文档库 最新最全的文档下载
当前位置:文档库 › 几种常用的异常数据挖掘方法

几种常用的异常数据挖掘方法

几种常用的异常数据挖掘方法
几种常用的异常数据挖掘方法

第24卷第4期2010年7月甘肃联合大学学报(自然科学版)

Journal of G ansu Lianhe University (Natural Sciences )Vol.24No.4

J ul.2010

收稿日期:2010205211.

作者简介:王晓燕(19802),女,江苏泗洪人,宿迁市广播电视大学讲师,硕士,主要从事数据库研究.

文章编号:16722691X (2010)0420068204

几种常用的异常数据挖掘方法

王晓燕

(江苏省宿迁广播电视大学,江苏宿迁223800)

摘 要:主要讨论了常用的异常数据挖掘方法,简要地介绍了异常数据挖掘的定义、功能、方法等,详细的介绍了使用统计、距离、偏离技术、密度和高维持数据进行异常数据挖掘的方法并分析了其各自的特点.关键词:异常数据挖掘;异常点数据;方法中图分类号:TP311.13 文献标识码:A

 引言

在数据挖掘的过程中,数据库中可能包含一些数据对象,它们与数据的一般行为或模型不一致,这些数据对象被称为异常点,对异常点的查找过程称为异常数据挖掘,它是数据挖掘技术中的一种.异常数据挖掘又称孤立点分析、异常检测、例外挖掘、小事件检测、挖掘极小类、偏差检测等.孤立点可能是“脏数据”,也可能是与实际对应的有意义的事件.从知识发现的角度看,在某些应用里,那些很少发生的事件往往比经常发生的事件更有趣、也更有研究价值,例外的检测能为我们提供比较重要的信息,使我们发现一些真实而又出乎预料的知识.因此,异常数据的检测和分析是一项重要且有意义的研究工作[1,2].

 异常数据挖掘的简介

异常数据挖掘有着广泛的应用,如欺诈检测,用异常点检测来探测不寻常的信用卡使用或者电信服务;预测市场动向;在市场分析中分析客户的极低或极高消费异常行为;或者在医疗分析中发现对多种治疗方式的不寻常的反应等等.通过对这些数据进行研究,发现不正常的行为和模式,有着非常重要的意义.

对异常点数据的挖掘可以描述如下:给定一个n 个数据点或对象的集合,以及预期的异常点的数目k ,目标是:发现与剩余的数据相比是显著相异的、异常的或者不一致的头k 个对象.异常点数据挖掘的任务可以分成两个子问题:

(1)给出已知数据集的异常点数据的定义;

(2)使用有效的方法挖掘异常点数据.对数

据模式的不同定义,以及数据集的构成不同,会导致不同类型的异常点数据挖掘,实际应用中根据具体情况选择异常数据的挖掘方法.

 常用的异常数据挖掘方法及其特点

 基于统计的方法

利用统计学方法处理异常数据挖掘的问题已经有很长的历史了,并有一套完整的理论和方法.统计学的方法对给定的数据集合假设了一个分布或者概率模型(例如正态分布),然后根据模型采用不一致性检验来确定异常点数据.不一致性检验要求事先知道数据集模型参数(如正态分布),分布参数(如均值、标准差等)和预期的异常点数目.

“不一致性检验是如何进行的?”一个统计学的不一致性检验检查两个假设:一个工作假设(working hypot hesis )即零假设以及一个替代假设(alternative hypot hesis )即对立假设.工作假设是描述总体性质的一种想法,它认为数据由同一分布模型即H :O i ∈F ,i =1,2,…n;不一致性检验验证O i 与分布F 的数据相比是否显著地大(或者小).如果没有统计上的显著证据支持拒绝这个假设,它就被保留.根据可用的关于数据的知识,不同的统计量被提出来用作不一致性检验.假设某个统计量T 被选择用于不一致性检验,对象O i 的该统计量的值为V i ,则构建分布T ,估算显著性概率S P (V i )=Prob (T >V i ).如果某个S P (V i )足够的小,那么检验结果不是统计显著的,则O i 是不一致的,拒绝工作假设,反之,不能拒绝假设.

对立假设是描述总体性质的另外一种想法,认为数据O i来自另一个分布模型G.对立假设在决定检验能力(即当O i真的是异常点时工作假设被拒绝的概率)上是非常重要的,它决定了检验的准确性等.

目前利用统计学研究异常点数据有了一些新的方法,如通过分析统计数据的散度情况,即数据变异指标,来对数据的总体特征有更进一步的了解,对数据的分布情况有所了解,进而通过数据变异指标来发现数据中的异常点数据.常用的数据变异指标有极差、四分位数间距、均差、标准差、变异系数等等,变异指标的值大表示变异大、散布广;值小表示离差小,较密集.

“用统计学的方法检测异常点数据的有效性如何呢?”一个主要的缺点是绝大多数检验是针对单个属性的,而许多数据挖掘问题要求在多维空间中发现异常点数据.而且,统计学方法要求关于数据集合参数的知识,例如数据分布.但是在许多情况下,数据分布可能是未知的.当没有特定的分布检验时,统计学方法不能确保所有的异常点数据被发现,或者观察到的分布不能恰当地被任何标准的分布来模拟.

 基于距离的方法

为了解决统计学带来的一些限制,引入了基于距离的异常点检测的概念.

“什么是基于距离的异常点检测?”如果数据集合S中独享至少有p部分与对象o的距离大于d,则对象o是一个带参数的p和d的基于距离的(DB)的异常点,即DB(p,d)[3].换句话说,不依赖于统计检验,我们可以将基于距离的异常点看作是那些没有“足够多”邻居的对象,这里的对象是基于距给定对象的距离来定义的.与基于统计的方法相比,基于距离的异常点检测拓广了多个标准分布的不一致性检验的思想.基于距离的异常点检测避免了过多的计算.

目前比较成熟的基于距离的异常数据挖掘的算法有:

基于索引的算法(Index-based):给定一个数据集合,基于索引的算法采用多维索引结构R -树,k-d树等,来查找每个对象在半径d范围内的邻居.假设M为异常点数据的d-领域内的最大对象数目.如果对象o的M+1个邻居被发现,则对象o就不是异常点.这个算法在最坏情况下的复杂度为O(k3n2),k为维数,n为数据集合中对象的数目.当k增加时,基于索引的算法具有良好的扩展性.

嵌套-循环算法(Nested-loop):嵌套-循环算法和基于索引的算法有相同的计算复杂度,但是它避免了索引结构的构建,试图最小化I/O 的次数.它把内存的缓冲空间分为两半,把数据集合分为若干个逻辑块.通过精心选择逻辑块装入每个缓冲区域的顺序,I/O效率能够改善.

基于单元的算法(cell-based):在该方法中,数据空间被划为边长等于d/(23k1/2)的单元.每个单元有两个层围绕着它.第一层的厚度是一个单元,而第二层的厚度是[23k1/2-1].该算法逐个单元地对异常点计数,而不是逐个对象地进行计数.对于一个给定的单元,它累计三个计数———单元中对象的数目(cell_count),单元和第一层中对象的数目(cell_+_1_cell_count),单元和两个层次中的对象的数目(cell_+ _2_cell_count).该算法将对数据集的每一个元素进行异常点数据的检测改为对每一个单元进行异常点数据的检测,它提高了算法的效率.它的算法复杂度是O(c k+n),这里的c是依赖于单元数目的常数,k是维数.它是这样进行异常检测的:若cell_+_1_cell_count>M,单元中的所有对象都不是异常;若cell_+_2_cell_count<=M,单元中的所有对象都是异常;否则,单元中的数据某一些可能是异常.为了检测这些异常点,需要逐个对象加入处理.

基于距离的异常数据挖掘方法要求用户设置参数p和d,而寻找这些参数的合适设置可能涉及多次试探和错误[4].

 基于偏差的方法

基于偏差的异常数据挖掘方法不采用统计检验或者基于距离的度量值来确定异常对象,它是模仿人类的思维方式,通过观察一个连续序列后,迅速地发现其中某些数据与其它数据明显的不同来确定异常点对象,即使不清楚数据的规则.基于偏差的异常点检测常用两种技术:序列异常技术和OL A P数据立方体技术.我们简单介绍序列异常的异常点检测技术.

序列异常技术模仿了人类从一系列推测类似的对象中识别异常对象的方式.它利用隐含的数据冗余.给定n个对象的集合S,它建立一个子集合的序列,{S1,S2,….,S m},这里2≤m≤n,由此,求出子集间的偏离程度,即“相异度”.该算法

96

第4期王晓燕:几种常用的异常数据挖掘方法

从集合中选择一个子集合的序列来分析.对于每个子集合,它确定其与序列中前一个子集合的相异度差异.光滑因子最大的子集就是异常数据集.这里对几个相关概念进行解释:

(1)异常集:它是偏离或异常点的集合,被定义为某类对象的最小子集,这些对象的去除会产生剩余集合的相异度的最大减少.

(2)相异度函数:已知一个数据集,如果两个对象相似,相异函数返回值较小,反之,相异函数返回值较大;一个数据子集的计算依赖于前个子集的计算.

(3)基数函数:数据集、数据子集中数据对象的个数.

(4)光滑因子:从原始数据集中去除子集,相异度减小的两度,光滑因子最大的子集就是异常点数据集.

基于偏差的异常数据挖掘方法的时间复杂度通常为O(n),n为对象个数.基于偏差的异常点检测方法计算性能优异,但由于事先并不知道数据的特性,对异常存在的假设太过理想化,因而相异函数的定义较为复杂,对现实复杂数据的效果不太理想[5].

 基于密度的方法

基于密度的异常数据挖掘是在基于密度的聚类算法基础之上提出来的.它采用局部异常因子来确定异常数据的存在与否.

它的主要思想是:计算出对象的局部异常因子,局部异常因子愈大,就认为它更可能异常;反之则可能性小.

下面介绍几个概念:

(1)对象p的k-距离(k-distance):对任意的自然数k,定义p的k-距离(k-distance(p)),为p和某个对象o之间的距离,这里的o满足:至少存在k个对象o′∈D\{p},使得d(p,o′)≤d(p,o),并且至多存在k-1个对象o′∈D\{p},使得d(p,o′)

(2)对象p的k-距离邻域(N k-distance):给定p的k-距离k-distance(p),p的k-距离邻域包含所有与p的距离不超过k-distance(p)的对象.

(3)对象p相对于对象o的可达距离:给定自然数k,对象p相对于对象o的可达距离为

r each-dist k(p,o)=max{k-dis tan c e(o),d(p,o)}.

(4)对象p的局部可达密度(Local Reachable Distance):对象p的局部可达密度为对象p与它的MinPt s-邻域的平均可达距离的倒数.

对象p的局部异常因子表示p的异常程度,局部异常因子愈大,就认为它更可能异常;反之则可能性小.簇内靠近核心点的对象的LOF接近于1,那么不应该被认为是局部异常.而处于簇的边缘或是簇的外面的对象的LOF相对较大[6].

 高维数据的方法

以上几种异常数据挖掘算法一般都是在低维数据上进行的,对于高维数据的效果并不是很好,基于这个原因,Aggarwal和Yu[10]提出一个高维数据异常检测的方法.它把高维数据集映射到低维子空间,根据子空间映射数据的稀疏程度来确定异常数据是否存在.

高维数据的异常点检测的主要思想是:首先它将数据空间的每一维分成φ个等深度区间.所谓等深度区间是指将数据映射到此一维空间上后,每一区间包含相等的f=1/φ的数据点.然后在数据集的k维子空间中的每一维上各取一个等深度区间,组成一个k维立方体,则立方体中的数据映射点数为一个随机数ξ.设n(D)为k维立方体D所包含点数,N为总的点数.定义稀疏系数s(D)如式(1)所示:

s(D)=

n(D)-N3f k

N3f k(1-f k)

.(1) s(D)为负数时,说明立方体D中数据点低于期望值,s(D)越小,说明该立方体中数据越稀疏.

数据空间的任一模式可以用m1m2…m i来表示.m i指此数据在第i维子空间映射区间,可以取值1到φ,或者3(3表示可以为任意映射值).异常检测问题可以转化成为寻找映射在k(k作为参数输入)维子空间上的异常模式以及符合这些异常模式的数据.

高维数据中寻找异常模式是非常困难的.一个简单办法是对所有数据维进行组合,来搜索可能异常模式,但是效率极其低下.

 结束语

异常数据挖掘是数据挖掘的重要组成部分,由于其广泛的应用于科学研究、金融欺诈分析、电信计费、医疗保险、网络安全等各个领域,这些年来,在国外,吸引了数据挖掘研究人员的注意.本文根据现有研究理论,着重介绍了使用统计、距

07 甘肃联合大学学报(自然科学版) 第24卷

离、偏离技术、密度和高维持数据进行异常数据挖掘的方法并分析了其各自的特点.参考文献:

[1]苗绘.信用卡欺诈及其防范[J ].金融教学与研究,

2005(4):31235.

[2]陈建.信用卡的反欺诈管理[J ].中国信用卡,2005

(8):20224.

[3]孔学峰.数据挖掘及其在信用卡风险控制中的应用

[J ].中国金融电脑,2003,(10):21222,33.

[4]黄守坤.异常数据挖掘及在经济欺诈发现中的应用

[J ].统计与决策,2003,(4):32233.

[5]吴峰,施鹏飞.概念聚类挖掘方法的客户交易行为分

析[J ].微型电脑应用,2000,16(5):26228.

[6]张红云,刘向东.数据挖掘中聚类算法比较研究[J ].

计算机应用与软件,2003,20(2):526,77.

Analysis of Several Commonly Used Methods on Outlier Data Mining

W A N G X i ao 2y an

(Suqian Radio &Television University ,Suqian 223800,China )

Abstract :This paper briefly introduces t he research of t he Commonly used met hods of outlier dat 2amining ,t he outlier data mining definition ,f unction ,measures and etc were int roduced.The met hods of using statistics ,distance ,deviation f rom t he technology ,density and high maintain t he data to make da 2ta mining were discussed ,t he characteristics of t hese met hods were analyzed.K ey w ords :o utlier data ;mining ;outlier data ;met hod

1

7第4期王晓燕:几种常用的异常数据挖掘方法

大数据挖掘常用方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。

(3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

数据挖掘的方法

数据挖掘的方法有哪些? 时间:2012-11-1111:24来源:百度空间作者:温馨小筑围观:1436次 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。 1、分类 分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 2、回归分析 回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 3、聚类 聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 4、关联规则 关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 5、特征 特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

《大数据时代下的数据挖掘》试题和答案与解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

大数据时代的数据挖掘

大数据时代的数据挖掘 大数据是2012的时髦词汇,正受到越来越多人的关注和谈论。大数据之所以受到人们的关注和谈论,是因为隐藏在大数据后面超千亿美元的市场机会。 大数据时代,数据挖掘是最关键的工作。以下内容供个人学习用,感兴趣的朋友可以看一下。 智库百科是这样描述数据挖掘的“数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 数据挖掘的定义 技术上的定义及含义 数据挖掘(Data Mining )就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。 与数据挖掘相近的同义词有数据融合、人工智能、商务智能、模式识别、机器学习、知识发现、数据分析和决策支持等。 ----何为知识从广义上理解,数据、信息也是知识的表现形式,但是人们更把概念、规则、模式、规律和约束等看作知识。人们把数据看作是形成知识的源泉,好像从矿石中采矿或淘金一样。原始数据可以是结构化的,如关系数据库中的数据;也可以是半结构化的,如文本、图形和图像数据;甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理,查询优化,决策支持和过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门交叉学科,它把人们对数据的应用从低层次的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、数理统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。 这里所说的知识发现,不是要求发现放之四海而皆准的真理,也不是要去发现崭新的自然科学定理和纯数学公式,更不是什么机器定理证明。实际上,所有发现的知识都是相对的,是有特定前提和约束条件,面向特定领域的,同时还要能够易于被用户理解。最好能用自然语言表达所发现的结果。n x _s u x i a n g n i n g

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.wendangku.net/doc/c76987161.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.wendangku.net/doc/c76987161.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.wendangku.net/doc/c76987161.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.wendangku.net/doc/c76987161.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.wendangku.net/doc/c76987161.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.wendangku.net/doc/c76987161.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘分类算法介绍

数据挖掘分类算法介绍 ----------------------------------------------------------------------------------------------------------------------------- 分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 决策树 例1 一个自行车厂商想要通过广告宣传来吸引顾客。他们从各地的超市获得超市会员的信息,计划将广告册和礼品投递给这些会员。 但是投递广告册是需要成本的,不可能投递给所有的超市会员。而这些会员中有的人会响应广告宣传,有的人就算得到广告册不会购买。 所以最好是将广告投递给那些对广告册感兴趣从而购买自行车的会员。分类模型的作用就是识别出什么样的会员可能购买自行车。 自行车厂商首先从所有会员中抽取了1000个会员,向这些会员投递广告册,然后记录这些收到广告册的会员是否购买了自行车。 数据如下:

在分类模型中,每个会员作为一个事例,居民的婚姻状况、性别、年龄等特征作为输入列,所需预测的分类是客户是否购买了自行车。 使用1000个会员事例训练模型后得到的决策树分类如下:

※图中矩形表示一个拆分节点,矩形中文字是拆分条件。 ※矩形颜色深浅代表此节点包含事例的数量,颜色越深包含的事例越多,如全部节点包含所有的1000个事例,颜色最深。经过第一次基于年龄的拆分后,年龄大于67岁的包含36个事例,年龄小于32岁的133个事例,年龄在39和67岁之间的602个事例,年龄32和39岁之间的229个事例。所以第一次拆分后,年龄在39和67岁的节点颜色最深,年龄大于67岁的节点颜色最浅。 ※节点中的条包含两种颜色,红色和蓝色,分别表示此节点中的事例购买和不购买自行车的比例。如节点“年龄>=67”节点中,包含36个事例,其中28个没有购买自行车,8个购买了自行车,所以蓝色的条比红色的要长。表示年龄大于67的会员有74.62%的概率不购买自行车,有23.01%的概率购买自行车。 在图中,可以找出几个有用的节点: 1. 年龄小于32岁,居住在太平洋地区的会员有7 2.75%的概率购买自行车; 2. 年龄在32和39岁之间的会员有68.42%的概率购买自行车; 3. 年龄在39和67岁之间,上班距离不大于10公里,只有1辆汽车的会员有66.08%的概率购买自行车;

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

大学数据挖掘期末考试题

:号学 题目-一 - -二 二 三四五六七八九十总成绩复核得分 阅卷教师 :名姓班 级 业专 院 学院学学科息信与学数 题试试考末期期学季春年学一320数据挖掘试卷 课程代码:C0204413课程:数据挖掘A卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。() 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。() 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。() 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似。() 5. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。() 6. 属性的性质不必与用来度量他的值的性质相同。() 7. 全链对噪声点和离群点很敏感。() 8. 对于非对称的属性,只有非零值才是重要的。() 9. K均值可以很好的处理不同密度的数据。() 10. 单链技术擅长处理椭圆形状的簇。() 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分 离?() A. 分类 B.聚类 C.关联分析 D.主成分分析 2. ()将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A. MIN(单链) B.MAX(全链) C.组平均 D.Ward方法 3. 数据挖掘的经典案例“啤酒与尿布试验”最 主要是应用了()数据挖掘方法。 A分类B预测C关联规则分析D聚类 4. 关于K均值和DBSCAN的比较,以下说法不正确的是() A. K均值丢弃被它识别为噪声的对象,而DBSCAN —般聚类所有对 象。 B. K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C. K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D. K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5. 下列关于 Ward 'Method说法错误的是:() A. 对噪声点和离群点敏感度比较小 B. 擅长处理球状的簇 C. 对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6. 下列关于层次聚类存在的问题说法正确的是:() A. 具有全局优化目标函数 B. Group Average擅长处理球状的簇 C. 可以处理不同大小簇的能力 D. Max对噪声点和离群点很敏感 7. 下列关于凝聚层次聚类的说法中,说法错误的事: () A. 一旦两个簇合并,该操作就不能撤销 B. 算法的终止条件是仅剩下一个簇 2 C. 空间复杂度为O m D. 具有全局优化目标函数 8规则{牛奶,尿布}T{啤酒}的支持度和置信度分别为:()

数据挖掘经典书籍

数据挖掘入门读物: 深入浅出数据分析这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。 数学之美这本书非常棒啦,入门读起来很不错! 数据分析: SciPy and NumPy 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。Python for Data Analysis 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!Bad Data Handbook 很好玩的书,作者的角度很不同。 数据挖掘适合入门的教程: 集体智慧编程学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。 Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了机器学习实战(豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一! Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有Python 代码跟着,辅助理解。 数据挖掘导论最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。Machine Learning for Hackers 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。 数据挖掘稍微专业些的: Introduction to Semi-Supervised Learning 半监督学习必读必看的书。 Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。 推荐系统实践这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。 Graphical Models, Exponential Families, and Variational Inference 这个是Jordan老爷子和他的得意门徒Martin J Wainwright 在Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。 Natural Language Processing with Python NLP 经典,其实主要是讲NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了NLP 的很多内容了啊! 数据挖掘机器学习教材: The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础(豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。 统计学习方法李航老师的扛鼎之作,强烈推荐。难易程度:难。 Machine Learning 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。 当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。目前Web 数据挖掘面临着一些问题,包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。在Web 技术高速发展的今天,

数据挖掘经典方法

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 1.分类 分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 分类的方法有:决策树、贝叶斯、人工神经网络。 1.1决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 1.2贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

相关文档