文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质分选

蛋白质分选

蛋白质分选
蛋白质分选

四川师范大学生命科学学院

学科:细胞生物学

题目:蛋白质分选

班级:09级3班

姓名:王强

学号:2009090344

综述:蛋白质的分选

哺乳动物细胞含有上万种蛋白质,除线粒体和植物细胞叶绿体能合成少量蛋白外,绝大多数的蛋白质或者在细胞基质游离的核糖体上合成,或在糙面内质网膜结合核糖体上合成。由于蛋白质发挥结构或功能作用的部位几乎遍布细胞的各种膜区和组分,因此必然存在不同的机制进行蛋白质的分选,将蛋白质转运到细胞特定的部位发挥其功能。只有当蛋白质各就各位并组装成结构和功能复合体,才能参与细胞的各种生命活动。这一过程称为蛋白质的定向转运或称为蛋白质的分选。蛋白质的分选是一个涉及多种信号调控的复杂而重要的细胞生物学问题。

信号假说是1975年,G.Blobel和D.Sabatini等根据实验依据提出的,即分泌蛋白N端序列作为信号肽,指导分泌蛋白到内质网上合成,然后在信号肽的指导下蛋白质边合成边通过易位子蛋白复合体进入内质网腔,在蛋白质合成结束后信号肽被切除。

蛋白质分选主要是指膜结合核糖体上合成的蛋白质, 通过信号肽,在翻译的同时进入内质网, 然后经过各种加工和修饰,使不同去向的蛋白质带上不同的标记, 最后经过高尔基体反面网络进行分选,包装到不同类型的小泡,并运送到目的地, 包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。广义的蛋白质分选也包括在游离核糖体上合成的蛋白质的定位。蛋白质是由核糖体合成的,合成之后必须准确无误地运送到细胞的各个部位,此过程称为蛋白质的分选。

(一)蛋白质分选途径大体可分为两种:

1)翻译后转运途径:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质基质的可溶性驻留蛋白和支架蛋白,通过该途径进入线粒体、叶绿体和过氧化物酶体等细胞器的蛋白质,必须在分子伴侣的帮助下解折叠或维持非折叠状态,这有利于通过膜上的输入装置。最近在酵母细胞也发现有些蛋白质在细胞质基质的游离核糖体上合成,然后再转运至内质网中,可见蛋白质的分选对细胞的生活有多么重要的意义啊。

2)共翻译转运途径:蛋白质合成在游离核糖体上起始后由信号肽引导移至糙面内质网,然后新生肽边合成边转入糙面内质网中,在经高尔基体加工包装运输到溶酶体、细胞质膜或分泌到细胞外,内质网与高尔基体本身的蛋白质分选也是通过这一途径完成的。

(二)蛋白质分选的四种基本类型:

1、蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。(其中进入内质网与进入线粒体、叶绿体和过氧化物酶体等的机制有所不同)

2、膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。其中涉及各种不同的运输小泡的定向转运,以及膜泡出芽和融合的过

程。

3、选择性的门控转运:指在细胞质基质中合成的蛋白质通过核孔复合体选择性地完成核输入或从细胞核返回细胞质。

4、细胞质基质中的蛋白质的转运。(这一过程与细胞骨架系统密切相关,由于细胞质基质的结构尚不清楚,因此对其中的蛋白质转运特别是伴随信号转导途径中的蛋白质分子的转运方式了解的很少)

(三)影响蛋白质分选因素:1.分选信号 2.核糖体的存在部位(四)蛋白质分选运输的途径:

蛋白质的分选运输途径主要有三类:

1、门控运输(gated transport):如核孔可以选择性的主动运输大分子物质和RNP复合体,并且允许小分子物质自由进出细胞核。其中胞质溶胶中合成的蛋白质穿过细胞核内外膜形成的核孔进入细胞核,被运输的蛋白需要有核定位信号。核孔复合体功能:一种特殊的跨膜运输蛋白复合体,是一个双功能,双向性的亲水性核质交换通道。双功能:有两种运输方式主动运输和被动运输。双向性:接到蛋白质的转运,介导RNA 、核糖核蛋白颗粒的出核转运。

2、跨膜运输(Tran membrane transport):蛋白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质在信号序列的引导下,通过线粒体上的转位因子,以解折叠的线性分子进入线粒体。

3、膜泡运输(vesicular transport):蛋白质被选择性地包装成运输小泡,定向转运到靶细胞器。如内质网向高尔基体的物质运输、

高尔基体分泌形成溶酶体、细胞摄入某些营养物质或激素,都属于这

种运输方式。

膜泡运输又分为三种情况:

1.COPⅡ有被小泡的组装与运输,COPⅡ有被小泡介导细胞顺向运输

(anterograde transport),即负责从内质网到高尔基体的蛋白质运输。COPⅡ包被由五种蛋白亚基组成,包括Sec13p,Sec31p,Sec23p .Sec24p和Sar1p,这些亚基首先在酵母突变体中被鉴定。应用这些蛋白的抗体可有效地阻止内质网膜泡的出芽,但不影响高尔基体不同组分之间的膜泡运输。

2.COPⅠ有被小泡的组装与运输,COPⅠ有被小泡介导细胞内膜泡逆

向运输(retrograde transport),负责从顺面高尔基体网状区到内质网膜泡的转运,包括再循环的膜脂双层和回收错误分选内质网逃逸蛋白返回内质网。

3.网格蛋白的组装与运输,网格蛋白有被小泡介导蛋白质从高尔基

体TGN向质膜、胞内体、溶酶体或植物液泡的运输。另外,在在受体介导的胞吞途径中也负责将物质从质膜运往细胞质,以及从胞内体到溶酶体的运输。

这几种运输机制都涉及信号序列的引导和靶细胞器上受体蛋白的识别。

(五)蛋白质转入内质网中的合成:

信号肽于SRP结合→肽链延伸终止→SRP于受体结合→SRP脱离信号肽→肽链在内质网上继续合成,同时信号肽引导新

生肽链进入内质网腔→信号肽切除→肽链延伸终止。

(六)信号肽跨膜转运的能量来源:

研究证明SRP受体和SRP都是G蛋白,他们不仅将合成蛋白质的核糖体引导进入内质网,而且通过GTP-GDP的交换,将内质网膜中的易位子通道打通,让信号序列与之结合,其中GTP水解的能量作为信号序列转运的能量来源。

(七)蛋白质分选中存在的问题:

高尔基体的分类转运的机制是什么?这一问题至今没有解决,主要有以下设想:

①糖基化:

使蛋白质带上某种记号(信息),在高尔基体的成熟面的膜上有识别这种记号的受体,从而在相应部位出芽形成溶酶体。

②分类转运的信息由编码该蛋白质的基因决定,信息就存在于该蛋白质分子中。

③分选蛋白质

目前,人们发现水泡性口炎病毒包膜蛋白在由内质网合成后进入

高尔基体时,存在于细胞质基质一侧的双酸分选信号(Asp-x-Gin或DxE)起重要的作用,其他一些膜蛋白也具有这一信号序列,表明膜蛋白在由内质网向高尔基体转运时,也存在一种选择性的转运机制。

蛋白质分选

蛋白质分选信号及其识别机制 1. 蛋白质分选信号 1.1 核定位序列 1.2 导肽 2. 机制 2.1 共翻译转运途径 2.2 翻译后转运 2.2.1 线粒体基质蛋白的转运 2.2.2 线粒体膜定位蛋白 2.2.3 叶绿体外膜蛋白的定位 2.2.4 翻译后转运——蛋白质的入核转运 组长评分: 李思雨20126278 A 顾朝剑20126257 B 蒲擎宇20124302 B 王欢20126279 B 康莎莎20126268 C [1] Alimjan Idiris, Hideki Tohda1, Hiromichi Kumagai. Engineering of protein secretion in yeast: strategies and impact on protein production[J]. Applied Microbiology and Biotechnology,6 February 2010 [2]Chloroplast outer membrane protein targeting and insertion[J].TRENDS in Plant Sciencee V ol.10 No.9 September 2005. [3]周鸣,李小玲,李桂源,等. 蛋白质入核转运的机制和研究进展[J].中国生物化学与分子生物学报.22(10): 780~ 786 [4]王克夷.肤链的翻译后加工[J].生命的化学学报,1995年15卷第2期. [5]覃晓琳,刘朝奇,郑兰英.信号肽对酵母外源蛋白质分泌效率的影响[J].生物技术,2010,20(3)

第七章 真核细胞内膜系统、蛋白质分选与膜泡运输 - 测试题(满分:70)

第七章真核细胞内膜系统、蛋白质分选与膜泡运输- 测试题(满分:70) 一、选择题(共25小题,1~20题每题1分,21~25题每题2分) 1、下列关于信号肽,最正确的一项是() A. 是C端的一段氨基酸序列 C. 具有信号作用,但不被切除 B. 是N端的一段氨基酸序列 D. 跨膜运输后要被切除 2、细胞质基质中合成,到内质网上继续合成的蛋白的定位序列为() A. 信号肽 C. 转运肽 B. 导肽 D. 信号斑 3、参与蛋白质合成与运输的一组细胞器是() A. 核糖体、内质网、高尔基体 C. 细胞核、微管、内质网 B. 线粒体、内质网、溶酶体 D. 细胞核、内质网、溶酶体 4、台-萨氏病是一种与溶酶体有关的遗传缺陷病,主要是()缺乏而不能水解神经节苷脂GM2。 A. 磷酸二酯酶 C. β-氨基己糖酯酶A B. N-乙酰氨基转移酶 D. 腺苷酸环化酶 5、指导蛋白质转运到线粒体上的氨基酸序列被称为() A. 导肽 C. 转运肽 B. 信号肽 D. 新生肽 6、溶酶体的H+ 浓度比细胞质基质中高() A. 5倍 C. 50倍 B. 10倍 D. 100倍以上 7、下面()不是在粗面内质网上合成的 A. 抗体 C. 胶原蛋白 B. 溶酶体膜蛋白 D. 核糖体蛋白 8、下列细胞器中的膜蛋白在粗面内质网上合成的为() A. 叶绿体 C. 过氧化物酶体 B. 线粒体 D. 溶酶体 9、具运输和分拣内吞物质的细胞器是() A. 有被小体 C. 胞内体 B. 滑面内质网 D. 溶酶体 10、下列()是特化的内质网 A. 肌质网 C. 乙醛酸循环体 B. 脂质体 D. 残余小体 11、真核细胞中下列()细胞器或细胞结构上不可能有核糖体存在 A. 内质网 C. 细胞核膜 B. 细胞质基质 D. 细胞质膜 12、下列细胞器中,有极性的是() A. 溶酶体 C. 线粒体 B. 微体 D. 高尔基体 13、蛋白质的糖基化及其加工、修饰和寡糖链的合成是发生在高尔基体的() A. 顺面管网状结构 C. 反面管网状结构 B. 中间膜囊 D. 反面囊泡 14、合成后的磷脂被()转运至过氧化物酶体的膜上 A. 磷脂转位因子 C. 膜泡

蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

蛋白质合成分选定位

细胞中蛋白质合成分选、定位的机制 一.蛋白质合成 定义:在核糖体的作用下,mRNA携带的遗传信息翻译成蛋白质。 蛋白质合成(多肽链合成)的基本过程: 1.氨基酸激活。a.将氨基酸的羧基激活成易于形成肽键的形式。b.每一个新氨基酸和 mRNA编码信息之间建立联系。从而使氨基酸和特定tRNA结合。 2.起始。 mRNA+核糖体小亚基+起始氨酰基-tRNA +核糖体大亚单位=起始复 合物 3.肽链延长。 tRNA和mRNA对应的密码子配对携带有一个氨基酸的tRNA 被安放到核糖体上此氨基酸和前一个氨基酸共价键合,肽链延长。该阶段的核心是形成肽键,将单个氨基酸连接成多肽链。 4.合成终止,肽链释放。 mRNA上的终止密码子即是终止信号,当携带新生肽链的 核糖体抵达终止密码子,多肽链合成终止,核糖体大小亚基分离,多肽链从核糖体上释放出来。 5.折叠和翻译后加工。包括多肽链的折叠剪接、化学修饰、空间组装。 二.蛋白质分选定位 定义:蛋白质从起始合成部位转运到其发挥功能发挥部位的过程。绝大多数蛋白质都是由核基因编码,或在游离核糖体上合成,或在糙面内质网膜结合核糖体上合成。但是蛋白质发挥结构或功能作用的部位几乎遍布细胞的各个区间或组分,所以需要不同的机制以确保蛋白质分选,转运至细胞的特定部位。 1.核基因编码的蛋白质的分选途径: ①.后翻译转运途径 在细胞质基质游离核糖体上完成多肽链合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质的可溶性驻留蛋白和骨架蛋白。 ②.共翻译转运途径 蛋白质合成在游离核糖体上起始之后,由信号肽及其和之结合的SRP引导转移至糙面内质网,然后新生肽链边合成边转入糙面内质网腔或定位在ER膜上,经转运膜泡

第七章 内膜系统与蛋白质分选

第七章内膜系统与蛋白质分选 名词: 膜结合细胞器:指细胞质中所有具有膜结构的细胞器。包括细胞核、内质网、高尔基体、溶酶体、分泌泡、线粒体、叶绿体和过氧化物酶体等。由于它们都是封闭的膜结构,内部都有一定的空间,所以又称为膜结合区室。通过形成膜结合细胞器,使细胞的功能定位在一定的细胞结构并组成相互协作的系统。 内膜系统: 内膜系统是指内质网、高尔基体、溶酶体和液泡(包括内体和分泌泡)等四类膜结合细胞器, 因为它们的膜是相互流动的,处于动态平衡,在功能上也是相互协同的。广义上的内膜系统概念也包括线粒体、叶绿体、过氧化物酶体、细胞核等细胞内所有膜结合的细胞器。 小泡运输(膜泡运输):细胞内部内膜系统各个部分之间的物质传递常常通过膜泡运输方式进行。膜泡运输是一种高度有组织的定向运输,各类运输泡之所能够被准确地运到靶细胞器,主要是因为细胞器的胞质面具有特殊的膜标志蛋白。许多膜标志蛋白存在于不止一种细胞器,可见不同的膜标志蛋白组合,决定膜的表面识别特征。胞内膜泡运输沿微管或微丝运行,动力来自马达蛋白 内质网:内质网是细胞内的一个精细的膜系统。是交织分布于细胞质中的膜的管道系统。两膜间是扁平的腔、囊或池。内质网分两类,一类是膜上附着核糖体颗粒的叫粗糙型内质网,另一类是膜上光滑的,没有核糖体附在上面,叫光滑型内质网。粗糙型内质网的功能是合成蛋白质大分子,并把它从细胞输送出去或在细胞内转运到其他部位。光滑型内质网的功能与糖类和脂类的合成、解毒、同化作用有关,并且还具有运输蛋白质的功能。 溶酶体:溶酶体(lysosomes)真核细胞中的一种细胞器;为单层膜包被的囊状结构,直径约0.025~0.8微米;内含多种水解酶,专司分解各种外源和内源的大分子物质。 高尔基体:是真核细胞中内膜系统的组成之一,它由扁平膜囊(saccules)、大囊泡(vacuoles)、小囊泡(vesicles)三个基本成分组成。 信号斑:信号斑是由几段信号肽形成的一个三维结构的表面, 这几段信号肽聚集在一起形成一个斑点被磷酸转移酶识别。信号斑是溶酶体酶的特征性信号。 信号识别颗粒:在真核生物细胞质中一种小分子RNA和六种蛋白的复合体,此复合体能识别核糖体上新生肽末端的信号,顺序并与之结合,使肽合成停止,同时它又可和ER膜上的停泊蛋白识别和结合,从而将mRNA上的核糖体,带到膜上。SRP上有三个结合位点:信号肽识别结合位点,SRP受体蛋白结合位点,翻译暂停结构域。 细胞分泌:动物细胞和植物细胞将在粗面内质网上合成而又非内质网组成部分的蛋白和脂通过小泡运输的方式经过高尔基体的进一步加工和分选运送到细胞内相应结构、细胞质膜以及细胞外的过程称为细胞的分泌。 调节型分泌途径:调节型分泌(regulated secretory pathway)小泡形成的方式可能与溶酶体相似, 分泌蛋白在高尔基体反面网络中通过分选信号与相应的受体结合,

蛋白质问题归类解析

2014年临安中学高三复习讲义(蛋白质类问题归类解析) 1.氨基酸的结构: 例1.下列各项中,哪项是构成生物体蛋白质的氨基酸 例2.谷胱甘肽(分子式C 10H 17O 6N 3S )是存在于动植物和微生物细胞中的一种重要的三肽,它是由谷氨酸(C 5H 9NO 4)、甘氨酸(C 2H 5O 2)和半胱氨酸缩合而成,则半胱氨酸可能的分子式为 A.C 3H 3NS B. C 3H 5NS C. C 3H 7O 2NS D. C 3H 3O 2NS 例3.当含有如图所示的结构片段的蛋白质在胃肠道中水解时,不可能产生的氨基酸是 2.蛋白质种类: 例4.由4种氨基酸(每种氨基酸数量不限)最多能合成不同结构的三肽有 A .4种 B .43种 C .34种 D .12种 例 5.如果有足量的三种氨基酸分别为甲、乙、丙,则它们能形成的三肽种类以及包含三种氨基酸的三肽种类最多有 A .9种,9种 B .6种,3种 C .27种,6种 D .3种,3种 例6.狼体内有a 种蛋白质,20种氨基酸;兔体内有b 种蛋白质,20种氨基酸.狼捕食兔后,狼体内的蛋白质种类和氨基酸种类最可能是多少? A.a+b ,40 B.a,20 C.大于a,20 D.小于a,20 3.肽键(水分子)数目: 例7. 人体内的抗体IgG 是一种重要的免疫球蛋白,由4条肽链构成,共有m 个氨基酸,则该蛋白质分子有肽键数 A.m 个 B. (m+1)个 C.(m-2)个 D.(m-4)个 例8.由M 个氨基酸构成的一个蛋白质分子,含有N 条肽链,其中Z 条是环状多肽,这个蛋白质完全水解共需水分子个数为 A.M-N+Z B.M-N-Z C.M-Z+N D.M+Z+N 例9.某22肽被水解成1个4肽,2个3肽,2个6肽,则这些短肽的氨基总数的最小值及肽键总数依次是 A .6 18 B .5 18 C .5 17 D .6 17 例10.免疫球蛋白lgG 的结构示意图如右,其中-S-S- 表示连接两条相邻肽链的二硫键。若该lgG 由m 个氨基酸构成,则该lgG 有肽键数 A .m 个 B .(m +1)个 C .(m-2)个 D .(m-4)个 4. 游离的氨基或羧基数目: 例11.人体内的抗体IgG 是一种重要的免疫球蛋白,由4条肽链构成,共有764个氨基酸,则该蛋白质分子中至少含有游离的氨基和羧基的个数分别是 A. 764、 764 B. 760 、760 C. 762、 762 D. 4 、4 例12. 现有1000个氨基酸,其中氨基有1020个,羧基有1050个,则由此合成的4条肽链中游离的氨基、羧基的数目分别是 -S-S -S-S -S-S

细胞蛋白分选机制整理

题目:1.用自己的语言复述课堂列出的四组关于信号肽的实验,分析其产物为何有所不同;根据这些实验结果构建的信号肽学说要点有哪些? 2.请整理线粒体、质体、内膜系统、膜泡系统、细胞核等章节有关蛋白分选内容,详细描述细胞内蛋白分选机制。 1. 共四组实验,在第一组(对照组)中加入含编码信号序列的mRNA,第二组中加入含编码信号序列的mRNA和SRP,第三组中加入含编码信号序列的mRNA和SRP,DP,第四组中加入含编码信号序列的mRNA和SRP,DP,微粒体。 实验结果:第一组产生含信号肽的完整多肽,第二组合成70~100氨基酸残基后,肽链停止延伸,第三组产生含信号肽的完整多肽,第四组信号肽切除,多肽链进入微粒体中。 产物不同的原因: 组2:SRP 有Alu和S 两个结构域,它们同RNA 相互连接。其中Alu结构域由SRP9 和SRP14 组成,结合到7S RNA的5'端和3'端序列。SRP 能识别并结合在游离核糖体上新合成蛋白质的信号肽。当它与信号肽结合后,多肽合成就暂时中止,所以会只形成70~100氨基酸残基。 组3:DP与SRP结合后,解除了SRP 对核糖体肽链合成的抑制,新生链继续合成延长。 组3:微粒体中含有内质网和核糖体,加入之后,多肽链会进入其中被加工,信号肽则被信号肽酶水解。

信号肽学说要点: 分泌蛋白先在游离核糖体上开始合成-----当其N端的信号肽延伸出核糖体后,被胞质中的SRP识别并结合-----rER膜上的SR识别并结合SRP----信号肽的疏水核心与膜结合-----新形成的多肽链进入内质网----信号肽被信号肽酶水解-------新生肽链通过蛋白转运子进入内质网腔中--------核糖体移到mRNA的终止密码子,蛋白质合成结束,核糖体重新处于游离状态。 2. 线粒体: 线粒体中有1000 多种蛋白质,它本身的DNA 及核糖体只能合成其中少数蛋白质,其余的线粒体蛋白质都是由核DNA编码的,在胞质游离核糖体上合成后运输到线粒体中 由线粒体的核糖体合成的蛋白,以共翻译运输(co-translational transport)的方式插入到线粒体内膜, 在细胞质核糖体上合成的蛋白,以翻译后运输(post-translational transport)的方式转运到线粒体中。 (1)在胞质核糖体上合成的蛋白质,大都以前体形式存在。多由N端的一段导肽和成熟形式的蛋白质组成。(2)蛋白质通过膜时,在外膜上有专一性不很强的受体参与作用。(3)蛋白质通过膜需要水解ATP和利用质子动势的能量过程。(4)导肽引导蛋白质前体,在受体及转运子的作用下,通过内、外膜的接触点,运输到线粒体的基质中。(5)导肽对所牵引的蛋白质无特异性。(6)蛋白质运送时需要一些分子伴侣使蛋白进行折叠状态与解折叠状态的转变。(7)前体蛋白运入线粒体后,需要蛋白酶切除导肽,再折叠成成熟蛋白。 线粒体膜上存在前体蛋白转运子,外膜上的TOM、SAM,内膜上TIM23、TIM22、

乳清蛋白分类

乳清蛋白的分类 乳清蛋白(whey protein)被称为蛋白之王,是从牛奶中提取的一种蛋白质,具有营养价值高、易消化吸收、含有多种活性成分等特点,是公认的人体优质蛋白质补充剂之一。乳清蛋白是采用先进工艺从牛奶分离提取出来的珍贵蛋白质,以其纯度高、吸收率高、氨基酸组成最合理等诸多优势被推为“蛋白之王”。乳清蛋白不但容易消化,而且还具有高生物价、高效化率、高蛋白质功效比和高利用率,是蛋白质中的精品等特点,是公认的人体优质蛋白质补充剂之一。牛奶的组成中87%是水,13%是乳固体。而在乳固体中27%是乳蛋白质,乳蛋白质中只有20%是乳清蛋白,其余80%都是酪蛋白,因此乳清蛋白在牛奶中的含量仅为0.7%。但是你知道吗?乳清蛋白也分等级的。它分为浓缩乳清蛋白,分离乳清蛋白以及水解乳清蛋白,下面对这些蛋白进行大致的说明。 乳清蛋白分类 纯度吸收率 浓缩乳清蛋白WPC 35~80%(一般为50%)104 含乳糖 分离乳清蛋白WPI 88~95%(一般为88%)159 再过滤,除乳糖 水解乳清蛋白WPH 96%以上167 再过滤 浓缩乳清蛋白WPC (Whey Protein Concentrate) 这类乳清蛋白的蛋白质的纯度为35~80%(一般为50%),吸收率为104,WPC常常因为包含有乳糖等杂质,所以吸收不是很理想,而且常常伴有拉肚子等症状。 分离乳清蛋白WPI ( Whey Protein Isolate ) 这类乳清蛋白的蛋白质的纯度为88~95%(一般为88%),吸收率为159,WPI是在WPC 的基础之上,通过再次过滤,干燥等技术加工,完全的去除了WPC里面的乳糖。 水解乳清蛋白WPH ( Whey Protein Hydrolysates ) 这类乳清蛋白的蛋白质的纯度一般在96%以上,其吸收率为167,在WPI分离乳清蛋白的基础之上,再次高科技技术过滤,干燥得到,自然其吸收率是最高,纯度也是最高的。水解乳清蛋白是现存增肌粉,蛋白粉中最好的蛋白质原料。

细胞内蛋白质的分选和运输

细胞内蛋白质的分选和运输 蛋白质在细胞质基质中合成后,按其氨基酸序列中分选信号(sorting signal)的有无以 及分选信号的性质被选择性地送到细胞的不同部位,这一过程称为蛋白质分选(protein sorting)和蛋白质靶向运输(protein targeting)。另外,细胞外的蛋白质经胞吞作用进入 细胞内部,也经历分选和靶向运输过程。细胞中每一种蛋白质只有到达正确的位置才能行使 其功能,如 RNA和DNA聚合酶必须送到细胞核中才能参与核酸的合成;酸性水解酶必须送 到溶酶体才能进行大分子的降解作用。因此,细胞内蛋白质的分选和运输对于维持细胞的结 构与功能、完成各种细胞生命活动都是非常重要的。 细胞内蛋白质的分选信号以及运输途径和方式 号肽通常引导蛋白质从细胞质基质进入内质网、线粒体和细胞核,同时也引导蛋白质从 细胞核送回到细胞质基质以及从高尔基体送回到内质网;信号斑则引导一些其他分选过程, 如在内质网合成的溶酶体酶蛋白上存在一种信号斑,在高尔基体的CGN中可被N-乙酰氨基 葡萄糖磷酸转移酶所识别,从而使溶酶体酶蛋白上形成新的分选信号M-6-P,进一步在TGN 中被M-6-P受体识别,并分选进入运输小泡最终送到溶酶体(详见第十章)。 每一种信号序列引导蛋白质到达细胞内一个特定的目的地(表10-1)。要运送到内质网 的蛋白质,在其N-末端有一段信号肽,其中间部分有5-10个疏水氨基酸。带有这种信号肽 的蛋白质,都会被运送到内质网,并进一步被运送到高尔基体,其中一部分蛋白质在C-末 端还带有一个由4个氨基酸组成的信号肽,它们在高尔基体的CGN部位被识别并被送回内质 网,是内质网驻留蛋白质;要运送到线粒体的蛋白质,在其N-末端带有一种信号肽,其信 号序列中带阳电荷的氨基酸和疏水氨基酸呈交替排列;要运送到过氧化物酶体的蛋白质,在 其C-末端有一种由三个特征性氨基酸组成的信号肽;要运送到细胞核的蛋白质,其信号肽 中有一串带阳电荷的氨基酸,这一信号序列可位于蛋白质的任何部位。 表10-1 几种典型的信号序列 (引自Alberts等,2002) ________________________________________________________________________ 信号序列的功能信号序列 _________________________________________________________________________ 输入到细胞核 -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val- 从细胞核输出 -Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-Asp-Ile- N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys- 输入到线粒体+H 3 Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu-Leu- 输入到过氧化物酶体 -Ser-Lys-Leu-COO- N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-Ile- 输入到内质网+H 3 Leu-Phe-Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys-Cys- Glu-Val-Phe-Gln- 回输到内质网 -Lys-Asp-Glu-Leu-COO- _________________________________________________________________________ 一、细胞内蛋白质运输的途径

蛋白质分类

第五节蛋白质得分类、提取、分离及测定 蛋白质种类繁多,结构复杂,目前有几种分类方法,作一介绍。 一、根据分子形状分类 根据蛋白质分子外形得对称程度可将其分为两类。 1、球状蛋白质 球状蛋白质(globular proteins)分子比较对称,接近球形或椭球形。溶解度较好,能结晶。大多数蛋白质属于球状蛋白质,如血红蛋白、肌红蛋白、酶、抗体等。 2、纤维蛋白质 纤维蛋白质(fibrous proteins)分子对称性差,类似于细棒状或纤维状。溶解性质各不相同,大多数不溶于水,如胶原蛋白、角蛋白等。有些则溶于水,如肌球蛋白、血纤维蛋白原等 二、根据化学组成分类 根据化学组成可将蛋白质分为两类。 (一)简单蛋白质 简单蛋白质(simple proteins)分子中只含有氨基酸,没有其它成分。 1、清蛋白 清蛋白(albumin)又称白蛋白,分子量较小,溶于水、中性盐类、稀酸与稀碱,可被饱与硫酸铵沉淀.清蛋白在自然界分布广泛,如小麦种子中得麦清蛋白、血液中得血清清蛋白与鸡蛋中得卵清蛋白等都属于清蛋白。 2、球蛋白 球蛋白(globulins)一般不溶于水而溶于稀盐溶液、稀酸或稀碱溶液,可被半饱与得硫酸铵沉淀.球蛋白在生物界广泛存在并具有重要得生物功能。大豆种子中得豆球蛋白、血液中得血清球蛋白、肌肉中得肌球蛋白以及免疫球蛋白都属于这一类. 3、组蛋白 组蛋白(histones)可溶于水或稀酸。组蛋白就是染色体得结构蛋白,含有丰富得精氨酸与赖氨酸,所以就是一类碱性蛋白质。 4、精蛋白 精蛋白(protamines)易溶于水或稀酸,就是一类分子量较小结构简单得蛋白质。精蛋白含有较多得碱性氨基酸,缺少色氨酸与酪氨酸,所以就是一类碱性蛋白质。精蛋白存在于成熟得精细胞中,与DNA 结合在一起,如鱼精蛋白。 5、醇溶蛋白 醇溶蛋白(prolamines)不溶于水与盐溶液,溶于70%~80%得乙醇,多存在于禾本科作物得种子中,如玉米醇溶蛋白、小麦醇溶蛋白。 6、谷蛋白类 谷蛋白(glutelins)不溶于水、稀盐溶液,溶于稀酸与稀碱。谷蛋白存在于植物种子中,如水稻种子中得稻谷蛋白与小麦种子中得麦谷蛋白等。 7、硬蛋白类 硬蛋白(scleroproteins)不溶于水、盐溶液、稀酸、稀碱,主要存在于皮肤、毛

蛋白质的分类

蛋白质的分类 一般根据蛋白质分子的形状、化学组成、功能等对蛋白质进行分类。 按形状分类可分为:①纤维蛋白,它的分子为细长形,不溶于水,丝、羊毛、皮肤、头发、角、爪甲、蹄、羽毛、结缔组织等都是纤维蛋白。②球蛋白,它的分子呈球形或椭球形,一般能溶于水或含有酸、碱、盐、乙醇的水溶液,酶和激素蛋白都是球蛋白。 按化学组成分类,可分为:①简单蛋白,只由蛋白质本身,即只由多肽链组成。②结合蛋白,它是由蛋白质和非氨基酸物质(如核酸、脂肪、糖、色素等)结合而成的蛋白质,所以它又称复合蛋白。蛋白质与核酸结合可生成核蛋白,蛋白质和脂肪结合可生成脂蛋白,蛋白质和糖结合可生成糖蛋白,蛋白质和血红素结合可生成血红蛋白。 按功能分类,蛋白质可分为:①活性蛋白(如酶、激素蛋白)。②非活性蛋白(如胶原蛋白、角蛋白、弹性蛋白)。 蛋白质的分类 营养学上根据食物蛋白质所含氨基酸的种类和数量不同,其营养价值也不同,可将食物蛋白质分三类: 1. 完全蛋白质这是一类优质蛋白质。它们所含的必需氨基酸种类齐全,数量充足,彼此比例适当。这一类蛋白质不但可以维持人体健康,还可以促进生长发育。奶、蛋、鱼、肉中的蛋白质都属于完全蛋白质。 2. 半完全蛋白质这类蛋白质所含氨基酸虽然种类齐全,但其中某些氨基酸的数量不能满足人体的需要。它们可以维持生命,但不能促进生长发育。例如,小麦中的麦胶蛋白便是半完全蛋白质,含赖氨酸很少。食物中所含与人体所需相比有差距的某一种或某几种氨基酸叫做限制氨基酸。谷类蛋白质中赖氨酸含量多半较少,所以,它们的限制氨基酸是赖氨酸。 3. 不完全蛋白质这类蛋白质不能提供人体所需的全部必需氨基酸,单纯靠它们既不能促进生长发育,也不能维持生命。例如,肉皮中的胶原蛋白便是不完全蛋白质。

蛋白质的分类

蛋白质的分类 摘要:蛋白质的种类繁多,结构复杂,所以分类也就各异。 一、按来源分类 蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。动物性蛋白质主要为提取自牛奶的乳清蛋白,其所含必需氨基酸种类齐全,比例合理,但是含有胆固醇。植物性蛋白质主要来源于大豆的大豆蛋白,最多的优点就是不含胆固醇。 二、按组成成分分类 按照化学组成,蛋白质通常可以分为简单蛋白质、结合蛋白质和衍生蛋白质。简单蛋白质经水解得氨基酸和氨基酸衍生物;结合蛋白质经水解得氨基酸、非蛋白的辅基和其他(结合蛋白质的非氨基酸部分称为辅基);蛋白质经变性作用和改性修饰得到衍生蛋白质。 1—脂 如酪蛋 铜的有血蓝蛋白等。 ⑥黄素蛋白(flavoproteins):辅基为黄素腺嘌呤二核苷酸,如琥珀酸脱氢酶、D—氨基酸氧化酶等。 ⑦金属蛋白(metalioproteins):与金属直接结合的蛋白质,如铁蛋白含铁,乙醇脱氢酶含锌,黄嘌呤氧化酶含钼和铁等。 衍生蛋白质,天然蛋白质变性或者改性、修饰和分解产物。 ①一级衍生蛋白质:不溶于所有溶剂,如变性蛋白质。 ②二级衍生蛋白质:溶于水,受热不凝固,如胨、肽。 ③三级衍生蛋白质:功能改进,如磷酸化蛋白、乙酰化蛋白、琥珀酰胺蛋白。 三、按分子形状分类 根据分子形状的不同,可将蛋白质分为球状蛋白质和纤维状蛋白质两大类。以长轴和短轴之比为标准,球状蛋白

质小于5,纤维状蛋白质大于5。纤维状蛋白多为结构蛋白,是组织结构不可缺少的蛋白质,由长的氨基酸肽链连接成为纤维状或蜷曲成盘状结构,成为各种组织的支柱,如皮肤、肌腱、软骨及骨组织中的胶原蛋白;球状蛋白的形状近似于球形或椭圆形。许多具有生理活性的蛋白质,如酶、转运蛋白、蛋白类激素与免疫球蛋白、补体等均属于球蛋白。 四、按结构分类 蛋白质按其结构可分为:单体蛋白、寡聚蛋白、多聚蛋白。 单体蛋白:蛋白质由一条肽链构成,最高结构为三级结构。包括由二硫键连接的几条肽链形成的蛋白质,其最高结构也是三级。多数水解酶为单体蛋白。 寡聚蛋白:包含2个或2个以上三级结构的亚基。可以是相同亚基的聚合,也可以是不同亚基的聚合。 多聚蛋白:由数十个亚基以上,甚至数百个亚基聚合而成的超级多聚体蛋白。 五、按功能分类 1. 2. 3.

血清蛋白的分类与特征

血清蛋白的分类与特征(以区带电泳为主要技术分类) 一、白蛋白(albumin,Alb)由肝实质细胞合成,分子量6.64万,等电4~5.8,半寿期(15~19天,占血浆总蛋白的40%~60。血浆白蛋白浓度可以受饮食中蛋白质摄入的影响,在一定程度上可以作为个体营养状态的评价指标,有较广泛的载体功能。正常参考值:35~50g/L。血浆白蛋白增高较少见,在严重失水时,对监测血浓缩有诊断意义。低白蛋白血症,可见于以下几种原因:(1)白蛋白合成减低:常见于急性或慢性肝病。(2)由于营养不良或吸收不良。(3)遗传性缺陷:无白蛋白血症。(4)组织损伤(外科手术或创伤)或炎症(感染性疾病)引起的白蛋白分解增加。(5)白蛋白异常丢失:如肾病综合征、慢性肾小球肾炎、糖尿病、系统性红斑狼疮、溃疡性结肠炎、肿瘤、烧伤所致渗出性皮炎。(6)白蛋白分布异常:如门脉高压时,大量蛋白质从血管内渗入腹腔。 目前已发现20种以上白蛋白的遗传性变异,这些个体可以不表现病症,在电泳分析时其白蛋白区带可以出现1条或2条宽带,有人称之为双白蛋白血症。当某些药物大量应用(如青霉素大量注射使血浓度增高时)而与白蛋白结合时,也可使白蛋白出现异常区带。 二、α1区带球蛋白 1、α1-抗胰蛋白酶(α1-antitrypsin,α1AT或AAT)是具有蛋白酶抑制作用的一种急性时相反应蛋白,分子量为5.5万,等电点4.8,半寿期4天,电泳中位与α1区带,是这一区带的主要组分。正常参考值:成人780~2000mg/L、新生儿1450~2700mg/L。低血浆AAT可以发现于胎儿呼吸窘迫综合症,AAT先天缺陷易导致肺气肿和肝硬化。 2、α1-酸性糖蛋白(α1-acid glycoprotein,AAG)早期称之为乳清类粘蛋白,分子量4万,等电点2.7~3.5,半寿期5天,电泳位于α1区带,成人正常参考值:500~1500mg/L。AAG是主要的急性时相反应蛋白,在急性炎症时增高,在风湿病、恶性肿瘤及心肌梗死患者亦常增高,在营养不良、严重肝损害等情况下降低。 3、α1-脂蛋白分子量20万,成人参考值1700~3250mg/L。在严重肝病如肝硬化时明显降低,妊娠及高雌激素血症时可轻度增加。 4、甲胎蛋白(α-fetoprotein,αFP或AFP)主要在胎儿肝脏中合成,分子量6.9万,电泳位于α1区带,成人参考值:0.03mg/L(<30)。在成人AFP可以在大约80%的肝癌患者血清中升高,在生殖细胞肿瘤出现AFP阳性率为50%,在其他肠胃管肿瘤如胰腺癌或肺癌及肝硬化等患者亦可出现不同程度的升高。 三、α2区带球蛋白 1、结合珠蛋白(haptoglobin,HP)在血浆中与游离的血红蛋白结合,,是一种急性时相反应蛋白,分子量8.5~40万,等电点4.1,半寿期2天,电泳位于α2区带。正常参考值范围较宽为300~2150mg/L。急性时相反应中血浆HP增加,当烧伤和肾病综合症引起大量白蛋白丢失的情况下亦可见增加。血管内溶血和溶血性贫血、输血反应、谑疾时HP含量明显下降。此外,严重肝病患者HP的合成降低。 2、 2-巨球蛋白(α2-macroglobulin,α2MG或AMG)是血浆中分子量最大的 蛋白质,是由肝细胞与单核吞噬细胞系统中合成,分子量为62.5~80万,等电点5.4,半寿期5天,但当与蛋白水解酶结合为复合物后其清除率加速。成人参考值:1250~4100mg/L。在低蛋白血症时α2MG含量可增高,可能系一种代偿机制以保持血浆胶体渗透压。妊娠气及口服避孕药时血浓度增高,机制不明。 3、铜蓝蛋白(ceruloplasmin,CER)是一种含铜的α2糖蛋白,分子量12~16万,等电点4.4,半寿期4.5天,成人参考值:200~500mg/L。CER也属于一种急性时相反应蛋白。在感染、创伤和肿瘤时血浆CER增加,在营养不良、严重肝病及肾病综合症时(CER往往下降。妊娠期、口服避孕药时其含量有明显增加。该蛋白最特殊作用在于协助Wilson病的诊断,既患者血浆CER 含量明显下降,而拌有血浆可透析的铜含量增加。

蛋白质分选

四川师范大学生命科学学院 学科:细胞生物学 题目:蛋白质分选 班级:09级3班 姓名:王强 学号:2009090344

综述:蛋白质的分选 哺乳动物细胞含有上万种蛋白质,除线粒体和植物细胞叶绿体能合成少量蛋白外,绝大多数的蛋白质或者在细胞基质游离的核糖体上合成,或在糙面内质网膜结合核糖体上合成。由于蛋白质发挥结构或功能作用的部位几乎遍布细胞的各种膜区和组分,因此必然存在不同的机制进行蛋白质的分选,将蛋白质转运到细胞特定的部位发挥其功能。只有当蛋白质各就各位并组装成结构和功能复合体,才能参与细胞的各种生命活动。这一过程称为蛋白质的定向转运或称为蛋白质的分选。蛋白质的分选是一个涉及多种信号调控的复杂而重要的细胞生物学问题。 信号假说是1975年,G.Blobel和D.Sabatini等根据实验依据提出的,即分泌蛋白N端序列作为信号肽,指导分泌蛋白到内质网上合成,然后在信号肽的指导下蛋白质边合成边通过易位子蛋白复合体进入内质网腔,在蛋白质合成结束后信号肽被切除。 蛋白质分选主要是指膜结合核糖体上合成的蛋白质, 通过信号肽,在翻译的同时进入内质网, 然后经过各种加工和修饰,使不同去向的蛋白质带上不同的标记, 最后经过高尔基体反面网络进行分选,包装到不同类型的小泡,并运送到目的地, 包括内质网、高尔基体、溶酶体、细胞质膜、细胞外和核膜等。广义的蛋白质分选也包括在游离核糖体上合成的蛋白质的定位。蛋白质是由核糖体合成的,合成之后必须准确无误地运送到细胞的各个部位,此过程称为蛋白质的分选。

(一)蛋白质分选途径大体可分为两种: 1)翻译后转运途径:在细胞质基质游离核糖体上完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体及细胞核,或者成为细胞质基质的可溶性驻留蛋白和支架蛋白,通过该途径进入线粒体、叶绿体和过氧化物酶体等细胞器的蛋白质,必须在分子伴侣的帮助下解折叠或维持非折叠状态,这有利于通过膜上的输入装置。最近在酵母细胞也发现有些蛋白质在细胞质基质的游离核糖体上合成,然后再转运至内质网中,可见蛋白质的分选对细胞的生活有多么重要的意义啊。 2)共翻译转运途径:蛋白质合成在游离核糖体上起始后由信号肽引导移至糙面内质网,然后新生肽边合成边转入糙面内质网中,在经高尔基体加工包装运输到溶酶体、细胞质膜或分泌到细胞外,内质网与高尔基体本身的蛋白质分选也是通过这一途径完成的。 (二)蛋白质分选的四种基本类型: 1、蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。(其中进入内质网与进入线粒体、叶绿体和过氧化物酶体等的机制有所不同) 2、膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。其中涉及各种不同的运输小泡的定向转运,以及膜泡出芽和融合的过

蛋白质的分类

蛋白质的分类 Prepared on 22 November 2020

蛋白质的分类 摘要:蛋白质的种类繁多,结构复杂,所以分类也就各异。 一、按来源分类 蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。动物性蛋白质主要为提取自牛奶的乳清蛋白,其所含必需氨基酸种类齐全,比例合理,但是含有胆固醇。植物性蛋白质主要来源于大豆的大豆蛋白,最多的优点就是不含胆固醇。 二、按组成成分分类 按照化学组成,蛋白质通常可以分为简单蛋白质、结合蛋白质和衍生蛋白质。简单蛋白质经水解得氨基酸和氨基酸衍生物;结合蛋白质经水解得氨基酸、非蛋白的辅基和其他(结合蛋白质的非氨基酸部分称为辅基);蛋白质经变性作用和改性修饰得到衍生蛋白质。 简单蛋白质(simpleproteins),按溶解度不同可分为: ①清蛋白(albumins):溶于水及稀盐、稀酸或稀碱溶液,能被饱和硫酸铵所沉淀,加热可凝固。广泛存在于生物体内,如血清蛋白、乳清蛋白、蛋清蛋白等。 ②球蛋白(globulins):不溶于水而溶于稀盐、稀酸和稀碱溶液,能被半饱和硫酸铵所沉淀。普遍存在于生物体内,如血清球蛋白、肌球蛋白和植物种子球蛋白等。 ③谷蛋白(glutelins):不溶于水、乙醇及中性盐溶液,但易溶于稀酸或稀碱。如米谷蛋白和麦谷蛋白等。 ④醇溶谷蛋白(prolamines):不溶于水及无水乙醇,但溶于70%~80%乙醇、稀酸和稀碱。分子中脯氨酸和酰胺较多,非极性侧链远较极性侧链多。这类蛋白质主要存在于谷物种子中,如玉米醇溶蛋白、麦醇溶蛋白等。 ⑤组蛋白(histones):溶于水及稀酸,但为稀氨水所沉淀。分子中组氨酸、赖氨酸较多,分子呈碱性,如小牛胸腺组蛋白等。 ⑥精蛋白(protamines):溶于水及稀酸,不溶于氨水。分子中碱性氨基酸(精氨酸和赖氨酸)特别多,因此呈碱性,如鲑精蛋白等。

第七章 真核细胞内膜系统、蛋白质分选与膜泡运输

第七章真核细胞内膜系统、蛋白质分选与膜泡运输 细胞内区室化(compartmentalization)是真核细胞结构和功能的基本特征之一。细胞内被膜区分为3类结构:细胞质基质(cytoplasmic matrix)、细胞内膜系统(endomembrane system)和其他由膜包被的各种细胞器。 第一节细胞质基质的涵义与意义 在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质,称细胞质基质(cytosol,cytoplasmic matrix),约占细胞质体积的一半。 一、细胞质基质的涵义 细胞与环境,细胞质与细胞核,以及细胞器之间的物质运输、能量交换、信息传递等都要通过细胞质基质来完成,很多重要的中间代谢反应也发生在细胞质基质中。 在细胞质基质中蛋白质含量占20%~30%,形成一种黏稠的胶体,多数的水分子是以水化合物的形式紧密的结合在蛋白质和其他大分子表面的极性部位,只有部分水分子以游离态存在,起溶质作用。 细胞质基质中蛋白质分子和颗粒性物质的扩散速率仅为水溶液中的1/5,更大的结构则固定在细胞质基质的某些部位上,或沿细胞骨架定向运动。 细胞质基质是蛋白质和脂肪合成的重要场所。 在细胞质基质中,各种代谢活动高效有序的进行,各种代谢途径之间的协调有序以及所涉及的物质、能量与信息的定向转移和传递,这些复杂的生命过程都不是简单的“酶溶液”所能完成的。 二、细胞质基质的功能 许多中间代谢过程都在细胞质基质中进行。 细胞质基质另一方面的功能是与细胞质骨架相关。细胞质骨架作为细胞质基质的主要结构成分,不仅与维持细胞的形态、细胞运动、细胞内的物质运输及能量传递有关,而且也是细胞质基质结构体系的组织者,为细胞质基质中其他成分和细胞器提供锚定位点。 除此之外,细胞质基质在蛋白质的修饰、蛋白质的选择性降解方面也起着重要作用。 1、蛋白质的修饰 在细胞质基质中发生蛋白质修饰的类型主要有:(P173) ①辅酶或辅基与酶的共价结合。 ②磷酸化与去磷酸化,用以调节很多蛋白质的生物活性。 ③糖基化作用。 ④对某些蛋白质的N端进行甲基化修饰。 ⑤酰基化。 2、控制蛋白质的寿命 3、降解变性和错误折叠的蛋白质 4、帮助变形或错误折叠的蛋白质重新折叠,形成正确的分子构象。 第二节细胞内膜系统及其功能 细胞内膜系统是指在结构、功能乃至发生上相互关联、由膜包被的细胞器或细胞结构,主要包括内质网、高尔基体、溶酶体、胞内体、分泌泡等。 主要研究技术:超微结构的电镜技术、组分分离与分析的离心技术和用于研究膜泡运输和功能机制研究的遗传突变体分析技术。 一、内质网的形态结构与功能 内质网(endoplasmic retuculum,ER)由封闭的管状或扁平囊状膜系统及其包被的腔形成相互沟通的三维结构。内质网通常占细胞膜系统的一半左右,体积占细胞总体积的10%以上。 (一)内质网的两种基本类型 糙面内质网(rough endoplasmic reticulum,rER):多呈扁囊状,排列较为整齐,并附着有大量核糖体。 光面内质网(smooth endoplasmic reticulum,sER):多为分支管状,是复杂的立体结构。 微粒体(microsome):是在细胞匀浆和超速离心过程中,由破碎的内质网形成的近似球形的囊泡结构,它包含内质网膜和核糖体两种成分。 光面内质网是脂质合成的重要场所,细胞中几乎不含有纯的光面内质网,它们只是作为内质网这一连续结构的一部分。 (二)内质网的功能 1、蛋白质的合成是糙面内质网的主要功能

构成蛋白质的氨基酸种类

构成蛋白质的氨基酸种类、分子量、功能和作用(一) 序号分类名称 缩写及 分子量 生理功能 必需氨基酸 1 赖氨酸Lys 促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化; 2 蛋氨酸 (甲硫氨酸) Met 参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能; 3 色氨酸Trp 促进胃液及胰液的产生; 4 苯丙氨酸Phe 参与消除肾及膀胱功能的损耗; 5 苏氨酸Thr 有转变某些氨基酸达到平衡的功能; 6 异亮氨酸Ile 参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺; 7 亮氨酸Leu 作用平衡异亮氨酸; 8 缬氨酸Val 作用于黄体、乳腺及卵巢; 指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。 条件必需氨基酸 9 精氨酸Arg 它能促使氨转变成为尿素,从而降低血氨含量。它也是精子蛋白的主要成分,有促进精子生成,提供精子运动 能量的作用。 10 组氨酸His 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有 关。 人体虽能够合成,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。(近年很多资料和教科书将组氨酸划入成人必需氨基酸) 序号分类名称 分子量及缩 写 生理功能和作用 1

非必需氨基酸 11 丙氨酸Ala 预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。 12 脯氨酸Pro 脯氨酸是身体生产胶原蛋白和软骨所需的氨基酸。它保持肌肉和关节灵活,并有减少紫外线暴露和正常老化造 成皮肤下垂和起皱的作用。 13 甘氨酸Gly 在,尤其是在脊椎里,甘氨酸是一个抑制性神经递质。 14 丝氨酸Ser 是脑等组织中的丝氨酸磷脂的组成部分,降低血液中的胆固醇浓度,防治高血压 15 半胱氨酸Cys 异物侵入时可强化生物体自身的防卫能力、调整生物体的防御机构。 16 酪氨酸Tyr 是单酚酶功能的催化底物,是最终形成优黑素和褐黑素的主要原料。 17 天冬酰胺Asn 天冬酰胺有帮助神经系统维持适当情绪的作用,有时还有助于预防对声音和触觉的过度敏感,还有助于抵御疲 劳。 18 谷氨酰胺Gln 平衡体内氨的含量,谷酰胺的作用还包括建立免疫系统,加强大脑健康和消化功能 19 天冬氨酸Asp 它可作为K+、Mg+离子的载体向心肌输送电解质,从而改善心肌收缩功能,同时降低氧消耗,在冠状动脉循环 障碍缺氧时,对心肌有保护作用。它参与循环,促进氧和二氧化碳生成,降低血液中氮和的量,增强肝脏功能, 消除疲劳。 20 谷氨酸Glu 参与脑的蛋白和塘代谢,促进氧化,改善中枢神经活动,有维持和促进脑细 胞功能的作用,促进智力的增加 指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 备注:以上简单阐述了各种氨基酸在体内发挥的生理作用,没有阐述其药理和保健作用。以上分类是从营养学角度区分。 2

相关文档