文档库 最新最全的文档下载
当前位置:文档库 › ccm dcm 并存设计变压器

ccm dcm 并存设计变压器

ccm dcm 并存设计变压器
ccm dcm 并存设计变压器

反激式开关电源变压器的设计(evdi版)

个人感觉反激是入门也是最难的,理解考个人琢磨。

在论坛上方法也学到了不少,加上看了其他的一些文章把自己的看法上传给大家,望大家指教。谢谢

Evdi 9.28 设计目标:Vin AC90-260 V o 15v Iomax 2A f 100k

运行方式:Iomax ccm 65%Iomax dcm

这里我们设计得是工作于CCM和DCM得电路,所以我们应该考虑两个点:

1负载最大时点Iomax

2 DCM与CCm的临界点,这时得Io=65%Iomax

1临界点

1.1计算匝比与最大占空比

这里有两种方法,其实实质都是一样只是在操作上有些不同,但都存在着一个共同点:主观性.

1.1.1从V or着手

这里要分两步:

(1)得出V or取值

首先需要了解一下反激的原理,简单点说反激就是buck-boost电路和变压器的和体。V or为反激电压,就是在Mosfet关断时,次级导通使初级感应得电压,这里是起到了承接两者的关系因此在设计时可以先考虑V or的取值。

对于buck-boost: Vdc*Ton=V or*Toff Q-1

对于变压器匝比V or*Np=V o*Ns Q-2

对于V or的取值,对此总结如下:

这里要从mosfet关断时所受的电压应力着手考虑。当mosfet关断时

存在V or+Vdcmax+Vspike+Vmargin=Vdss

选用Vdss=600vmosfet

Vdcmax=Vimax*1.4=365v

Vspike大约=95v

Vmargin取30-70v

得到V or为70-110v。其实我们这里选得值都时大约值,比如Vdss我们当然可以选择更大得耐压值,计算会导致V or变大,但是我们有个前提就是V or有一个限度这个限度是使Dmax不能大于50%。其实这里V or是个考虑综合因素取得一个较为主观得值。

(2)算出匝比和最大占空比

由Q-2式Np/Ns=V or/(V o+Vf)

当V or为70时:Np/Ns=4.3

当V or为110时:Np/Ns=6.8

这里我们取Np/Ns=5,因为V or取值一般小些比较好,所以V or=80v 由Q-1式当Vdc最小时,Ton肯定时最大,所以

Dmax*Vdcmin=V or*(1-Dmax)

这里Vdcmin我们取100

算得Dmax=0.44

1.1.2绕过V or,直接先假设Dmax

一般利用经验取Dmax 为小于0.5得值,这里我们取0.45。

由把Q-2带入Q -1削去V or :

而当Vdc 最小时,Ton 最大

Np/Ns=11.545

.0145.0*115100max 1max *)((min)=?+=?+D D Vf Vo Vdc 这里我们取整数5,由于Np/Ns 变化了,那么我们再吧Np/Ns 带入到Q -1

式求得Dmax =0.44。

1.2计算Lp 和Ls

由于是临界点负载电流

Io =65%*Iomax =0.65×2=1.3A

临界点满足DCM 特点:可以得到负载尖峰电流

Ispl =2Io/(1-Dmax)=4.64A

再有V o*(1-Dmax)/Ls=Ispl 可以得到

Ls =19.3uH

由Lp/Ls=(Np/Ns)(Np/Ns)得到

Lp =0.48mH

2峰值点

由于峰值点工作于CCM 状态,Io =2A 但是Io 中的交流分量没有变化,增加的0.7A 是直流分量。

假设直流分量为?Io 则:

?Io ×(1-Dmax )=0.7得:

?Io =1.25A

此时得Ispf =?Io +Ispl =1.25+4.64=5.89A

原边Ippf =Ispf/(Np/Ns)=5.89/5=1.178

3 Np 与Ns 的值

由以上所求的的Lp ,Ls ,Ippf ,Ispf 我们可以进行一下计算:

Ac

Bm Ippf Lp Np *=计算出Np 公式其实很简单我来给大家推倒一下:

由在Dmax 时初级最大电流Ippf 对应的是初级最大磁感应强度Bm ,那么NpBmAc

就是磁通∮变化量,那么磁通变化量又等于U 乘以时间变化量Dmax

那么UDmaxT/Lp=Ippf,

这样就可以得到上式。

而Np =5Ns 可以得到Ns 值。对于变压器其他参数的选取如有效值气息等的这里就不介绍了能力有限。呵呵

4小结

其他参数的计算书上也有现成的公式去套用,最后提醒下大家,尽信书不如无书。本人不是什么高手,高手一般都是不露面的,我只是想把自己刚学的东西系统的串一下也希望对大家有些帮助。好多问题还要靠自己去理解,在这里特别感谢电源网的各位网友的热心解答。

对于最大咱空比我说下自己的理解:一般计算占空比只是计算它的最大占空比,也就是所谓的电源工作最坏的情况下,其他情况的变化就可以依靠反馈控制调节占空比来满足了。一般反激占空比最好不要超过0.5,一方面由于最大占空比加大导致正边感应电压V or加大,而V or加大又有两方面的缺点1:导致mosfet管应力加大2:导致匝比N加大使得变压器的漏感Lk加大。二方面由于占空比超过0.5有可能使系统不稳定,需要加上一个slope compension。就是在3842从4脚引一个电阻到3脚或2脚。

对于CCM与DCM,论坛上已经分析的非常清晰了,优缺点很明显,个人建议,负载大时要用CCM否则DCM会使Ippf非常高导致的损耗也很高,气息也不好掌握。一般CCM 效率时高于DCM的

变压器保护毕业设计论文

摘要 变压器作为联系不同电压等级网络的设备,是电力系统中非常重要的元件。变压器的安全运行关系到整个电力系统供电的可靠性。随着变压器电压等级和容量的提高,变压器本身也越来越贵重。因此变压器保护显得尤为重要,如何能够快速准确的切除变压器故障,使损失降低到最小,同时又要保证有足够的可靠性,就成了变压器保护的主要问题。 本文就此问题对当前变压器出现的各种故障及相应的保护原理进行了简要分析,并在此基础上对变压器保护装置进行了简单设计。该设计的硬件部分以ATmega16为系统的核心,通过对温度、电压及电流进行数据采集并送入信号处理电路,从而准确地得到控制系统可以识别的数字信号。 该设计的软件部分介绍了三种A VR单片机的应用软件,并对系统的主要流程作出了说明,讲述了单片机如何对处理得到的数字信号进行监视、判断处理,及时对各种保护装置发出声光报警或跳闸信号,进而更好地提高变压器运行的安全性和可靠性,确实做好变压器保护工作。 关键字:变压器保护微机保护单片机差动保护

Applications of Single chip in Transformer Protection Abstract As the equipment contacts various voltage grade networks, the transformer is one of the important elements in the electrical power system. The transformer running whether in security has relation to the reliability of whole electrical power system. With transformer voltage grade and capacity increase year after year, the transformer more and more expensive. Thus transformer protects bulk more important. In order to reduce the losses to the minimum and ensure there is sufficient reliability, how to clear the transformer faults quickly and accurately becomes the main problem of transformer protection. On this issue, the paper gives a brief analysis to the faults of transformer and the corresponding protection principle. And on the basis of this, carry out a simple design of transformer protective device. The design of hardware takes ATmega16 as the core, collecting the temperature, voltage and current and sending to signal processing circuit to obtain the digital signal that control system can identify accurately. The design of software introduces three kinds of application software and shows the main flow chart of the system, explains how the SCM to monitor and judge the digital signals had handled, send sound and light alarm or tripping signal to the protective device promptly, which serves to improve the operation of the transformer safely and reliability better, really do a good job on transformer protection. Keywords:transformer protection microcomputer-based protection SCM differential protection

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

低压电器课设三相异步电动机自耦变压器减压启动能耗制动设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:低压电器课程设计 设计题目:三相异步电动机自耦变压器减 压启动能耗制动控制的设计院系:电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.01.11-2016.01.15 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

*注:此任务书由课程设计指导教师填写

三相异步电动机自耦变压器减压启动能耗制动设计 摘要: 三相异步电动机在启动时常采用降压启动方式,在制动时经常采用能耗制动,本设计就三相异步电动机自耦变压器减压启动能耗制动进行设计,并通过模拟实验校核控制线路的正确性。 关键词:三相异步电动机,降压启动,能耗制动,电气控制线路图1.任务分析 根据具有自耦变压器减压启动和能耗制动功能的三相异步电动机的工作过程,采用电器工作流程图法,设计三相异步电动机自耦变压器减压启动能耗制动电器控制线路,要求主电路有短路保护和热保护。电器的线圈额定电压均为交流380V。 电器工作流程图法的设计步骤为: 1.绘制电器工作流程图: 电器工作流程图的绘制是按照电器工作次序从左到右进行的。首先在左侧列出控制中需要的全部电器,如按钮、接触器、继电器等,每个电器占一行。然后按照电器工作的时间顺序从左到右依次画出各电器的状态框,每个电器的状态框与左侧相同电器画在同一行上,并且框内写入相应电器的文字符号。 2.写线圈电器的导通逻辑表达式: 导通逻辑表达式是由电器工作流程图得到的公式,是从电器工作流程图过渡到控制电路图的桥梁。导通逻辑表达式的一般形式为: 导通条件起动条件释放条件 ? 将每个电器的实际起动条件和释放条件代入导通逻辑表达式的一般形式,就得到该电器的基本逻辑表达式。 3.绘制电器控制线路图: 绘制电器控制线路图,即是将逻辑表达式等号左边的一个文字符号画成线圈,右边的一行文字符号画成按要求连接的触点。 设计完后还需进行简化,使连线和触点数尽量少。 4.通过模拟实验校核电器控制线路的正确性: 设计内容中应包括详细的设计过程、文字说明和总结。 2.三相异步电动机自耦变压器减压启动

电力变压器保护毕业设计

毕业设计 设计题目电力变压器保护设计系(部)电力工程系 学科专业供用电技术 班级 姓名 学号 指导教师 二〇一六年四月二十三日

工程学院毕业设计任务书

工程学院毕业设计成绩表

摘要 电力变压器是电力系统中不可缺少的重要设备,他的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。 本文是笔者在阅读了大量专业资料、咨询了很多的专家和老师的前提下,按照指导老师所给的原始资料,通过系统的原理分析、精确的整定计算。做出的一套电力变压器保护方案。 关键词电力系统故障,变压器,继电保护,整定计算

ABSTRACT The transformer is the essential equipment in the electrical power system.Its breakdown might bring the serious influence to the power supply reliability and the system safely operation.At the same time the large capacity power transformer is the extremely precious equipment.Therefore.We must install the reliable relay protection installment according to the transformer capacity rankand the important degree. The article is about the relay protection of the transformer.I had consulted many experts and teachers before I finished the article.At the same time the massive specialized materials was consulted by me. It is not diffcult to understand the logical organiztion of the article for readers.And the article will bring the usful help to the comrades who is working as a electrical engineer. Keywords Power System Fault Condition, Power Transformer, Relay

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V。A以下的变压器.最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成.这类变压器在生活中的应用非常广泛. 1。1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成.其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等. 1、1、2主要类型

按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示.原绕组匝数为,副绕组匝数为。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压,产生电流,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势。

某电力变压器继电保护设计说明书

1 引言 电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。继电保护是对电力系统中发生的故障或异常情况进行检测,从而发出报警信号,或直接将故障部分隔离、切除的一种重要措施。应根据审定的电力系统设计原则或审定的系统接线及要求进行电网继电保护和安全自动装置设计。 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电流整定计算是重点。通过分析,找到符合电网要求的继电保护方案。 电力系统和继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。

2 继电保护的相关知识 2.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 2.2 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 2.3 继电保护基本原理 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护。 2.4 对继电保护装置的要求 继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。 (1)选择性 选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。 (2)速动性 速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。(3)灵敏性 灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

浅谈电力变压器继电保护设计 妥志鹏 杜航

浅谈电力变压器继电保护设计妥志鹏杜航 发表时间:2017-07-17T11:41:26.390Z 来源:《电力设备》2017年第8期作者:妥志鹏杜航 [导读] 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。 (国网青海省电力公司检修公司青海省西宁市 810000) 摘要:电力变压器是主要的电力设施之一,现代电力输送,均需要通过电力变压器对电压进行处理后才能进行使用,但受各种未知因素的影响,电力变压器的故障时有发生,降低了电力输送的效率,影响了电力资源的正常使用。继电保护作为变压器的有效保护措施,是提高变压器安全稳定使用的关键所在,优化继电保护的设计,对于提高电力变压器的稳定运行,有着不可替代的重要作用。 关键词:电力变压器;继电保护;设计; 1电力变压器继电保护的工作原理 电力变压器继电保护系统主要是根据电力系统所出现的电力数值的变化情况以实现电力变压器继电系统的自我调节功能。电力变压器继电系统存在的目的是,无论电力变压器继电系统中的电力变压器继电保护系统的工作状态如何,或是处于什么样的情形都要保证整个系统的安全。按照电力变压器继电系统是否处于正常运行的状态,其继电保护的基本原理并不相同。为了确认电力变压器继电系统处于什么样的运行状态,则需要对电力变压器继电系统的运行状态进行测量并进行分析。 2电力变压器继电保护的基本构成 经过长时间的发展与演变,如今电力变压器继电保护系统已逐步发展到了微机型的继电保护系统的状态,该类型的电力变压器继电保护系统主要由3部分组成。①电力系统信号采集部分。其主要功能是收集并整理电力系统内部的电力数值的情况,然后将其收集整理的数据通过有效的传递方式提交给电力系统继电保护部分。②电力系统的信号处理部分。其能够对电力系统信号采集整理的信号进行处理,并以有效的方式对相关问题进行分类与处理。③信号输出部分。该部分是十分重要的一环节,信号输出部分可以有效地将输出信号的指令精准无误地发送给电力系统,从而保障调节工作的顺利进行。 3.电力变压器继电保护系统常见故障类型 3.1电力变压器继电保护系统中电压互感器的二次回路故障 系统的电压互感器部分属于继电保护系统的核心组成部分,是电力变压器继电保护系统的心脏部分,其主要功能是将电力系统中过高的电压排除。在通常情况下,电压互感器在承受相对数值较大的电阻负载的同时,其承受的二次电压数值与其所承受的一次电压数值还以正比的关系存在。因此,在这样的情况下,一旦发生电阻数值减小等相关现象,那么极容易造成电压互感器出现短路现象。在开口三角电压数值不稳定的情况下,通常就会引起以上原因造成的故障与问题。因为在电压互感器内部的铁芯中极易发生由于电压的升高所造成的线性不稳限次,所以在处理这类力变压器继电保护系统故障的时候,应当格外注意电压互感器的短路以及回路等问题。 3.2电力变压器继电保护系统电流互感器的故障 因为电力变压器继电保护系统内的电流互感器是根据电磁感应的相关原理制作设计的,因此,将原有的较大数值电流转换成为较小的数值电流是设计电流互感器的主要功能,也是电流互感器存在的价值。基于以上原因很容易知道,一旦电流互感器内部的绝缘部分发生破裂或类似现象,则极容易引起电流的窜出等系列问题,则给电力系统的安全、稳定、正常运行造成了严重的阻碍,严重时还可能引发安全事故。 3.3计算机型电力变压器继电保护装置的故障 在现代信息技术迅速发展、计算机技术迅速提升的时代背景下,计算机型电力变压器继电保护装置已经逐渐开始运用于继电保护工作。然而,在实际操作、运用的过程中,如果发生了输入功率不足的现象,则极易引起计算机系统控制所输出的电压数值减少等现象,该问题会对电力系统电力数值的正常运行带来十分不利的影响。 4.电力变压器继电保护设计优化方法 4.1差动保护设计 将变压器两侧的电流互感器二次侧按正常时的“环流接线”是变压器差动保护动作电流设计的原则。如果变压器处于正常运行的状态,那么差动继电器中的电流为其两侧电流互感器CT的二次电流之差,其数值趋于0。如果差动继电器不发生任何动作,那么其保护也不会有任何作为。也就是说,如果在电流互感器二次回路端线,并且变压器处于最大负荷的状态下,差动保护是不会产生任何动作的。随着计算机芯片性能的提升,对位于变压器1套保护装置中所具有的主保护以及各侧全部后备保护的两套主变压器微机型保护装置进行了全力开发,其成果已经被广泛应用于实际工程中。所以,在330kV及以上高压侧电压的变压器可以采用安装双重差动保护的方法对电力变压器引出线、套管及其内部短路故障进行反应,从而实现有效反应电力变压器绕组及其引出线的多相短路及绕组匝间短路的纵联差动保护,同时也可以将电流速断保护作为主保护,另外也能达到将瞬时动作于断开各侧断路器的目的。 4.2瓦斯保护设计 除了瓦斯保护可以动作,像差动保护以及其他有关保护设计通常是都不能进行动作的。瓦斯保护主要是依靠气体继电器来实现动作的,其位于变压器油箱和油枕之间的连接导油管中。瓦斯保护主要有两种:①首先轻瓦斯保护动作于信号,然后依照气体的属性,包括:颜色、可燃性、数量以及化学成分来判断保护的理由以及电力变压器继电保护装置故障的性质。根据此有关工作人员则可以及时察觉故障的发生并有针对性地对故障进行相关处理。②首先重瓦斯保护动作于断路器跳闸,然后通过监视确定气体发生的速度,并对气体的不同特征以及相关成分进行剖析,从而根据有关分析间接地推测、判断造成故障发生的原因、故障出现的部位和以及故障的严重程度。 4.3过电流保护设计 ①低压变压器过电流保护设计。三相式三卷变压器通常用于变压器低压侧,而在压侧短路时高、中压侧的阻抗保护通常无法发挥作用,起不到保护功能,因此难以达成作为相邻元件所具有的后备保护需求。在这种情况下可以在低压侧安置复合电压闭锁过流保护,并同时在其高、中压侧都设计并安装复合电压闭锁过流保护以及零序方向过电流保护或间隙保护等。②高压变压器的保护设计。在电力变压器高压侧的过电流保护对低压侧母线规定有灵敏系数的时候,可以在电力变压器低压侧断路器和电力变压器高压侧短路器上设计安装有关的过电流保护装置。如果电力变压器低压侧母差保护发生校验停运现象,或者是因为故障出现拒动问题以及开关与TA间出现不正常现象的时

如何分析简易电路图

如何分析电路图 电路图有两种,一种是模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种则是数字电子电路。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能图叫做逻辑电路图,简称逻辑图。 要分析电路图,还得从认识元器件开始。熟悉有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法 电阻器与电位器 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。 在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、( g )、( h )所示符号来表示。 几种特殊电阻器的符号: 第 1 种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用NTC来表示;有的是正温度系数的,用PTC来表示。它的符号见图( i ),用θ或t° 来表示温度。它的文字符号是“ RT ”。 第 2 种是光敏电阻器符号,见图 1 ( j ),有两个斜向的箭头表示光线。它的文字符号是“ RL ”。

第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1 ( k ),用字符 U 表示电压。它的文字符号是“ RV ”。这三种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。 第 4 种特殊电阻器符号是表示新近出现的保险电阻,它兼有电阻器和熔丝的作用。当温度超过500℃ 时,电阻层迅速剥落熔断,把电路切断,能起到保护电路的作用。它的电阻值很小,目前在彩电中用得很多。它的图形符号见图 1 ( 1 ),文字符号是“ R F ”。 电容器的符号 详见图 2 所示,其中( a )表示容量固定的电容器,( b )表示有极性电容器,例如各种电解电容器,( c )表示容量可调的可变电容器。( d )表示微调电容器,( e )表示一个双连可变电容器。电容器的文字符号是 C 。 电感器与变压器的符号 电感线圈在电路图中的图形符号见图 3 。其中( a )是电感线圈的一般符号,( b )是带磁芯或铁芯的线圈,( c )是铁芯有间隙的线圈,( d )是带可调磁芯的可调电感,( e )是有多个抽头的电感线圈。电感线圈的文字符号是“ L ”。 变压器的图形符号见图 4 。其中( a )是空芯变压器,( b )是滋芯或铁芯变压器,( c )是绕组间有屏蔽层的铁芯变压器,( d )是次级有中心抽头的变压器,( e )是耦合可变的变压器,( f )是自耦变压器,( g )是带可调磁芯的变压器,( h )中的小圆点是变压器极性的标记。

电力变压器继电保护设计

电力变压器继电保护设 计 标准化管理部编码-[99968T-6889628-J68568-1689N]

课程设计报告书 题目:电力变压器继电保护设计 院(系)电气工程学院_______ 专业电气工程及其自动化____ 学生姓名冉金周__________ 学生学号 指导教师张祥军蔡琴______ 课程名称电力系统继电保护课程设计 课程学分 2____________ 起始日期

课程设计任务书 一、目的任务 电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术

资料的能力。本次课程设计主要以中型企业变电所主变压器为对象,主要完成继电保护概述、主变压器继电保护方案确定、短路电流计算、继电保护装置整定计算、各种继电器选择、绘图等设计和计算任务。为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。 二、设计内容 1、主要内容 (1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。 (2)继电保护概述,主变压器继电保护方案确定。 (3)各继电保护原理图设计,短路电流计算。 (4)继电保护装置整定计算。 (5)各种继电器选择。 (6)撰写设计报告,绘图等。

2、原始数据 某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、 强迫风冷、分级绝缘,其参数如下:S N =;电压为110±4×2.5%/ ±2×2.5%/11 kV;接线为Y N /y/d 11 (Y /y/Δ-12-11);短路电压U HM (%) =,U HL (%)=17,U ML (%)=6。两台变压器同时运行,110kV侧的中性点只有一台 接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。 3、设计任务 结合系统主接线图,要考虑两条长的110kV高压线路既可以并联运行也可以单独运行。针对某一主变压器的继电保护进行设计,即变压器主保护按一台变压器单独运行为保护的计算方式。变压器的后备保护(定时限过电流电流)作为线路的远后备保护。 图1 主接线图 注: 学号尾号为1、2、3的同学,用图中S kmax =1010MVA,S kmin =510 MVA进行计 算; 学号尾号为4、5、6的同学,用图中S kmax =1100MVA,S kmin =520 MVA进行计 算; 学号尾号为7、8、9、0的同学,用图中S kmax =1110MVA,S kmin =550 MVA进行 计算。 三、时间、地点安排

电力变压器设计分析

所需输入数据 一般数据 1.制造商 2.变压器类型(例如:移动式、变电站用、整流器用等)3.数据来源:测试数据或规格参数 3.a.频率 4.自耦变压器:是或不是 5.空载损耗 6.负载损耗kW值以及在标准接线端和中间抽头处的基准温度7.阻抗在额定功率MV A基本接点和抽头位置处的阻抗8.铁芯与线圈总重量 9.额定容量每个绕组的MV A值 10.冷却方式 11.针对每一种额定容量及冷却方式,给出: a)顶层变压器油的温升 b)各绕组引起的温升 c)绕组的平均温升 12.绕组数目以及在铁芯上的位置 13.每个绕组的BIL(绝缘基本冲击耐压水平) 14.每个绕组的额定电压 15.每个绕组的连接形式:星型或三角型 16.每个绕组单相的电阻 17.每个绕组并联的电路数 18.有无低温冷却方式:有或没有 如果有:用在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数 接线位置数 连接方式 19.有无“无负载”抽头:有或没有 如果有:在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数

所需输入数据(续) 铁芯数据 20.截面积:毛截面与净截面 21.铁芯:a) 共有多少条 b) 每条的宽度 c) 每条的叠数 d) 芯体的周长或直径 22.通量密度 23.窗口尺寸:高度及宽度 23.a.窗口中心线的位置 24.接缝方式:全斜角接缝或半斜角接缝 25.材料:钢材等级及钢片厚度 25.a.在基准通量密度下的瓦/公斤数: 空隙数据 26.间隙:铁芯与绕组导线之间的空隙 27.间隙:绕组与绕组之间(绕组的导线与导线之间)的空隙28.间隙:相与相之间(导线与导线之间)的空隙 29.每个绕组的留空系数[1] 30.每个绕组的填充和抽头空间[2](沿高度的方向) 31.每个绕组的边缘距离 a)导线至线圈边缘 b)导线至铁芯箍圈 31a.每个绕组的高度: 径向: 轴向: 32.每个绕组的线槽: 径向:数量及尺寸[3] 轴向:数量及尺寸[4]

相关文档
相关文档 最新文档