-1 ,3 B.0 ,3 C.-1,4 D.-2,0 2.函数f (x )=—x 2+2(a —1)x+2在(—∞,4)上是增函数,则a 的范围是 A 、a ≥5 B 、a ≥3 C 、a ≤3 D 、a ≤—5 3.已知22(2)5y ax a x =+-+在区间(4,)+∞上是减函数,则a 的范围是( ) A.25a ≤ B.25a ≥ C.25 a ≥或0a = D.0a ≤ 3.若函数242--=x x y 的定义域为[]m ,0,值域为[]2,6--,则m 的取值范围是( ) A 、(]4,0 B 、[]4,2 C 、(]2,0 D 、()4,2 4.函数32++=bx ax y 在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则( ) A 、00<>a b 且 B 、02<=a b C 、02>=a b D 、的符号不确定b a ,

函数单调性方法和各种题型.

(一) 判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(十一) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

导数应用:含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 解:x a x x f ln )(+=的定义域为),0(+∞ )0(1)('>+=+ =x x a x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立, 此时)(x f 在),0(+∞为单调增函数,

函数单调性的常用判断方法及应用

函数单调性的常用判断方法及应用 湖北麻城:阮 晓 锋 单调性是函数的重要性质,它在数学中有许多应用,如我们常利用它求函数的值域,进而求题中字母或参数的取值范围。那么,有哪些常用的判断函数单调性方法呢? 判断函数单调性的常用方法有: ⑴利yizhi 用增(减)函数的定义进行判断; ⑵利用导数进行判断(本文暂不举例); ⑶利用图象进行判断; ⑷利用简单初等函数的单调性结论直接进行判断(含一次函数,二次函数,指数函数, 对数函数,幂函数,三角函数); ⑸利用一些重要结论进行判断: ①若f(x)在区间D 上是增(或减)函数,则它在D 的任意子区间上也是增(减)函数; ②f(x)+C 与f(x)具有相同的单调性(C 为常数); ③当C>0(或C<0)时,Cf(x)与f(x)具有相同(或相反)的单调性(C 为常数); ④若f(x)与g(x)的单调性相同,则f(x)+g(x)也有相同的单调性;若f(x)与g(x) 的单调性相反,则f(x)-g(x)与f(x)的单调性相同,与g(x)的单调性相反。 ⑤由两个函数组成的复合函数的单调性的判断规律为“同增异减”; ⑥奇函数在关于原点对称的区间上的单调性完全相同,而偶函数则在关于原点对称 的区间上的单调性正好相反。 例1 ⑴若函数f(x)=x x +2 a 在(0,+∞)上单调递增,则a 的取值范围为_____; ⑵已知函数f(x)?????<≥+=0 , 1 ,0,1x 2x x ,则不等式f(1-x 2 )>f(2x)的取值范围为_____。 解:⑴填[0,+∞),理由如下 ①当a=0时显然符合题设要求; ②当a<0时,由二次函数单调性知它在[2a 1-,+∞上单调递减,不可能符合题意; ③当a>0时,由二次函数单调性知它在[2a 1-,+∞)上单调递增 则得(0,+∞)?[2a 1-,+∞) ∴得2a 1-≤0且a>0解之得a>0 综上知:a 的取值范围为[0,+∞)。 ⑵先画出f(x)的图象,由图象知f(x)在[0,+∞)上单调递增,且当x ≤0时f(x)=0er 从而得?????>>?????≤>0 22-1020-1x x 2 2x x x 或解之得<-1x ≤0或0

函数单调性的应用

函数单调性的应用 授课人:刘晓健 教学内容:函数单调性的应用 教学目的:利用单调性解决二次函数最值,含参数的函数问题,及解决抽 象函数问题。 教学重点:含参数问题的讨论,抽象函数问题。 教学难点:单调性的综合应用。 教学过程: 一 .教材预知 1. 用定义证明函数单调性的步骤是(1) ,(2) , (3) ,(4) ,(5) 。 2. 若函数y=f(x)在某区间上是增(减)函数,则y=- f(x)在这个区间上为 函数;若函数y=f(x) 和 y=g(x)在某个公共区间上都是增(减)函数,则y=f(x)+g(x)在这个区间上是 函数。 3. 若函数y=f(x) 在闭区间[a, b]上具有单调性,则它在这个区间上必取得最大值和最小值,当 f(x)在[a, b]上递增时,y max = ,y min = ;当f(x)在[a, b]上递减时, y max = ,y min = 。 二.基础自测 1. 已知f(x) , g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)≠0,则( ) A. f(x) + g(x) 为减函数 B. f(x) - g(x)为增函数 C .f(x)·g(x)是减函数 D. f(x) g(x) 是增函数 2. 函数y=f(x) 在R 上单调递增,且f(m 2)>f(-m),则实数m 的取值范围是( ) A. (-∞,-1 ) B. ( 0,+∞) C.(-1,0 ) D. (-∞,-1 )∪( 0,+∞) 3.已知x ∈[0,1],则函数y=2x+2-1-x 的最大值为 ,最小值

为 。 三.例题精选 类型一 函数的最值问题 例1:函数f(x)= ax 2-2ax+2+b (a ≠0)在[2,3]上有最大值5和最小值2,求a, b 的值. 解题过程(略) 点评:二次函数在某个区间[a ,b]上的最值只可能在两个端点或顶点处取得。 即时突破:已知函数f(x)= -4x 2+4ax-4a-a 2在[0,1]内有最大值-5,求a 的值。 类型二 已知单调性求参数值或取值范围 例2:已知函数f(x)=x-a /x+a /2在( 1,+∞)上是增函数,求实数a 的取值范围。 解题过程(略) 点评:已知函数f(x)在区间A 上是增(减)函数,确定某个与该函数有关的参数值或取值范围问题,基本思路是:(1)设x 1 0(减)成立的条件。 即时突破:(1) 已知函数f(x)= x 2-2(1-m )x+2的单调减区间是(-∞,4],求实数m 的值。 (2)已知函数f(x)= x 2-2(1-m )x+2在区间(-∞,4]上是减函数,求实数m 的取值范围。 类型三 利用函数的单调性解不等式 例3.已知f(x)是定义在R 上的函数,并且对任意x, y ,都有f(x+ y)=f(x)+f(y)-1成立,当x>0时,f(x)>1, (1)证明f (x)在R 上是增函数; (2)若f(4)=5,求f(2)的值; (3)若f(4)=5,解不等式f (3 m 2-m-2)<3. 解题过程(略) 点评:本例中的(3)要解不等式,就必须寻找关于m 的不等式,即依据函数单调性将函数值大小关系转化为自变量大小关系。

相关文档
相关文档 最新文档