文档库 最新最全的文档下载
当前位置:文档库 › TOPSwitch电源

TOPSwitch电源

TOPSwitch电源
TOPSwitch电源

TOPSwitch电源技术是近年来迅速发展的一种开关电源技术,因其在体积、效率和可靠性等方面的优势,目前在通信、计算机和家用电器等众多领域中得到了非常广泛的应用。但由于前几代TOPSwitch遍存在输出功率受限的不足之处,使其在要求有较大输出功率的电源应用中受到很大的限制。针对这种情况, Power Integrations公司推出了TOPSwitch 的第四代单芯片高压IC系列: TOPSwitch-GX系列。

TOPSwitch-GX单芯片高压IC 系列将高压功率MOSFET、PWM控制、故障保护和其他控制电路等高性价比地集成在单片CMOS芯片上。其内建特性包括用于在启动时消除过冲和降低元件应力的软启动、减小EMI 的频率抖动、欠压保护和过压保护、可编程限流等优异特性。

与TOPSwitch-GX系列其它产品一样,因为其采用了单芯片控制的设计理念,而且TOP250y只有很少的三四个外围元器件,这就使得相同设计的电源尺寸更小、待机效率更高、系统成本更低,并保持了用途广泛和设计简单的特色,使电源设计能为290W以下的应用创造出高性价比的方案。

本文具体分析了TOP250y开关电源的工作原理,并详细介绍了TOP250y型芯片在大功率开关电源应用中关键电路参数的设计方法,并给出了设计实例。该实例中电源最大输出功率达到了288 W,对单芯片TOPSwitch在大功率开关电源领域内的应用研究具有指导意义。

TOP250Y开关电源的基本原理

TOP250y型芯片有六个管脚:D、S、C、F、X、L,简单的TO220-7C 封装外形简图如图1所示。

图1 TOP250y封装外形图

图1各管脚功能如下:

漏极管脚(D):高压功率MOSFET漏极输出。控制管脚(C):用于调节占空比的误差放大器与电流输入脚。

源极管脚(S):将其连接至输出MOSFET源极时可得到高压功率回馈。

电压检测管脚(L):具有欠压保护、过压保护、减少Dmax的线性前馈及远程开关等功能。外部限流管脚(X):用于外部电流限制值设置的输入脚。

频率管脚(F):用于选择开关频率的输入脚。由TOP250y构成288W(24V/12A)大功率高效开关电源的电路如图2所示。

图2 由TOP250y构成的开关电源电路

其交流输入电压范围是交流176~264V ,满载时电源效率可达86%。交流电压UI 依次经过电磁干扰(EMI) 滤波器(C1,L1)、输入整流滤波器(V1,C2) 获得直流高压。直流高压经过R1 后接N1 的L端,为TOP250y提供电压前馈信号,实现过压保护、欠压保护以及使电源随输入电压改变Dmax功能。这里将N1的X 脚接地,使TOP250y 工作在最大占空比,因此,即使在宽范围输入时,电源也能达到最大连续输出功率PoM=290W。将N1的F脚接地,使TOP250y工作在较高的132kHz频率上,采用这种设计方法允许高频变压器选用尺寸较小的磁芯,并防止出现磁饱和现象。

次级电压经过V5,C8~C11,L2和C12整流滤波后,获得+ 24V/12A的稳压输出。C8~C11滤除纹波电压,L2和C12则用来消除开关噪声。该电源采用一个简单的串联稳压管方式的光耦反馈电路。E1为4N25型线性光耦合器。V7和V8分别采用1N963 和1N962 型稳压管。其稳压原理如下:当由于某种原因致使输出电压Uo↑,所产生的误差电压使E1中LED的IF↑,光耦接收管的IE↑,使得N1 控制端电流Ic↑,而占空比D ↓,导致Uo↓,从而实现了稳压目的。反之, Uo↓→I F↓→I E↓→Ic↓→D↑→Uo↑,同样起到稳压作用。

当开关电源空载时,TOP250y能采用跳过周期的方式极大地降低最大输出占空比,使得Dmax6和C14为次级提供软启动,C14为软启动电容,能消除刚接通电源时产生的电压过冲现象,使反馈绕组提供给N1的C脚电压先于输出电压,这样就保证了即使在低输入电压和满载情况下,也能使输出电压在启动时正常调整。电阻R5和电容C13构成控制环路补偿电路。

反馈绕组电压经过V4和C5整流滤波后,产生12 V的反馈电压,经过E1 给TOP250y 的

控制端提供偏压。C4 是旁路电容,它还与R3 和C3 构成控制环路的补偿电路。

齐纳箝位管V2、超快速二极管V3、电阻R2和电容C6组成尖峰吸收电路。用于吸收在TOP250y关断时由高频变压器漏感产生的尖峰电压,对TOP250y中MOSFET管的漏极起到保护作用。

由于V2上并联R2和C6,在正常工作时,R2几乎承担了所有的泄放能量,而在启动或超载的情况下,V2又限制了尖峰电压不超过N1中MOSFET管的安全电压(700V)。

关键电路设计与实例

举例电路参数:交流UI=176~264V, f=132kHz, D=0.5, Uo=24V, Io=12A,Po=288W,纹波≤1%。

输入滤波电容的设计

考虑市电掉一个脉冲的时间是10 ms ,取电源输出的保持时间td=10ms ,电容C2 上的直流电压从250V(176V×1.414)下降到220 V后,输出才开始下降。故

取标准值C2 =470μF

变压器磁芯的选择

实际功率容量乘积计算:

PQ3535的功率容量乘积为1.72 ,为0.66的3倍,如果按50%的余量计算,在132kHz 开关频率工作时,PQ3535的输出功率可达375W ,因此设计值为288W是充分留有余量的。

变压器的各电参数设计

a.计算初级绕组的电感量

b.计算变压器初级绕组匝数

取初级匝数约为36 匝。

c. 计算变压器次级绕组匝数

取次级匝数约为5 匝,并在绕制工艺上采用铜箔绕制,这样既满足了大电流输出,又解决了趋肤效应问题。

d. 计算变压器初级绕组上的最大峰值电流

TOP250Y的标称电流为6A,所以设计是完全合理的。

e. 计算变压器磁芯的气隙长度

取Lg=3px,在加工工艺上采用磨制气隙工艺,以保证加工的可靠性和可行性。

功率二极管的设计

UDR≥(5~6)Uo,在120~144V之间取值。

本例中V4 实际选用超快速二极管MUR3020(15A/200V),完全符合设计要求。

输出滤波电容的设计

输出滤波电容等效ESR 可用下列经验公式计算设计

依据上述计算参数及耐压要求,查手册实际选用四只35V/1000μF电容并联,其等效ESR 约为0.017Ω,满足设计要求。

尖峰吸收电路和环路控制频率补偿电路的设计

尖峰吸收电路和环路控制频率补偿电路的设计也可由相应公式得到,但由于电路元器件参数差别和加工工艺的影响,上述两种电路参数的设计还需要大量实验数据验证,因此仅给出本电源设计的参数,这里就不再赘述了。

试验结果

通过用LeCroy公司生产的电源专用示波器测试,得到本电源设计的主要试验结果如下:

Po = 290.402W;空载功耗≤1.48W;线性调整率≤±0.97%;负载调整率≤±1.74%;纹波≤0.95%;效率≥86.1%。

结语

根据上述理论,成功设计了一种新一代TOPSwitch控制的大功率开关电源。不仅证明了设计方法的正确,而且整个电路设计简洁,电源可靠性也得到很大提高。随着对TOPSwitch 的进一步研究,由新一代TOPSwitch控制的大功率开关电源必将得到更加广泛的应用

分布式电源发展展望

何季民 (华北电力设计院,北京100011) 摘要分析了分布式电源的概念、渊源与兴起,介绍了分布式电源发展的现状、影响和研究开发动向。 关键词分布式;电源;展望 1引言 在新世纪之初展望电力电源新技术,一个引人注目的动向是分布式电源的兴起。分布式电源的发展及 与IT技术的结合,将对传统的电力系统形成巨大的影响,带来电力系统的概念革新,引起电力技术的显著进步,形成新型的专项技术和经济市场。 近几年来,世界能源、电力界都在热谈分布式电源,但是尚没有统一的名称和定义。 目前的文献的各种理解表明:分布式电源还是一个正在迅速发展的概念,还不可能给出一个准确完整 的定义。为行文和阅读设立一个前提,本文就此提出一个简明的理解:所谓分布式电源,既指传统的分散独立小型电源,更指未来采用分布式技术联网上网的一“群”或成组的小型分散电源。 分布式电源(Distributed Generation),在中文文献中也有人称为分散式电源,只是翻译习惯不同, 概念和内涵相差不多。本文在综述日本部分中采用了“分散型电源”。 2分布式电源兴起的技术背景 分布式电源的兴起,是地球环境可持续发展政策与技术进步的产物。当分散独立的小电源效率较低不 宜大量应用时,当它无须联网与大电网无关时,当它数量很少被浩大的公共电网忽视不计时,根本没有分布式电源这个名词。只是当新型高效绿色的小型独立电源为可持续发展政策所重视并日益发展壮大时,分布式电源技术及其名词才应运而生。分布式电源的“分布”两字,既是相对于集中的大机组大电网而言,也是相对过去到不相联的小电源而言。 虽然分布式电源概念几乎包括了过去所有的小型分散电源,但是目前主要指用新技术武装起来的新兴绿色环保电源。主要有: ①自然能源,如水电、风电、太阳能发电等,常称为可再生能源; ②化石燃料发电,内燃发电机组、燃气轮机发电机组、燃料电池等; ③废弃物发电,如垃圾发电等,常称为环保再生型能源, ④贮能电源,抽水蓄能发电、蓄电池组等。据预测,分布式电源将成为21世纪的新能源新技术,尤如计算机世界的PC机,具有不可估量的发展前途。 从20世纪末起,分布式电源在工业发达国家里热起,有三方面的原因: ①各种小型分散型绿色环保电源迅速发展,所占比重越来越重,对电力系统的潜在影响越来越大,迫使世界重视自己; ②大电网的发展受到环保和需求的限制,为分布式电源的发展提供了机遇;各种分布式电源多属清洁

基于TL431的线性精密稳压电源的设计方案

基于TL431的线性精密稳压电源的设计方案 1.引言TL431 是一个有良好热稳定性能的三端可调精密电压基准集成芯片,具有体积小、价格低廉、性能优良等特点:它的输出电压用两个电阻就可以任意地设置到从参考电压( 2.5V)到36V 范围内的任何值,典型动态阻抗仅为0.2Ω,电压参考误差为±0.4%,负载电流能力从1.0mA 到 100mA,温度漂移低,输出噪声电压低等。基于以上特点,不仅可以用于恒流源电路、电压比较器电路、电压监视器电路、过压保护电路等电路中、还广泛应用于线性稳压电源、开关稳压电源等直流稳压电源电路中,本文对TL431 在线性稳压电源中的并联和串联型两种电源进行了详细的介绍。2.TL431 的内部结构和功能2.1 TL431 的符号该器件的符号如图1,三个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF),参考电压为2.5V. 2.2 TL431 的内部电路图由内部电路图图2 可以看出,它由多极放大电路、偏置电路、补偿和保护电路组成,其中晶体管V1 构成输入极,V3、V4、V5 构成稳压基准,V7 和V8 组成的镜像恒流源与V6、V9 构成差分放大器作中间级,V10、V11 形成复合管,构成输出,其它一些电阻、电容、二级管分别起偏置、补偿和保护作用,在原理上它是一个单端输入、单端输出直流放大器。然而其等效功能示意图如图3 所示,由一个2.5V 的精密基准电压源、一个 电压比较器和一输出开关管等组成,参考端的输出电压与精密基准电压源Vref 相比较,当参考端电压超过2.5V 时,TL431 立即导通。因为R 端控制电压误差为±1%,所以参考端能精确地控制TL431 的导通与截止。 3.并联稳压电路设计3.1 基本并联稳压电路原理TL431 内部含有一个2.5V 的基准电压,所以当在Vref 端引入输出反馈时,器件可以通过从阴极到阳极很宽

几种典型的分布式电源

几种典型的分布式电源 风力发电 众所周知,风能属于环境友好型资源,它清洁环保,而且可以再生,由于全球风能的储藏量非常大且可利用量也较其他可再生资源多,因此在能源储量日益匮乏的今天,风能作为环保的可再生能源,它的开发方法和利用效率问题不断得到各国的重视和研究。所谓风力发电,就是利用先进的技术手段将风能转化成电能,具体说来,首先由风车接受风的能量,由它带动发电机转动发电,最后,将产生的电能再通过电子控制器进行处理,最后并入电网。 风力发电是分布式发电中最为成熟和常见的发电形式,据GWEC(Global Wind Energy Council,全球风能理事会)的数据统计,仅2011年全球新增的风电装机容量就达到了41GW,累计风电装机容量达到238GW,年增长率达到21%,这一数字意味着风电开发在全球范围内已经走上了正式轨道,也意味着世界各国均已认可和接受风电带给电力领域的积极意义。 风力发电机按结构的不同可以分为同步发电机与异步发电机两种类型,它们各有利弊。对于同步发电机,并网电路能够解耦发电侧和电网侧的有功功率和无功功率,因此同步发电机的并网电路能够提供无功补偿,使得其并网节点的低电压穿越能力较高,而且同步发电机的并网电路能够分离电网侧和发电侧,因此该电路可以隔离故障。但是同步发电机也存在缺陷,首先,它的体积较大,结构复杂,安装和维护成本高,另外,它的输出功率受风速的影响很大,容易使电网受到波动;异步发电机的优势在于结构简单,安装维护较为便捷,但是低电压穿越能力相对较差,在发电过程中会产生大量谐波,对电能质量造成影响。目前风力发电主要应用的虽然是异步发电机,但是随着电力部门对装机容量的不断提高和对电能质量要求的日益严格,相信在不久的将来会被具有全功率变流能力的同步发电机所替代。 同其他可再生能源一样,风力发电也具有资源丰富、节能环保、安装运行灵活等优点,但一些缺点也不容忽视,主要有受环境风速影响较大而导致的不稳定性、不可控性等缺点。 (1) 不稳定性:风机功率受风速大小的影响,由于风速时刻在变,导致风机功率难以预测,因此风力发电具有较大的不稳定性。

精密净化交流稳压电源说明书

精密净化交流稳压电源说明书 一.技术指标 效率≥93% 负载功率因素0.8 附加波形失真≤8% 负载效应±1.5% 响应时间0.15S 输入电压单相175~260V 三相310~450V 输出电压单相220V/三相380V±1% 尖端抑制3μS尖峰脉冲输入衰减量32dB 输出相电压保护值245±5V 工作方式长期连续 工作环境温度:0℃~40℃湿度:〈80% (40℃时) 抗电强度1500V/1min 绝缘电阻≥2M 海拔高度≤2000m 净化交流稳压电源除具有以上特点外还具有以下特点: 1.高精确过压、欠压保护 2.集成电路性能可靠 3.多功能缺相保护 4.防雷装置(如装备) 5.市电稳压可手动切换(如装备) 大型医疗设备专用型净化交流稳压电源可根据设备要求装备所有可用功能。

注意: ●“KV A”为额定功率“KW”为有效功率,例如额定功率为1KV A稳压电源,有效功率为0.8KW左右。 ●如果您对所适用产品上标志(识)有不理解请来电询问阳环公司工程师,以 避免因使用不当给您造成损失。 ●因接错连线或使用不当造成的损失不在保修范围内。 二、安装 1、开启包装箱后请先检查外壳、电压表(电流表)、开关、指示灯、数字显示屏(如装备)连线端子(如装备)等有无损坏,无损坏才能使用。 2、按照选用的稳压电源功率配合合适的软导线作为连接导线,并按稳压电源后面的标识连接。 3、某些功率小的机型已装备了从稳压电源到电源的连线,但您仍需要提供由负载到本机的连接线。 4、必须连接好保护地线,地线的颜色为黄绿相间,其允许通过的电流为额定电流的2倍;测试接地电阻为5Ω以下。 5.在开机调试前请确定所负载功率必须低于稳压电源功率(KV A×80%)并应该留有20%的余量,以免因电压低造成稳压电源损坏或报警。 6.开机后稳压电源电压表指示在220V(输出电压),此时可接通所负载的设备电源,开始工作,如出现电压抖动或报警时,请不要接通所负载的设备电源。 注意: ●铜导线截面积每平方毫米允许通过的电流不大于5安培。 ●接线要接牢压紧,以防松动打火或因接触电阻太大发热而造成接点氧化,造 成稳压电源报警或工作不正常。 ●地线和零线不得反接或接在一起,否则,有可能造成机身带点或不能工作。 ●相线和零线不得接反,三相产品接反会造成严重短路而损害产品。 ●外壳有挤压变形情况,请立即与销售商联系更换。 ●包装箱或包装塑料袋不能给小于12周岁的儿童玩耍。

双侧电源电力系统的方向电流保护的建模与仿真

辽宁工程技术大学 电力系统继电保护综合训练一 设计题目方向性电流保护的建模与仿真 指导教师刘健辰 院(系、部)电气与控制工程学院 专业班级电网13—1班 学号1305080116 姓名苏小平 日期2017/01/05

智能电网系综合训练标准评分模板

电力系统继电保护析综合训练一 任务书 本次综合训练目的在于通过对双侧电源电力系统的方向电流保护的建模与仿真,巩固和运用所学到的方向电流保护理论知识,掌握Matlab 仿真软件的使用方法,培养学生分析问题和解决问题的能力。 双侧电源电力系统结构图如下: 系统基本参数如下,线路长度和短路点位置见后面的班级数据表。 电源:o 11510kV M E =∠ ,o 1050kV N E =∠ ,o ,,0.22673.13s M s N Z Z ==∠Ω 线路:LGJ-240/40型架空线,单位正序阻抗o 10.45173.13/km z =∠Ω。 设计要求: 利用Matlab/Simulink 建立仿真模型,完成仿真计算,分析仿真结果。 设计说明书内容: 1、 任务书 2、 电网相间短路的方向电流保护原理 3、 利用Matlab/Simulink 建立仿真模型 4、 设置故障,完成仿真计算 5、 分析仿真结果 6、 重新设置两侧电源参数,分析对方向电流保护的影响

说明:1)1~7组每组3人;第8组4人。 2)将自己姓名填入表中

目录 一、综合训练目的 (1) 二、电网相间短路的方向电流保护原理 (1) 三、中性点不接地系统故障特征 (1) 四、仿真 (1) (1)、仿真模型 (2) (2)、设置故障、观察故障特征 (2) 五、结果分析 (3) 六、重新设置两侧电源参数,分析对方向电流保护的影响 (3) 参考文献 (4)

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

高精度全自动交流稳压器

宽压精密稳压电源 使 用 说 明 书 (内附保修卡)

扬州华翔电子有限公司 1)稳压器概述及主要技术指标 2)如何选购稳压器的使用功率 3)稳压器实地安装及使用说明 4)稳压器常见故障及排除方法 5)常用规格输出电流表及附解 警告用户 欢迎您选用本公司生产的高精度宽压精密稳压电源,使用前请详细阅读本说明书,在对本产品性能充分了解的情况下正确使用,并妥善保管本说明书,以供后参考。谢谢合作。 、概述及主要技术指标 (一)、概述 随着我国工业的发展,人民生活水平不断提高,用电设备设施不断增加,电力供应不能及时满足高速增长用电的需要,特别是夏季用电高峰,电压波动极为频繁,致使工矿企业用电设施和家庭用电电器长期处于欠压状态运行,严重影响电器的安全和使用寿命。 本产品稳压精度高、调整时间快、损耗小、可长时间工作、允许1.6倍额定容量的瞬间过载。并具有过电压、欠电压、过电流保护,安全可靠。适用家庭、工矿企业、机关、科研单位、实验室的精密仪器供电,是一种理想的交流稳压电源。

JWP、TND、DBW系列单相宽压精密稳压电源和SJW、SBW系列三相宽压精密稳压电源是由接触式调压器、取样控制电路、伺服电机等主要部件组成。当市电电压不稳定或用户负载变化引起电压波动时,取样电路将电压变化信号经处理送伺服电机,使其带动接触式调压器碳刷相应移动,来保证输出电压稳定。 一、主要技术指标 1、系列型号含义 JWP单相、三相宽压精密稳压电源 TSD豪华型壁挂式高精度宽压精密稳压电源 DBW单相、SBW三相大功率补偿式自动交流稳压器 2、基本技术指标(见下表)

(二)导购参考 如何选购稳压器的使用功率: 1、稳压器所标输出功率是最大功率。家用电器的标称功率是指有功功率,而冰箱、 空调、水泵等感性负载在启动瞬时间电流很大,因此电冰箱、空调、水泵按功率x (3~5倍)。 例如:3匹美的空调(220V用电) 1匹等于0.75千瓦*3匹=2.25千瓦*3倍感性负载启动电流=6.75千瓦以上稳压器适用。(美的维修安装技师推荐选用8KVA稳压器) 2、以专业水电安装技师及工厂专业电工、工程师和稳压器使用功率算法:一般工业 设备按额定功率至少乘以2倍以上使用功率,当使用在具备电机运转设备、大电流启动装置及冲击性负载设备上时,应选择3倍以上容量的稳压器,以免启动电流过大,供电线路降压而无法正常工作。 例如:某一工厂的汽泵机(380V用电设备) 某电机功率为7.5千瓦,然而它开始运转冲击作功时浪涌电流过到电机功率的3倍以上,所以必须选择大于其功率3倍的稳压器。 3、0.5—3K稳压器选择输出电压110V时,则输入容量不能超过额定容量的40%,当输出端需110V和220V同时使用时输出容量应在额定容量的50%,以免过载。 4、输入电压低198V(三相以相电压为准)时要按输出容量曲线(见图1)降功率使

开关电源的建模和环路补偿设计 上

开关电源的建模和环路补偿设计上 如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。 电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。本文还介绍了用户易用的LTpowerCAD设计工具,以减轻设计及优化负担。 确定问题 一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。欠补偿系统可能导致运行不稳定。不稳定电源的典型症状包括:磁性组件或

陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。 不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。图 1 显示了一个不稳定降压型电源的典型输出和开关节点波形。调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如PCB 噪声。如果设计师对各种可能性没有了然于胸,那么确定引起运行噪声的潜藏原因可能耗费大量时间,令人非常沮丧。 图1:一个“不稳定” 降压型转换器的典型输出电压和 开关节点波形 对于开关模式电源转换器而言,例如图 2 所示的 LTC3851 或LTC3833 电流模式降压型电源,一种快速确

国内外分布式电源对比分析

国内外分布式电源对比分析 2014-04-29能源情报 文/李琼慧国网能源研究院 引言 分布式电源是促进风电、太阳能等分散式可再生能源的开发利用、提高清洁能源利用效率、解决偏远农村地区电力供应问题的重要途径。在当今能源和环境压力日益增加的背景下,推动分布式电源发展已成为世界各国促进节能减排、应对气候变化的重要措施之一。分布式电源作为我国电力系统的有机组成部分,是大电源的重要补充,与大电源、大电网有机统一、缺一不可。 20世纪八十年代,随着适合分散利用的光伏发电、风电和微小型天然气发电技术的逐步成熟,出现了分布式电源的概念。分布式电源通常指分散式可再生能源发电、工业余热余压余气等资源综合利用发电以及冷热电多联供系统,主要是为了利用分散资源和满足本地用户的能源需求,通常规模小、接入电压等级低。我国和其他国家一样,早有应用,如我国分布式利用的小水电装机容量和发电量均居世界首位。

由于各国资源条件、产业基础和激励政策的不同,分布式电源的定义也不尽相同,发展现况各具特点。因此,在对我国分布式电源的定义和发展现况进行研究时,必须从我国国情出发,立足于我国的资源条件、产业基础和激励政策。 本文在系统研究各国分布式电源定义的基础上,结合我国国情和电网特点,提出我国分布式电源的一般定义,并对比分析国内外资源分布、激励政策、产业基础和发展现状。 1分布式电源定义 目前关于分布式电源的最大容量、接入方式、电压等级、电源性质等相关界定标准方面,国际上还没有通用权威定义。不仅不同国家和组织,甚至是同一国家的不同地区对分布式电源的理解和定义都不尽相同。作者整理了世界18个国家或组织提出的分布式电源定义。 IEA对分布式电源的定义为服务于当地用户或当地电网的发电站,包括内燃机、小型或微型燃气轮机、燃料电池和光伏发电系统以及能够进行能量控制及需求侧管理的能源综合利用系统。美国电气和电子工程师协会(IEEE)对分布式电源的定义为接入当地配电网的发电设备或储能装置。德国对分布式电源的定义为位于用户附近,接入中低压配电网的电源,主要为光伏发电和风电。归纳18个典型国家(组织)关于分布式电源的界定标准,具有如下四个基本特征。 (1)直接向用户供电,电流一般不穿越上一级变压器。这是分布式电源的最本质特征,适应分散式能源资源的就近利用,实现电能就地消纳,各国定义均提及该特征。 (2)装机规模小,一般为10MW及以下。18个典型国家(组织)中,13个为10 MW及以下,3个为数十MW级,2个为100 MW级。美国、法国、丹麦、比利时等国家均将分布式电源的接入容量限制为10MW左右,瑞典的接入容量限制为1.5 MW,新西兰为5MW。由于英国允许分布式电源的接入电压等级较高,相应的允许接入容量也较大,可达100 MW,但从实际并网情况来看,接入66 kV电压等级的大容量分布式电源所占比例很少。 (3)通常接入中低压配电网。由于各国中低压配电网的定义存在差异,因此具体的接入电压等级也略有不同,一般为10(35)kV及以下。18个典型国家(组织)中,8个为10 kV及以下,7个为35 kV级,3个为110(66)KV 级。德国、法国、澳大利亚等国家均将分布式电源接入电压等级限制在中低压配电网,国外的中低压配电网上限一般不超过30 kV。英国允许分布式电源接入66 kV电压等级,这是由于66 kV在英国仍属于中压配电网范畴。 (4)发电类型主要为可再生能源发电、资源综合利用发电、高能效天然气多联供(能效一般达到70%以上)。 综合国际上典型国家及组织界定标准和我国电网特点,分布式电源一般可定义为:利用分散式资源,装机规模小,位于用户附近,通过10(35)kV及以下

精密净化交流稳压电源说明书

精密净化交流稳压电源说明书 一、产品简介 精密净化交流稳压电源是专门为稳定电压的滤除电网杂波对精密仪器设备造成损害而设计专用前置设备。 精密净化交流稳压电源以稳压电源宽、净化杂波能力强而著称,且有稳压精度高,输出稳定的特点,用于配置于航空、医院、教育等系统高级设备的前端,如:计算机、CT机、核磁共振机,通讯基站等,能有效保护了尖端设备的正常运行和使用寿命,在全世界各行各业,可以说精密的终端设备都不能缺少它的保护。 二、工作原理 “1791(JJW)”系列精密净化交流稳压电源采用了国际上属于电源调节器技术尖端的正弦能量分配器程式(即属于“正弦能量分配器”)。 它采用双向可控硅对输出电压进行快速精确的调节,实现交流电压的稳定;再通过大功率LC滤波器对双向可控硅的输出电压进行波形校正,以保证良好的正弦波输出。大功率LC滤波器同时又能吸收掉来自电网的各种噪声电压和尖峰干扰,此款“1791(JJW)”系列精密净化交流稳压电源同时也具备有稳定电压和抗干扰的双重功能。 三、技术指标 效率≥93% 负载功率因素0.8 附加波形失真≤8% 负载效应±1.5% 响应时间0.15S 输入电压单相175~260V 三相310~450V

输出电压单相220V/三相380V±1% 尖端抑制3μS尖峰脉冲输入衰减量32dB 输出相电压保护值245±5V 工作方式长期连续 工作环境温度:0℃~40℃湿度:〈80% (40℃时) 抗电强度1500V/1min 绝缘电阻≥2M 海拔高度≤2000m 设施类别II级 污染等级II极 “1791(JJW)”系列净化交流稳压电源除具有以上特点外还具有以下特点:1.高精确过压、欠压保护 2.集成电路性能可靠 3.多功能缺相保护 4.防雷装置(如装备) 5.市电稳压可手动切换(如装备) 大型医疗设备专用型净化交流稳压电源可根据设备要求装备所有可应 用功能。 注意: ●“KV A”为额定功率“KW”为有效功率,例如额定功率为1KV A稳压电源,有效功率为0.8KW左右。 ●如果您对所适用产品上标志(识)有不理解请来电询问阳环公司工程师,以 避免因使用不当给您造成损失。 ●因接错连线或使用不当造成的损失不在保修范围内。 四、安装 1、开启包装箱后请先检查外壳、电压表(电流表)、开关、指示灯、数字显示

分布式电源与智能用电技术的现状与发展

APEC研究报告 分布式电源及智能用电技术的现状及发展 2012年6月13日

研究团队:嘉平、建华、文霞、念、曾博、敏、吴林伟、朱星阳、程编写:建华 审核:嘉平

目录 第一章分布式电源及智能配用电技术的现状和趋势 (1) 1.1 分布式电源和微电网的研究现状 (1) 1.2 智能配用电技术的应用现状及未来趋势 (10) 1.3 微网及其构建的智能配用电系统中的关键技术及相关研究容 (14) 第二章分布式电源的工作原理 (26) 2.1双馈风力发电机 (26) 2.2燃气轮机 (36) 2.3燃料电池 (44) 2.4太阳能光伏发电 (49) 2.5储能元件 (55) 2.6分布式电源逆变器控制模型 (66) 第三章智能配用电系统的功能和规划 (68) 3.1 智能配用电系统的基本概念 (68) 3.2 智能配用电系统的基本构成及功能 (68) 3.3 智能配用电系统的集成规划 (71) 第四章日本分布式电源和智能配用电技术的发展 (77) 4.1有关政策和智能配用电技术 (78) 4.2可再生能源的影响及解决方法 (81) 4.3智能电表 (82) 4.4新一代能源 (83) 4.5小结 (84) 第五章中国微电网示园区的系统设计及仿真 (85) 5.1微电网示园区简介 (85) 5.2微电网示园区系统设计 (86) 5.3微电网示园区运行仿真分析 (87) 第六章结论 (92)

第一章分布式电源及智能配用电技术的 现状和趋势 1.1 分布式电源和微电网的研究现状 欧洲、美国及日本等发达国家和地区目前都已经完成微电网及智能配用电系统的基础理论研究,初步建立了分布式能源和微电网的模型和仿真分析工具,完成了微电网及所构建的智能配用电系统的控制和保护策略、通信协议等,并且通过实验室测试和智能配用电系统示小区进行了验证,解决了微电网及智能配用电系统的运行、保护和经济性分析的基本理论问题。未来的研究目标是发展高级控制策略,整合多个微电网同智能配电管理系统(DMS)的相互作用,进行标准化设计,实现现场实验以进一步验证控制策略在实际微网构建的智能配用电系统中的运行效果,以及微电网对电力系统运行和规划的影响评估等。 目前各国一些典型微网构建的智能配用电系统试验工程调研情况如下。 (1)北美的微电网及其构建的智能配用电系统研究首先,由美国可靠性技术解决方案协会(CERTS)最早提出的微电网概念,是所有微电网概念中最具代表性的一个。美国CERTS在其

稳压电源的选型

摘要:介绍了稳压电源的具体分类和目前海洋仪器代理的电源产品。 关键词:直流稳压电源;交流稳压电源;线性稳压电源;开关型稳压电源。 一、引言 稳压电源就是其输出电压相对稳定,它与人们的日常生活密切相关, 也称为稳定电源、稳压器等。随着电子技术发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,对稳压电源的要求更加灵活多样。电子设备的小型化和低成本化,使稳压电源朝轻、薄、小和高效率的方向发展。设计上,稳压电源也从传统的晶体管串联调整稳压电源向高效率、体积小、重量轻的开关型稳压电源迅速发展。 日常工作中,电子工程师通常根据稳压电源中稳压器的稳定对象,把稳压器分为直流稳压器和交流稳压器两种,并且直流稳压器输出电压是直流,交流稳压器输出电压是交流,两者一般都用市电供电。因此,我们就可以把稳压电源按稳压器的类型可分为直流稳压电源和交流稳压电源两大类。以下我们对这两大类稳压电源进行简要的介绍(见表1 )。 表 1 稳压电源的分类

能够提供一个稳定的交流电压和频率的电源称为交流稳压电源,市面上的交流稳压电源大致分为以下几种: 2.1参数调整(谐振)型 这类稳压电源,稳压的基本原理是LC 串联谐振,早期出现的含有磁饱和型稳压器的稳压电源就属于这一类。它的优点是结构简单,所需元器件较少,稳压范围相当宽,可靠性高,抗干扰和抗过载能力强。缺点是能耗大、噪声大、笨重且造价高。 2.2自耦(变比)调整型 2.2.1机械调压型 以伺服电机带动炭刷在自耦变压器的的绕组滑动面上移动,改变输出电压(Vo) 对输入电压(Vi) 的比值,以实现稳压电源输出电压的调整和稳定。它的特点是结构简单,造价低,输出波形失真小。但由于炭刷滑动,接点易产生电火花,造成电刷损坏以至烧毁而失效,且电压调整速度慢。 2.2.2改变抽头型 将自耦变压器做成多个固定抽头,通过继电器或可控硅(固态继电器)做为开关器控件,自动改变抽头位置,从而实现输出电压的稳定。这种类型的稳压电源,优点是电路简单,稳压范围宽(130V-280V ),效率高(≥ 95% ),价格低。缺点是稳压精度低(± 8 ~10% )工作寿命短,它适用于家庭给空调器供电。 2.2.3大功率补偿型——净化型稳压器(含精密型稳压器) 此种稳压电源用补偿环节实现输出电压的稳定,易实现微机控制。它的优点是抗干扰性能好,稳压精度高(≤± 1% )、响应快(40 ~60ms )、电路简单、工作可靠。缺点是带计算机、程控交换机等非线性负载时有低频振荡现象;输入端电流失真度大,源功率因数较低;输出电压对输入电压有相移。由于具有稳压,抗干扰,响应速度快,价格适中等优点,应用比较广泛。 2.3开关型交流稳压电源 它应用于高频脉宽调制技术,与一般开关电源的区别是它的输出量必须是与输入端同上频、同相的交流电压。它的输出电压波形有准方波、梯型波、正弦波等。市场上的不间断电源(UPS )抽掉其中的蓄电源和充电器,就是一台开关型交流稳压电源。开关型交流稳压电源的稳压性好,控制功能强,易于实现智能化,是非常具有前途的交流稳压电源。但因其电路复杂,价格较高,所以推广较慢。 三、直流稳压电源分类和特点 直流稳压电源按习惯可分为化学电源、线性稳压电源和开关型稳压电源,下面我们将具体介绍这几类电源。 3.1化学电源 我们平常所用的干电池、铅酸蓄电池、镍镉、镍氢、锂离子电池均属于化学电源,各有其优缺点。随着科学技术的发展,又产生了智能化电池;在充电电池材料方面,美国研制人员发现锰的一种碘化物,用它可以制造出便宜、小巧、放电时间长,多次充电后仍保持性能良好的环保型充电电池。 3.2线性直流稳压电源(LPS) 线性直流稳压电源指调整管工作在线性状态下的直流稳压电源。线性直流稳压电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等(见图1 )。

含分布式电源的配电网规划分析

龙源期刊网 https://www.wendangku.net/doc/ca7045309.html, 含分布式电源的配电网规划分析 作者:胡恒宇 来源:《名城绘》2018年第05期 摘要:随着分布式发电技术的日益成熟,分布式发电的成本越来越低,分布式发电在电力系统中所占的比重会逐渐增大。尤其是当分布式电源接入配电网后,它对配电网的节点电压、线路潮流、短路电流、可靠性等都会带来影响,其影响程度与分布式电源的接入点和容量有密切关系。这必然会给配电网规划带来新的挑战。基于此,本文就含分布式电源的配电网规划展开了分析。 关键词:分布式发电技术;分布式电源;配电网规划 1分布式电源相关概述 分布式电源装置是指功率为数千瓦至50MW小型模块式的、与环境兼容的独立电源。这些电源由电力部门、电力用户或第3方所有,用以满足电力系统和用户特定的要求。如调峰、为边远用户或商业区和居民区供电,节省输变电投资、提高供电可靠性等等。分布式能源系统并不是简单地采用传统的发电技术,而是建立在自动控制系统、先进的材料技术、灵活的制造工艺等新技术的基础上,具有低污染排放,灵活方便,高可靠性和高效率的新型能源生产系统。组成分布式能源系统的发电系统具有如下特点:(1)高效地利用发电产生的废能生成热和电。(2)现场端的可再生能源系统。(3)包括利用现场废气、废热及多余压差来发电的能源循环利用系统。分布式发电装置根据使用技术的不同,可分为热电冷联产发电、内燃机组发电、燃气轮机发电、小型水力发电、风力发电、太阳能光伏发电、燃料电池等;根据所使用的能源类型,分布式电源可分为化石能源(煤炭、石油、天然气)发电与可再生能源(风力、太阳能、潮汐、生物质、小水电等)发电两种形式。 2含分布式电源的配电网的特点 开展含分布式电源的配电网规划研究,首先应当明确含分布式电源的配电网的特点。社会发展对于供电可靠性要求不断提高,供电企业为了更好的满足公众和社会事业发展需求,不断的建设和改造现有配电网网架。而分布式电源的容量小及出口电压低的特点决定了其比较合理的接入方式是在公用配电网接入系统。在这种大背景下未来含分布式电源的配电网络所呈现的特征主要可以总结为以下三点:(1)配电网络的规模不断扩大,网架结构更加可靠,也更加复杂。(2)由于重要客户的存在,双辐射、链式等更加可靠的接线方式将会更多采用。(3)随着城乡电网的不断改造和完善,单条配电线路长度逐步缩短,供电半径更加合理。 3分布式电源对配电网规划的影响

基于Simulink的飞机电源系统建模与仿真_唐虹

2007年10月Power System Technology Oct. 2007 文章编号:1000-3763(2007)19-0087-04 中图分类号: TM712 文献标识码:A 学科代码:470?4054 基于Simulink的飞机电源系统建模与仿真 唐虹1,黄茜汀1,唐万忠2,许自杰2,李安奇2 (1.西北工业大学机械电子工程学院,陕西省西安市 710072; 2.成都飞机工业(集团)有限责任公司,四川省成都市 610092) Simulink Based Modeling and Simulation of a Certain Kind of Aircraft Power Supply System TANG Hong1,HUANG Qian-ting1,TANG Wan-zhong2,XU Zi-jie2,LI An-qi2 (1.School of Mechanical and Electronic Engineering,Northwestern Polytechnical University, Xi’an 710072,Shaanxi Province,China;2.Chengdu Aeroplant Industry(Group) Company Limited,Chengdu 610092,Sichuan Province,China) ABSTRACT: By means of detailed analysis on power supply system of a certain type of aircraft and on the basis of researching generator model, load model as well as their interrelation, taking the power generation part of aircraft power supply system for example, a mathematical model of power generation part, in which the generator occupies kernel place, is built up by use of micro increment and piece-wise linearization. According to the relations among the models of all parts in power supply system, a simulation model for whole aircraft power supply system is established and the simulation study on this model is carried out by use of the Simulink toolbox in Matlab software. Simulation results show that the established model is simple, easy to use and the simulation results are of high precision. KEY WORDS: power supply system;modeling;mathematical mode;transfer function;simulation;Simulink;Matlab 摘要:分析了某型号飞机的电源系统,讨论了发电机模型和负载模型及其相互关系,以发电部分为例,采用微增量和分段线性化的方法,建立了以发电机为核心的电源系统发电部分数学模型。最后利用Matlab软件中的Simulink工具箱,根据系统各部分模型间的关系建立了整个电源系统仿真模型,并对其进行了仿真研究。仿真结果表明,所建立模型简单、方便、仿真精度高。 关键词:电源系统;建模;数学模型;传递函数;仿真;Simulink;Matlab 0 引言 电源系统是飞机上一个极其重要的系统。电源系统的供电质量及可靠性直接影响整个飞机的性能。飞机用电负载特性比较复杂,除了常规线性负载外,还有大量的恒功率负载和再生性负载等非线性负载。雷达、导航设备等内部有开关电源,属于恒功率负载,当系统电压降低时,将汲取大电流,呈现负阻抗特性。而各种电力传动机构、电动机在制动时,也将向系统回馈能量。这些负载特性都将直接影响电源系统的品质,给系统的稳定性带来不利影响[1-4]。目前,我国飞机电源系统工作状态的性能测试方法一直采用传统的人工方式,花费了大量的人力、物力。 本文采用现代计算机仿真技术来描述飞机电源系统的数学模型,并利用Matlab软件中的Simulink 工具箱对其进行仿真,模拟实际电源系统的工作状态,直接显示负载变化对飞机电源的影响[5],为今后制订合理的增减设备方案、预防事故发生提供有效参考。 1 飞机电源系统介绍及建模分析 飞机电源系统由主电源、二次电源、应急电源、电源的转换、保护、调节、稳定和检测等电路组成,其作用是向飞机上的所有用电设备(如油泵,雷达等)提供电能,保证飞机的安全飞行,完成飞行和作战任务。本文所研究的飞机电源系统,其主电源由航空直流发电机和控制保护器构成,辅助和应急电源为航空蓄电池。发电机与蓄电池并联向系统供电,其整体结构如图1所示。 飞机电源系统随负载变化,分析和建立电源系统及负载的整体数学模型,是电源系统仿真分析的必要途径。在建立系统数学模型时,本文以飞机电源系统发电机为核心,采用“拼图式”由局部到整体的方法,先建立发电机的数学模型并单独仿真检

分布式电源项目并网服务管理规则

为促进分布式电源快速发展,规范分布式电源项目并网服务工作,提高分布式电源项目并网服务水平,公司制定了《国家电网公司分布式电源并网服务管理规则(修订版)》,现予印发,请遵照执行。国家电网公司2014年1月28日 分布式电源项目并网服务管理规则(修订版) 第一章总则 第一条为促进分布式电源快速发展,规范分布式电源项目并网管理工作,提高分布式电源项目并网服务水平,践行国家电网公司“四个服务”宗旨及“欢迎、支持、服务”要求,按照公司《关于做好分布式电源并网服务工作的意见(修订版)》、《关于促进分布式电源并网管理工作的意见(修订版)》(国家电网办[2013]1781号)要求制定本规则。 第二条按照“四个统一”、“便捷高效”和“一口对外”的基本原则,由公司统一管理模式、统一技术标准、统一工作流程、统一服务规则;进一步整合服务资源,压缩管理层级,精简并网手续,并行业务环节,推广典型设计,开辟“绿色通道”,加快分布式电源并网速度,由营销部门牵头负责分布式电源并网服务相关工作,向分布式电源项目业主提供“一口对外”优质服务。 第三条本管理规范所称分布式电源是指在用户所在场地或附近建设安装,运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯级利用多联供设施。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(含煤矿瓦斯发电)等。 第四条本规则适用于以下两种类型分布式电源(不含小水电): 第一类:10千伏以下电压等级接入,且单个并网点总装机容量不超过6兆瓦的分布式电源。 第二类:35千伏电压等级接入,年自发自用大于50%的分布式电源,或10千伏电压等级接入且单个并网点总装机容量超过6兆瓦,年自发自用电量大于50%的分布式电源。 第五条接入点为公共连接点,发电量全部上网的发电项目,小水电,除第一、二类以外的分布式电源,本着简便高效原则做好并网服务,执行国家电网公司常规电源相关管理规定。 第六条分布式电源发电量可以全部自用或自发自用余电上网,由用户自行选择,用户不足电量由电网提供;上、下网电量分开结算,各级供电公司应均按国家规定的电价标准全额保障性收购上网电量,为享受国家补贴的分布式电源提供补贴计量和结算服务。 第七条分布式光伏发电、分布式风电项目不收取系统备用容量费;对分布式光伏发电自发自用电量免收可再生资源电价附加、国家重大水利工程建设基金、大中型水库移民后期扶持资金、农网还贷资金等4项针对电量征收的政府性基金。其他分布式电源系统备用容量费、基金和附加执行国家有关政策。 第八条公司在并网申请受理、项目备案、接入系统方案制定、设计审查、电能表安装、合同和协议签署、并网验收与调试、补助电量计量和补助资金结算服务中,不收取任何服务费用。 第二章管理职责 第九条总部营销部负责贯彻落实国家新能源发展相关政策规定,负责制定分布式电源并网服务管理规则,对分布式电源并网服务工作开展情况进行统计、分析、监督、检查,协调解决分布式电源并网服务过程中存在的矛盾和问题。 总部发展部负责分布式电源接入管理,负责制定接入系统技术标准和规则,对分布式电源接入系统方案编审工作开展情况进行监督、检查;总部运检部负责制定分布式电源电网设备建设、实验、运维、检修相关标准并对落实情况进行监督、检查;国调中心负责制定分布

一种实用的精密复合式开关稳压电源

一种实用的精密复合式开关稳压电源 介绍一种双路输出的高效、精密、复合式开关稳压电源的设计方法。该电源既具有开关电源的高效,同时又具有线性稳压电源的稳压特性好的特点,因而是一种集开关电源与线性电源优点于一身的较为理想的实用化电源。 当前众多开关稳压电源,虽然体积小,效率高,但输出电压的纹波较大,尤其对于多路输出开关电源,通常不能同时保证多路输出的高稳定性。传统的线性稳压电源输出电压稳定性虽高,但缺点是电源效率低,还必须配备笨重的工频变压器。为此,本文介绍了一种双路输出的复合式开关稳压电源,该电源采用TOPSwitch器件作为前级稳压器,给低压差线性稳压器LT1528提供直流输入电压,然后利用低压差线性稳压器LT1528获得高质量的稳压输出。实验证明该电路具有良好的性能,有很高的实用性。 1 复合式开关电源的设计 复合式开关电源的电路构成框图如图1所示,该电源主要由TOPSwitch器件与低压差线性集成稳压器(LowDropoutRegulator)LT1528CT构成。 1.1 TOPSwitch器件 TOPSwitch系列芯片是PowerIntergretion公司生产的开关电源专用集成电路。TOPSwitch-Ⅱ只有3个引出端,漏极D为主电源输入端、控制端C为控制信号输入端、源极S是电源公共端,也是控制电路的基准点。该芯片将脉宽调制PWM控制系统的全部功能集成到三端芯片中,内部结构功能框图如图2所示,包括脉宽调制器、功率开关场效应管MOSFET、自动偏置电路、护电路、高压启动电路和环路补偿电路等。使用该芯片设计的单端反激式开关电源,电路结构简 洁、成本低、且性能非常可靠。 1.2 低压差线性集成稳压器LT1528 低压差集成稳压器是近年来问世的高效率线性稳压集成电路。传统的三端集成稳压器普遍采用电压控制型,为保证稳压效果,输入输出压差一般取2~4 V 以上,否则不能正常工作。低压差稳压器采用电流控制型,并且选用低压降的晶体管作为内部调整管,能够把输入输出压差降低到0.6 V以下,大大提高了电源的转换效率。

相关文档