文档库 最新最全的文档下载
当前位置:文档库 › 2019届初高中数学衔接知识点及习题(2020年九月整理).doc

2019届初高中数学衔接知识点及习题(2020年九月整理).doc

2019届初高中数学衔接知识点及习题(2020年九月整理).doc
2019届初高中数学衔接知识点及习题(2020年九月整理).doc

数学

亲爱的2019届平冈学子:

恭喜你进入平冈中学!你们是高中生了,做好了充分的准备吗?其实学好高中数学并不难,你只要有坚韧不拔的毅力,认真做题,善于总结归纳,持之以恒,相信你一定能成功。

从2016年开始,广东省高考数学试题使用全国I卷,纵观今年高考数学试题,我们发现它最大的特点就是区分度特别大,选拔性很明显,难度相比以前广东自主命题难度大大提升。打铁还需自身硬,因此,让自己变强大才是硬道理。假期发给你们的这本小册子,是为了使你们在初高中数学学习上形成较好的连续性,能有效地克服知识和方法上的跳跃,利于激发你们学习数学的兴趣。你们一定要利用好暑假,做好充分的准备工作。

这里给大家几个学数学的建议:

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。记录本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

4、经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

5、阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

6、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

7、学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

8、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

9、无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

初高中数学衔接呼应版块

1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

9. 角度问题,三角函数问题。在初中只涉及360°范围内的角,而高中是任意角。三角函数在初中也只是锐角三角函数,高中是任意角三角函数,定义的范围大大不同。同时,度量角也引进了弧度制这个新的度量办法。

10. 高中阶段特别注重数学思维,数学思想方法的培养。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

目 录

1.1 数与式的运算

1.1.1绝对值 1.1.

2. 乘法公式 1.1.3.二次根式 1.1.4.分式 1.2 分解因式

2.1 一元二次方程

2.1.1根的判别式 2.1.2 根与系数的关系(韦达定理)

2.2 二次函数

2.2.1 二次函数y =ax 2+bx +c 的图像和性质 2.2.2 二次函数的三种表示方式 2.2.3 二次函数的简单应用

2.3 方程与不等式

2.3.1 二元二次方程组解法 2.3.2 一元二次不等式解法

1.1 数与式的运算 1.1.1.绝对值

一、概念:绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >??

==??-

绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.

二、典型例题: 例1 解不等式:4|1|>-x 解法一:由01=-x ,得1=x ;

①若1--x ,即41>-x ,得3-

②若x ≤1,不等式可变为4)1(>-x , 即5>x 又1≥x ∴ 5>x

综上所述,原不等式的解为3-x 。

解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;

所以4|1|>-x 的几何意义即为 |PA |>4.

可知点P 在点C (坐标为-3)的左侧、或点P 在点D (坐标5)的右侧.

∴ 3-x 。 练 习A 1.填空:

(1)若5=x ,则x =_________;若4-=x ,

则x =_________.

(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:

下列叙述正确的是 ( )

1

-3

x

|x -1|

图1.1-1

(A )若a b =,则a b = (B )若a b >,则a b >

(C )若a b <,则a b < (D )若a b =,则a b =± 练习B

3.解不等式:3|2|<+x

4、化简:|x -5|-|2x -13|(x >5).

1.1.

2. 乘法公式

一、复习:我们在初中已经学习过了下列一些乘法公式:

(1)平方差公式 2

2

()()a b a b a b +-=-; (2)完全平方公式 2

2

2

()2a b a ab b ±=±+.

我们还可以通过证明得到下列一些乘法公式:

(1)立方和公式 2

2

3

3

()()a b a ab b a b +-+=+;

(2)立方差公式 2233

()()a b a ab b a b -++=-; (3)三数和平方公式 2222

()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++;

(5)两数差立方公式 3

3

2

2

3

()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 二、典型例题

例1 计算:2

2

(1)(1)(1)(1)x x x x x x +--+++.

解法一:原式=2222

(1)(1)x x x ??-+-?? =2

4

2

(1)(1)x x x -++=6

1x -.

解法二:原式=22

(1)(1)(1)(1)x x x x x x +-+-++ =3

3

(1)(1)x x +- =6

1x -.

例2 已知4a b c ++=,4ab bc ac ++=,求222

a b c ++的值.

解: 2

2

2

2

()2()8a b c a b c ab bc ac ++=++-++=. 练 习A 1.填空:

(1)

221111

()9423

a b b a -=+( )

; (2)(4m + 22

)164(m m =++ );

(3 ) 2222

(2)4(a b c a b c +-=+++ ).

2.选择题:

(1)若2

1

2

x mx k +

+是一个完全平方式,则k 等于 ( ) (A )2

m (B )214m (C )213m (D )

2116m (2)不论a ,b 为何实数,22

248a b a b +--+的值 ( )

(A )总是正数 (B )总是负数

(C )可以是零 (D )可以是正数也可以是负数

1.1.3.二次根式

一、概念:一般地,形如

0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如

32a b 21x +,22x y ++ 必须记

1.分母(子)有理化

把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次

,+

一般地,,与b 与b 互为有理化因式.

分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程

0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.

2. a ==,0,

,0.a a a a ≥??

-

二、典型例题

例1 将下列式子化为最简二次根式:

(1 (20)a ≥; (30)x <.

解: (1= (20)a ==≥;

(3220)x

x x ==-<.

例2 (3-.

解法一:

(3-393- =1)6=12.

解法二: (3-

例3 试比较下列各组数的大小:

(1 (2

解: (1

===

=

==

>

(2)∵

=

== 又 4>22,

∴6+4>6+22,

.

例4 化简:20042005+?.

解:20042005+?

=20042004+

?-?-

=2004

??+?-???

=2004

1

?

例 5 化简:(1; (21)x <<. 解:(1)原式=4545+-

222522)5(+??-

=

2=

-2=.

(2)原式

1x x

=-

, ∵01x <<,∴

11x x >>, 所以,原式=1

x x

-. 练 习A 1.填空:

(1

=__ ___; (2

(x =-x 的取值范围是_ _ ___;

(3

)=__ ___;

(4

)若x =

=______ __.

(提示先简化后代入)

2.选择题:

=

( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<

练习B

3

.若1

b a =+,求a b +的值.

4.比较大小:2

-4(填“>”,或“<”).

1.1.4.分式

一、概念:1.分式的意义

形如

A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B 具有下列性质:A A M B B M ?=?; A A M

B B M

÷=÷.

上述性质被称为分式的基本性质. 2.繁分式

像a

b c d

+,2m n p

m n p

+++这样,分子或分母中又含有分式的分式叫做繁分式.

二、典型例题:

例1 若

54(2)2x A B

x x x x +=+++,求常数,A B 的值.

解: ∵(2)()254

2(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,

∴5,

24,A B A +=??=?

解得 2,3A B ==.

例2 (1)试证:111

(1)1n n n n =-++(其中n 是正整数);

(2)计算:1111223910

+++???; (3)证明:对任意大于1的正整数n , 有

11112334(1)2

n n +++

(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++, ∴111

(1)1

n n n n =-++(其中n 是正整数)成立.

(2)解:由(1)可知

111

1223910

+++

??? 11111

(1)()()223910=-+-++-

1110=-=9

10.

(3)证明:∵1112334(1)n n +++??+ =111111

()()()23341n n -+-++-+

=11

21

n -+,

又n ≥2,且n 是正整数,

∴1

n +1 一定为正数,

∴1112334

(1)n n +++

??+<1

2

例3 设c

e a

=

,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,

∴e =1

2 <1,舍去;或e =2. ∴e =2.

练习A

1.填空题:

对任意的正整数n ,1(2)n n =+ (11

2

n n -+);

2.选择题:

若223x y x y -=+,则x

y

= ( ) (A )1 (B )54 (C )45 (D )6

5

3.正数,x y 满足xy y x 22

2=+,求x y x y

-+的值.

4.计算1111

(12233499100)

++++

????.

习题1.1

A 组

1.解不等式:13x ->

2.已知1x y +=,求33

3x y xy ++的值.

3.填空:

(1)1819

(2(2+-=___________________;

(22=,则a 的取值范围是____________________;

(3

=____________________.

4.填空:12a =,1

3

b =,则22

2

3a ab -=____ ______________;

5.已知:11

,23x y ==的值.

B 组

1.选择题:

(1=

( )

(A )a b < (B )a b > (C )0a b << (D )0b a <<

(2)计算 ( )

(A (B (C ) (D )

2.计算:1111

132435911

++++

????.

1.2 分解因式

一、复习引申:因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.

1.十字相乘法

例1 分解因式:

(1)x 2-3x +2; (2)x 2+4x -12; (3)2

2

()x a b xy aby -++; (4)1xy x y -+-.

解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).

说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).

(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6).

(3)由图1.2-4,得 2

2

()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法 例2 分解因式:

(1)32

933x x x +++; (2)2

2

2456x xy y x y +--+-. 解: (1)32

933x x x +++=3

2

(3)(39)x x x +++=2(3)3(3)x x x +++

=2

(3)(3)x x ++.

或32

933x x x +++=3

2

(331)8x x x ++++=3

(1)8x ++=3

3

(1)2x ++

=22

[(1)2][(1)(1)22]x x x +++-+?+

=2

(3)(3)x x ++. 二次项 一次项 常数项

(2)2

2

2456x xy y x y +--+-=2

2

(2)(45)6x xy y x y +---- =(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.

3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解. 若关于x 的方程2

0(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2

(0)ax bx c a ++≠就可分解为12()()a x x x x --.

例3 把下列关于x 的二次多项式分解因式:

(1)2

21x x +-; (2)2

2

44x xy y +-.

解: (1)令2

21x x +-=0

,则解得11x =-

21x =-,

∴2

21x x +-

=(1(1x x ????----???

?

=(11x x +-++.

(2)令2

2

44x xy y +-=0

,则解得1(2x y =-+

,1(2x y =--,

∴22

44x xy y +-

=[2(1][2(1]x y x y +-++.

二、练习A 1.选择题:

多项式22

215x xy y --的一个因式为 ( )

(A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:

(1)x 2+6x +8; (2)8a 3-b 3;

(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.

练习B 组

1.分解因式:

(1) 3

1a +; (2)42

4139x x -+;

-1 -2 x

x 图1.2-1 -1 -2

1 1

图1.2-2 -2 6

1 1

图1.2-3

-ay -by

x x

图1.2-4

-1 1

x y

图1.2-5

x+y 2x-y 2 -3

(3)22

222b c ab ac bc ++++;

2.在实数范围内因式分解:

(1)2

53x x -+ ; (2)2

3x --;

(3)2

2

34x xy y +-;

3.分解因式:x 2+x -(a 2-a ).

2.1 一元二次方程 2.1.1根的判别式

一、概念:我们知道,对于一元二次方程

ax 2+bx +c =0(a ≠0),用配方法可以将其变形为

222

4()24b b ac

x a a -+=. ① 因为a ≠0,所以,4a 2>0.于是

(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根 x 1,2

(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个相等的实数根 x 1=x 2=-

2b a

; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2

()2b x a

+

一定大于或等于零,因此,原方程没有实数根. 由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.

综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有

(1) 当Δ>0时,方程有两个不相等的实数根 x 1,2=2b a -±;

(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b

a

(3)当Δ<0时,方程没有实数根. 二、典型例题:

例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.

(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =,

22

a x =

(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2, 所以,

①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1;

②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根x 1=1,x 2=a -1. (4)由于该方程的根的判别式为 Δ=22-4×1×a =4-4a =4(1-a ),

所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根

11x = 21x =

②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.

说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.

2.1.2 根与系数的关系(韦达定理)

一、概念:1、若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根

1b x -=,2b x -=, 则有

122222b b b b

x x a a a a

---+=

+==-;

221222(4)444b b ac ac c

x x a a a

--=

===. 所以,一元二次方程的根与系数之间存在下列关系:

如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a

-

,x 1·x 2=c

a .这一关系也被称为韦达定理.

2、特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知 x 1+x 2=-p ,x 1·x 2=q , 即 p =-(x 1+x 2),q =x 1·x 2,

所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是

一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0的两根,因此有

以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 二、典型例题:

例2 已知方程2

560x

kx +-=的一个根是2,求它的另一个根及k 的值.

分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.

解法一:∵2是方程的一个根,

∴5×22+k ×2-6=0, ∴k =-7.

所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35

. 所以,方程的另一个根为-

3

5

,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-

65,∴x 1=-35

. 由 (-

35)+2=-5

k

,得 k =-7. 所以,方程的另一个根为-3

5

,k 的值为-7.

例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值. 分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.

解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4.

∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,

即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.

当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =-1. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.

(★)在今后的解题过程中,如果用由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于等于零.因为,韦达定理成立的前提是一元二次方程有实数根.

例4 已知两个数的和为4,积为-12,求这两个数.

分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解. 解法一:设这两个数分别是x ,y , 则 x +y =4, ①

xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12, 即 x 2-4x -12=0, ∴x 1=-2,x 2=6.

∴112,6,x y =-??

=? 或226,

2.

x y =??=-?

因此,这两个数是-2和6.

解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根. 解这个方程,得 x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求

2212

11

x x +的值; (3)x 13+x 23. 解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根, ∴1252x x +=-,123

2

x x =-.

(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=2

5

3()4()2

2

--?-

254

+6=494, ∴| x 1-x 2|=72.

(2)2222

12121222222

21212125325()2()3()2113722439()9()24

x x x x x x x x x x x x --?-+++-+=====?-.

(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]

=(-

52)×[(-52)2-3×(32

-)]=-215

8. 注意:...

说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出

其一般规律:

设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则

1

b x -+

=

,2b x -=, ∴| x 1-x 2|

=

||

a ==

. 于是有下面的结论:

若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.

例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则 x 1x 2=a -4<0, ①

且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,

由②得 a <17

4

∴a 的取值范围是a <4.

练习A

1.选择题:

(1

)方程2

2

30x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根

(C )有两个相等的实数根 (D )没有实数根

(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( ) (A )m <

14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-1

4

,且m ≠0 (3)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )

(A )-3 (B )3 (C )-2 (D )2 (4)下列四个说法:

①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;

③方程3 x 2-7=0的两根之和为0,两根之积为73

-

; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是 ( )

(A )1个 (B )2个 (C )3个 (D )4个

(5)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )

(A )0 (B )1 (C )-1 (D )0,或-1

2.填空:

(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则

12

11

x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 . (4)方程kx 2+4x -1=0的两根之和为-2,则k = . (5)方程2x 2-x -4=0的两根为α,β,则α2+β2= .

(6)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 . (7)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .

3

|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?

4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.

5.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?

6.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.

练习B 组 1.选择题:

若关于x 的方程x 2+(k 2-1) x +k +1=0的两实根互为相反数,则k 的值为 ( ) (A )1,或-1 (B )1 (C )-1 (D )0 2.填空:

(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .

(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 . 3.已知关于x 的方程x 2-kx -2=0.

(1)求证:方程有两个不相等的实数根;

(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.

4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和

12

2

x x +;(2)x 13+x 23.

5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.

2.2 二次函数

2.2.1 二次函数y =ax 2+bx +c 的图像和性质

一、复习引申:问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?

为了研究这一问题,我们可以先画出y =2x 2,y =12

x 2

,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.

先画出函数y =x 2,y =2x 2的图象.

再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.

同学们也可以用类似于上面的方法画出函数y =

12

x 2

,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.

通过上面的研究,我们可以得到以下结论: 1、二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.

问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?

同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.

类似地,还可以通过画函数y =-3x 2

,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:

2、二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;

k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.

由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:

由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b

x a

+2

24b a )+c -24b a

224()24b b ac a x a a

-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,

图2.2-1

于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:

3、(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为2

4(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b a

-时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b

a

-时,函数取最小值y =244ac b a -.

(2)当a <0时,函数y =ax 2+bx +c

图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2b

a

-时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b

a

-时,函数取最大值y =244ac b a -.

上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函

数图像、利用数形结合的思想方法来解决问题.

二、典型例题:

例1 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当

x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.

解:∵y =-3x 2-6x +1=-3(x +1)2

+4, ∴函数图象的开口向下;

对称轴是直线x =-1; 顶点坐标为(-1,4);

当x =-1时,函数y 取最大值y =4;

当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;

采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交点为D (0,1),过这四点画出图象(如图2-5所示).

说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选

点的盲目性,使画图更简便、图象更精确.

例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之润是多少?

分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.

解:由于y 是x 的一次函数,于是,设y =kx +b

将x =130,y =70;x =150,y =50代入方程,有70130,

50150,

k b k b =+??

=+?

解得 k =-1,b =200.∴ y =-x +200. 设每天的利润为z (元),则

z =(-x +200)(x -120)=-x 2+320x -24000

=-(x -160)2+1600, ∴当x =160时,z 取最大值1600. 答:当售价为160元/件时,每天的利润最大,为1600元.

例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.

解法一:y =x 2

+bx +c =(x +2

b )224b

c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的

图像,也就是函数y =x 2的图像,所以,

图2.2-3 图2.2-4 图2.2-5

2

40,220,4b

b c ?--=????-+=?? 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.

说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.

这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题. 三、练习A 1.选择题:

(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x

(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )

(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题

(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .

(2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;

当m = 时,函数图象经过原点.

(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值

y = ;当x 时,y 随着x 的增大而减小.

3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象. (1)y =x 2-2x -3; (2)y =1+6 x -x 2.

2.2.2 二次函数的三种表示方式

一、复习引申:通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:

1.一般式:y =ax 2+bx +c (a ≠0);

2.顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ).

除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交点个数.

当抛物线y =ax 2+bx +c (a ≠0)与x 轴相交时,其函数值为零,于是有

ax 2+bx +c =0. ①

并且方程①的解就是抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y =ax 2+bx +c (a ≠0)

与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:

(1)当Δ>0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则Δ>0也成立.

(2)当Δ=0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点(抛物线的顶点);反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有一个交点,则Δ=0也成立.

(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.

于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以 x 1+x 2=b a

-

,x 1x 2=c

a ,

即 b a =-(x 1+x 2), c

a

=x 1x 2.

所以,y =ax 2+bx +c =a (2

b c x x a a

+

+) = a [x 2-(x 1+x 2)x +x 1x 2]

=a (x -x 1) (x -x 2).

由上面的推导过程可以得到下面结论: 若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1) (x -x 2) (a ≠0). 这样,也就得到了表示二次函数的第三种方法:

3.交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.

今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.

二、典型例题:

例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.

分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .

解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,

∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.

∴顶点坐标是(1,2).设该二次函数的解析式为)0(2)1(2

<+-=a x a y , ∵二次函数的图像经过点(3,-1), ∴2)13(12

+-=-a ,解得a =4

3

-. ∴二次函数的解析式为2)1(432+--

=x y ,即y=4

523432++-x x 说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问

题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.

例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.

分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.

解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0),

展开,得 y =ax 2+2ax -3a , 顶点的纵坐标为

22

12444a a

a a

--=-, 由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =1

2

±.

所以,二次函数的表达式为y =21322x x +-,或y =-213

22

x x -+.

分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐

标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1.

又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2. 于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),

∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-

12,或a =12

. 所以,所求的二次函数为y =-12(x +1)2+2,或y =1

2

(x +1)2-2.

说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,

要善于利用条件,选择恰当的方法来解决问题.

例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).

由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+??

-=??=++?

解得 a =-2,b =12,c =-8.

所以,所求的二次函数为y =-2x 2+12x -8.

通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?

三、练习A 1.选择题:

(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( ) (A )0个 (B )1个 (C )2个 (D )无法确定

(2)函数y =-1

2

(x +1)2+2的顶点坐标是 ( )

(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:

(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a (a ≠0) .

(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .

3.根据下列条件,求二次函数的解析式.

(1)图象经过点(1,-2),(0,-3),(-1,-6);

(2)当x =3时,函数有最小值5,且经过点(1,11);

(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).

2.2.3 二次函数的简单应用

一、函数图象的平移变换与对称变换

1.平移变换

问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位. 分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式. 解:二次函数y =2x 2-4x -3的解析式可变为 y =2(x -1)2-1,

其顶点坐标为(1,-1). (1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x -3)2-2.

(2)把函数y =2(x -1)2

-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x +1)2+2.

2.对称变换

问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的

特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称

变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题. 例2 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解

析式:

(1)直线x =-1; (2)直线y =1.

图2.2-7

学 海 无 涯

解:(1)如图2.2-7,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置,不改变其形状. 由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为A 1(-3,-1),所以,二次函数y =2x 2-4x +1的图象关于直线x =-1对称后所得到图象的函数解析式为y =2(x +3)2-1,即y =2x 2+12x +17.

(2)如图2.2-8,把二次函数y =2x 2-4x +1的图象关于直线y =-1作对称变换后,只改变图象的顶点位置和开口方向,不改

变其形状. 由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为B (1,3),且开口向下,所以,二次函数y =2x 2-4x +1的图象关于直线y =1对称后所得到图象的函数解析式为y =-2(x -1)2+3,即y =-2x 2+4x +1.

二、分段函数

一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数. 例3 在国内投递外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,依此类推,每封x g(0<x ≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象. 分析:由于当自变量x 在各个不同的范围内时,应付邮资的数量是不同的.所以,可以用分段函数给出其对应的函数解析式.在解题时,需要注意的是,当x 在各个小范围内(如20<x ≤40)变化时,它所对应的函数值(邮资)并不变化(都是160分). 解:设每封信的邮资为y (单位:分),则y 是x 的函数.这个函数的解析式为

80,

(0,20]

160(20,40]240,

940,80]320(60,80]400,

(80,100]

x x y x x x ∈??∈??

=∈??∈?∈??

由上述的函数解析式,可以得到其图象如图2.2-9所示.

三、配方法及其应用

1、同学们知道,在求二次函数)0(2

≠++=a c bx ax y 的图象的顶点坐标或求最大(小)值时需用到变形:

a b ac a b x a c bx ax y 44)2(222

-++=++=,这种变形的过程就叫配方。具体过程为c x a

b x a

c bx ax y ++=++=)(2

2

a b c a b x a b x a 4])2([222

-+++=

a

b a

c a b x a 44)2(2

2-++=

用配方来解决最大(小)值等问题的方法叫作配方法,这是高中数学最重要的方法之一,望同学们给予足够的重视,在上高中之

前务必先学会并掌握配方。

例1、将下列二次函数式配方:

(1)322

++=x x y

(2)1522

+-x x (3)1632-+-=x x y

(4)2

541x x y +-=

解:(1)2)1(2)12(2

2++=+++=x x x y

(2)817

)45(28251)162525(21)25(2222

--=-++-=+-

=x x x x x y (3)2)1(331)12(31)2(32

22+--=+-+--=---=x x x x x y

(4)5

1)52(5541)25454(51)54(522

2+-=-++

-=+-=x x x x x y 例2、求下列二次函数的最大(或最小)值: (1)x x y 322

+= (2)2

61x x y -+= (3)12212

++=

x x y

(4)44

12

-+-

=x x y

)

y (图2.2-9

解:(1)89

)43(289)16923(2)23(2222-+=-++=+=x x x x x y

∴当43-=x 时 y 取最小值89

-

(2)10)3(91)96(1)6(2

22+--=+++--=+--=x x x x x y

∴当x=3时,y 取最大值10 (3)1)2(21

21)44(211)4(21222-+=-+++=++=

x x x x x y ∴当x=-2时,y 取最小值-1 (4)3)2(4

1

41)44(414)4(41222---=-++--=---

=x x x x x y ∴当x=-2时,y 取最大值-3

思考:1、二次函数式的配方和分解因式的区别是什么?

2、你是否已概括出了配方的几个步骤?(注:最好不要用公式去套)

四、练习A 组

将下列二次函数配方

(1)x x y 32

-=

(2)1422

+-=x x y

(3)1622---=x x y

(4)13

2

312--=

x x y

(5))4(-=x x y

(6))4)(2(--=x x y

(7))1)(2(-+-=x x y

(8))5)(3(2

1

-+=

x x y

(9))1(2)1(2

-+-=x x y

(10)34)1(2

-++=x x y

(11)2

2

131x x y --=

(12)6.04.01.02

--=x x y

(13)x x y 5

6532-=

(14)322

4++=x x y

(15)1222

4--=x x y

2.3 方程与不等式

2.3.1 二元二次方程组解法

一、概念:方程 22

260x xy y x y +++++=

是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2

x ,2xy ,2

y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项.

我们看下面的两个方程组:

224310,

210;x y x y x y ?-++-=?

--=? 2222

20,

560.

x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次

方程组成的,像这样的方程组叫做二元二次方程组.

下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 二、典型例题:

例1 解方程组

22440,

220.

x y x y ?+-=?--=?

分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题.

解:由②,得

x =2y +2, ③

把③代入①,整理,得 8y 2+8y =0,

即 y (y +1)=0.

解得 y 1=0,y 2=-1.

把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0.

所以原方程组的解是 112,

0x y =??

=?,

220,

1.

x y =??

=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解.

例2 解方程组 7,

12.x y xy +=??

=?

解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 2

7120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,

3x y =??

=?,

223,

4.

x y =??

=?

解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y .

这个方程组的,x y 是一元二次方程 2

7120z z --= 的两个根,解这个方程,得 3z =,或4z =.

所以原方程组的解是 114,3;x y =??=? 22

3,

4.x y =??=?

三、练习A

1.下列各组中的值是不是方程组2213,

5x y x y ?+=?+=?

的解? ( )

(1)2,3;x y =??=? (2)3,2;x y =??=? (3)1,4;x y =??=? (4)2,3;x y =-??=-?

2.解下列方程组:

(1) 22

5,625;y x x y =+??+=?

(2)3,10;x y xy +=??=-?

①②

图2.3-1

史上最全的初高中数学知识点衔接归纳

初高中数学教材衔接的必要性与措施 近几年,随着我国教育体制改革步代加大,素质教育理念不断深入人心,课改新教材在我省大多数中小学已经实施。黄石市初中是率先使用课改新教材的县市之一,经过两届学生实验,结果表明:使用课改新教材的学生学习的自主性,思维的广阔性,师生的互动性明显增强,但思维的严谨性,推理的逻辑性显得有些不足。加上我市高中教材未与课改新教材接轨,教学内容上有明显“脱节”。学生从初中进入高中出现明显“不适应”现象。因此解决初高中数学教材衔接问题势在必行。 一、初高中数学知识“脱节”点 1. 绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用 2.立方和与差的公式初中已删去不讲,而高中的运算还在用。 3.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 4.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 5.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 6.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。 7.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。 8.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。 9.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。 10. 圆中四点共圆的性质和判定初中没有学习,高中则在使用。 另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。 二、“脱节”知识点掌握情况调查 高一新生入学不久,在已进行“乘法公式”与“因式分解”讲授后,我们对学生初高中“脱节”知识点作了全面调查,统计情况如下:

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版 一、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实数集合: . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作 .

2、如果集合 ,但存在元素 ,且 ,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有 个子集, 个真子集. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作: . 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作: . 3、全集、补集? §1.2.1、函数的概念

1、设A、B是非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有惟一确定的数 和它对应,那么就称 为集合A到集合B的一个函数,记作: . 2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设 那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设

高中数学知识点题库 125数列

1.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的() A、必要不充分条件 B、充分不必要条件 C、充要条件 D、既不充分也不必要条件 答案:B 解析:由a n+1>|a n|(n=1,2,)知{a n}所有项均为正项, 且a1<a2<…<a n<a n+1, 即{a n}为递增数列 反之,{a n}为递增数列, 不一定有a n+1>|a n|(n=1,2,), 如-2,-1,0,1,2 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。2.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A、-165 B、-33 C、-30 D、-21 答案:C 解析:a4=a2+a2=-12, ∴a8=a4+a4=-24, ∴a10=a8+a2=-30 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。3.若数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,则下列数列中,能取遍数列{a n}前8项值的数列是() A、{a2k+1} B、{a3k+1} C、{a4k+1} D、{a6k+1} 答案:B 解析:由已知得数列以8为周期, 当k分别取1,2,3,4,5,6,7,8时, a3k+1分别与数列中的第4项,第7项,第2项,第5项,第8项,第3项,第6项,第1项相等, 故{a3k+1}能取遍前8项 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。4.对于数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列”.如数列2,1,3,7,5的“凸值数列”为2,2,3,7,7.由此定义可知,“凸值数列”为1,3,3,9,9的所有数列{a n}个数为() A、3 B、9 C、12 D、27 答案:D 解析:数列{a n}(n∈N+,a n∈N+),若b k为a1,a2,a3…a k中的最大值,则称数列{b n}为数列{a n}的“凸值数列” 数列{a n}的,“凸值数列”为1,3,3,9,9 ∴知数列{a n}中的a3和a5分别可取的值为1,2,3;1,2,3,4,5,6,7,8,9, 根据乘法原理得知满足条件的个数为:27 题干评注:数列 问题评注:按一定次序排列的一列数称为数列。数列中的每一个数都叫做这个数列的项。5.在数列a1,a2,…,a n…的每相邻两项中插入3个数,使它们与原数构成一个新数列,

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

初高中数学衔接研究报告

初高中数学衔接研究报告

————————————————————————————————作者: ————————————————————————————————日期: ?

初高中数学衔接教学的实验与研究研究报告 平舆县第一高级中学“初高中数学衔接教学的实验与研究”课题组 执笔人:韩雨濛 摘要: 国家教委在八十年代对初中数学教学要求和内容的调整,较大地降低了有关知识的要求,造成了初、高中数学教学的较为严重的脱节。从高一数学老师的现状看:各校大部分是教学不足5年的青年教师,有学历,有热情,但对高一数学教材不熟悉,对初中数学教材知之更少,他们急需要有一个学习、了解初高中数学数学教材的衔接与初高中教学的差异,以便于更好的组织教学,使学生更快适应高中、 一、问题的提出 1.学生升入高中学习之后,无论选择理科或者文科的学习,数学课程都是必须继续学习的课程之一。初高中数学教学内容上有很强的延续性,初中数学是高中数学学习的基础,高中数学是建立在初中数学基础上的延续与发展,在教学内容上、思想方法上,均密切相关。因此,从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中刚开始阶段强化初高中衔接点的教学,为学生进一步深造打下基础,是高中数学教学必须研究的重要课题。 2.初高中数学教学衔接研究,主要从初高中数学教学内容、基本的数学思想方法、新课程标准对数学教学的要求,试图找出初高中数学教学衔接的相关关

键点,从而为高中数学教学提出有用的建议,让高一学生尽快适应高中数学,从而进行有效的学习。 3.近年来初高中数学教学衔接作为“初高中教学衔接”这一宏观课题,在很多地方被人们提及,一些教育科研部门也作过尝试,试图寻找其间的规律与共性,但大多是从教学内容上进行简单地分类研究,也没有作为专项课题进行研究。因为这一课题将直接影响学生高中数学学习的效果,因此有进行全面研究的重要价值。 二、选题目的与意义 1.找出初高中数学教学衔接的相关关键点,从而为高中数学教学提出有用的建议,为学生适应高中数学学习进行有效地定位。 2.从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中初期阶段强化初高中衔接点的教学,为学生进一步深造打下基础。 3.为学生有效适应高中阶段的数学学习打好基础,提高教师对新课程理念以及学科课程目标的全面、深刻地理解; 三、课题研究目标 1、通过研究,促使教师从研究的视角来审视初高中数学衔接问题,在课堂教学中更多地关注学生的这一学习主体。反思自身的教学思想和教学行为。寻找初高中数学教材的知识衔接,结合旧知识,寻找新知识的结合点和突破点,充分发挥数学本身所具有的激发、推动学生学习的动力。

高中数学知识点题库 058直线与平面所成的角

1.如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B =60°,∠A O B=90°,且 O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小. 答案:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0). ∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3). 设异面直线所成的角为α,则cos α= A O B A A O B A 1111 ?=71 .故异面直线A 1B 与A O 1所成的角的大小 为arccos 71 . 解析:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分 利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算. 题干评注:直线与平面所成的角 问题评注:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。 2.如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小. 答案:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(- 23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23 a ,0, 0),AB =(0,a , 0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ. ∵1AC =(-23 a ,2a ,2a),AM =(0,2a ,2a), ∴1AC ·AM =0+42a +2a 2 =492 a . 而|1AC |=2 2 22443a a a ++=3a ,

最全高中数学知识点总结(最全集)

最全高中数学知识点总结(最全集) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高中数学知识点题库 096通项

1.数列1,3,7,15,…的通项公式a n等于 答案:2n-1 解析:a2-a1=21,a3-a2=22,a4-a3=23,…依次类推可得a n-a n-1=2n-1 ∴a2-a1+a3-a2+a4-a3…+a n-a n-1=a n-a1=21+22+23+…+2n-1=2n-2 ∴a n-a1=2n-2,a n=2n-1 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 2.已知数列前4项为4,6,8,10,则其一个通项公式为 答案:a n=2(n+1) 解析:该数列的前4项分别可写成:2×(1+1),2×(2+1),2×(3+1),2×(4+1), 所以数列的通项公式为a n=2(n+1) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 3.已知两个等差数列a n:5,8,11,…;b n:3,7,11,…,各100 项,则由他们共同项所构成的数列的通项公式为 答案:12k-1(k=1,2…25) 解析:设共同项构成的数列为C n,依题意可知a n=2+3n b m =-1+4m m=1,2,..75 a n= b m=2+3n=-1+4m ∴4m=3(n+1) ∵(3,4)=1,∴3|m ∴m=3k (k=1,2, (25) 4m=4?3k=3(n+1) ∴n=4k-1 (k=1,2, (25) C n=2+3?(4k-1)=12k-1 (k=1,2, (25) 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 4.已知{a n}是首项为19,公差为-4的等差数列,S n为{a n}的前n项和. (Ⅰ)求通项a n及S n; (Ⅱ)设{b n-a n}是首项为1,公比为2的等比数列,求数列{b n}的通项公式及其前n项和T n.答案:(Ⅰ)-2n2+21n(Ⅱ)-2n2+21n+2n-1 解析:(Ⅰ)先根据等差数列的通项公式和求和公式求得a n和S n. (Ⅱ)根据等比数列的通项公式求得{b n-a n}的通项公式,根据(1)中的a n求得b n,可知数列{b n}是由等差数列和等比数列构成,进而根据等差数列和等比数列的求和公式求得T n. 题干评注:通项 问题评注:如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式 5.已知等差数列{a n}的通项为a n=90-2n,则这个数列共有正数项() A、44项 B、45项 C、90项 D、无穷多项 答案:A 解析:由题意知等差数列{a n}的通项为a n=90-2n大于零,可以得到数列的正项个数,

2019初高中数学衔接知识点及习题

数学 亲爱的2019届平冈学子: ?恭喜你进入平冈中学!你们是高中生了,做好了充分的准备吗?其实学好高中数学并不难,你只要有坚韧不拔的毅力,认真做题,善于总结归纳,持之以恒,相信你一定能成功。 从2016年开始,广东省高考数学试题使用全国I卷,纵观今年高考数学试题,我们发现它最大的特点就是区分度特别大,选拔性很明显,难度相比以前广东自主命题难度大大提升。打铁还需自身硬,因此,让自己变强大才是硬道理。假期发给你们的这本小册子,是为了使你们在初高中数学学习上形成较好的连续性,能有效地克服知识和方法上的跳跃,利于激发你们学习数学的兴趣。你们一定要利用好暑假,做好充分的准备工作。 这里给大家几个学数学的建议: 1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。记录本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 3、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 4、经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 5、阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 6、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 7、学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 8、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 9、无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 初高中数学衔接呼应版块 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容, 6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。 7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。 8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。 9.角度问题,三角函数问题。在初中只涉及360°范围内的角,而高中是任意角。三角函数在初中也只是锐角三角函数,高中是任意角三角函数,定义的范围大大不同。同时,度量角也引进了弧度制这个新的度量办法。 10.高中阶段特别注重数学思维,数学思想方法的培养。 另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

初中数学与高中数学衔接紧密的知识点归纳

初中数学与高中数学衔接紧密的知识点 1 绝对值: ⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a a a a a a >??==??-?-<<;||(0)x a a x a >>?<-或x a > 2 乘法公式: ⑴平方差公式:22()()a b a b a b -=+- ⑵立方差公式:3322()()a b a b a ab b -=-++ ⑶立方和公式:3322()()a b a b a ab b +=+-+ ⑷完全平方公式:222()2a b a ab b ±=±+, 2222()222a b c a b c ab ac bc ++=+++++ ⑸完全立方公式:33223() 33a b a a b ab b ±=±+± 3 分解因式: ⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。 ⑵方法:①提公因式法,②运用公式法,③分组分解法,④十字相乘法。 4 一元一次方程: ⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 ⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a =; ②当0a =,0b ≠时,方程无解 ③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。 5 二元一次方程组: (1)两个二元一次方程组成的方程组叫做二元一次方程组。 (2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 (3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 (4)解二元一次方程组的方法:①代入消元法,②加减消元法。

高中数学知识点大全

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

初高中数学衔接知识点总结

初高中数学衔接知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初高中数学衔接读本 数学是一门重要的课程,其地位不容置疑,同学们在初中已经学过很多数学知识,这是远远不够的,而且现有初高中数学知识存在以下“脱节”: 1.立方和与差的公式初中已删去不讲,而高中的运算还在用。 2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。 3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。 4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。 5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

目录 1.1 数与式的运算 1.1.1绝对值 1.1.2 乘法公式 1.1.3二次根式 1.1.4分式 1.2 分解因式 2.1 一元二次方程 2.1.1根的判别式 2.1.2 根与系数的关系(韦达定理) 2.2 二次函数 2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表示方式 2.2.3 二次函数的简单应用 2.3 方程与不等式 2.3.1 一元二次不等式解法

高中数学知识归纳典型试题

数学必修4知识归纳 一、任意角(逆时针旋转→正角,顺时针旋转→负角) 1、与α终边相同的角的集合:{|2,}k k Z ββαπ=+∈ 2、弧度制 (1) α= l r ,l =r α? (2)180 =o π rad 1=o ()180 π rad 1rad =180()π o 57.3≈o (3)扇形面积S =211 22 lr r α= 二、任意角的三角函数 1、定义 2、三角函数的值在各象限的符号 三、同角三角函数的基本关系式: 1、2 2sin cos 1αα+=; sin tan cos α αα = ; tan cot 1αα?= 2、特殊角的三角函数值: 四、诱导公式(口诀:纵变横不变,符号看象限) 五、三角恒等变换 思想方法:①切化弦、平方降幂的思想; ②化为同角、同名的思想; ③拆角的思想:如()()β αβαααβ=+-=--,2()()ααβαβ=++-等 1、两角和与差的正弦、余弦、正切公式及倍角、降幂公式: ()sin sin cos cos sin αβαβαβ±=±αβ =??? →令sin 22sin cos ααα= ()cos cos cos sin sin αβαβαβ±=m αβ =??? →令22cos 2cos sin ααα=- 2cos 22cos 1αα=- ?降幂公式:21+cos2cos 2 αα= , 2cos 212sin αα=- 21cos2sin 2 α α-= ()tan tan tan 1tan tan αβαβαβ±±= m αβ =???→令22tan tan 21tan ααα =-  2、辅助角公式(合一思想):关键是“提斜边” sin cos )a x b x x ?+=+ (? 是斜边) 3、正余弦“三兄妹”: sin cos x x +、sin cos x x -、sin cos x x —— 知一求二 内在联系:2 (sin cos )12sin cos 1sin 2x x x x x ±=±=± 六、三角函数的图象与性质 正弦函数、余弦函数、正切函数的图象与性质的比较(见书) 1、会用“五点法”画出函数 sin()y A x B ω?=++的图象:步骤:设X x ω?=+,令X =30, ,, ,22 2 π π ππ→求相应的x 值及对应的y 值→描点作图 试一试:请用“五点法”画出函数2sin(2) y x π =-在一个周期内闭区间的图象 列表:

初高中数学知识衔接资料全

1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零 的绝对值仍是零.即,0,||0,0,,0.a a a a a a >?? ==??--x 解法一:由01=-x ,得1=x ; ①若1--x ,即41>-x ,得3--x , 即5>x 又1≥x ∴ 5>x 综上所述,原不等式的解为3-x 。 解法二:如图,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|; 所以4|1|>-x 的几何意义即为 |PA |>4. 可知点P 在点C (坐标为-3)的左侧、或点P 在点D (坐标5)的右侧. ∴ 3-x 。 2、解不等式:3|2|<+x 3、│a -2│+│b -3│+│c -4│=0,则a+2b+3c 的值为多少 4. 已知│x+y+3│=0, 求│x+y │的值。 1 A -3 C x P |x -1| D

高中数学知识点总结大全

高中数学知识点总结 1. 首先对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 要注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 请问你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30 555 5015392522 ∈--

若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) 如:,求f x e x f x x +=+1(). 令,则t x t = +≥10 ∴x t =-2 1 ∴f t e t t ()=+--2 1 21 ()∴f x e x x x ()=+-≥-2 1 210

初高中数学衔接知识点

初高中数学到底“衔接”什么?新生需掌握的八个知识点 很多新高一的同学,暑假里都忙着“衔接”,步入高中,无论是学习方法还是知识难度都有了很大的改变,大家都想趁着暑假来全方位提升自己,让这一级台阶迈得更稳。但是到底该衔接些什么内容,才可以达到事半功倍,直击问题的核心呢?为新高一的学生们答疑解惑,如何做好初高中衔接教育。 初高中数学到底“衔接”什么? 衔接≠上新课、竞赛培训、巩固复习课每年的暑假,都有不少新高一的学生去参加初高中衔接的课程,二八学习法温馨提醒:做好衔接方面的工作是必要的,但是不要盲目参加,要分清楚到底是不是衔接,衔接的是哪些知识。 初高中衔接教材:不是要急于学习高一的新课本,而是将一些初中应该提高与拓展的部分进行巩固。目前初高中数学衔接教学存在的三个误区: 误区之一:衔接课程讲授大量的高一新知识,衔接课变成了新课。 误区之二:衔接课程讲授大量的初中竞赛内容,衔接课变成了竞赛培训课。 误区之三:衔接课程仅仅是巩固初中知识,衔接课变成了复习课。 数学语言更抽象了思维方法更理性了王老师提醒,高中数学和初中有很大不同: 一是数学语言在抽象程度上突变:历来学生都反映,集合、映射等概念难以理解,离生活很远,似乎很“玄”。 二是思维方法向理性层次跃迁:数学语言的抽象化对思维能力提出了更高的要求。 三是知识内容的整体数量剧增,加之时间紧、难度大,这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。 王老师建议同学们做好课后的复习工作,理解新旧知识的内在联系,学会对知识结构进行梳理. 二八学习法初高中衔接教材系列的三大优势: 1.针对性强:内容衔接,复习已学过的内容,预习新学期学习的内容,温故知新。 2.新颖性强:通过《二八学习法讲义》掌握高效学习方法,并通过二八学习法视频加深对二八学习法的理解,并将掌握的方法运用于学习之中。资料部分,内容新颖,知(知识)、能(能力)、思(思考方法)并重,讲、练、评一体化。 3.实用性强:二八学习法讲义+视频讲解+资料(读和练)三维一体,相得益彰,高效学习,效率惊人! 初中名师家教、高中名师家教、初高中衔接教材 产品类别内容(二八学习法讲义+DVD光盘+资料) 秋季开学新初一版语、数、英三科 秋季开学新初二版语、数、英三科 秋季开学新初三版语、数、英、理四科 秋季开学新高一版语、数、英、理、化五科 秋季开学新高二版语、数、英、理、化五科 秋季开学新高三版语、数、英、理、化五科 二八学习法,是指引学习方向的学习方略,方向正确,事半功倍,相信二八学习法会给你的学习带来神奇的效果! 二八学习法五大系列产品是:名师家教、同步导学、复习指南、模法解题、试题分析 足不出户尽享名师家教 单科提分20-30分

高中数学知识点总结与题库

第六章 数列 二、重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321Λ 2.?? ?≥-==-2 1 1 1 n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 212 n n n a n

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ),110(9 7-?),110(972-)110(973-,,Λ)110(97 -n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 )1(1n n n a -++= 点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。 题型二 应用?? ?≥-==-) 2() 1(1 1 n S S n S a n n n 求数列通项 例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式. ⑴23-=n n S 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 132-?=n 又11=a 不适合上式,故???≥?==-) 2(3 2)1(11n n a n n 三、利用递推关系求数列的通项 【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141 ,2 1211 -+ == +n a a a n n 解析:⑴因为141 21-+=+n a a n n ,所以 )1 21 121(2114121+--=-=-+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111 ()257 a a -=-

高中数学知识点总结精华版

高中数学必修+选修知识点归纳 新课标人教A版

一、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无 序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子 集,21n -个真子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A Y . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完 全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… (2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方 程是))((000x x x f y y -'=-. 2、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ;

相关文档
相关文档 最新文档