文档库 最新最全的文档下载
当前位置:文档库 › 我国光通信有源器件产业的重大发展(二)

我国光通信有源器件产业的重大发展(二)

我国光通信有源器件产业的重大发展(二)
我国光通信有源器件产业的重大发展(二)

我国光通信有源器件产业的重大发展(二) 目前,在有源光器件领域, 高速光通信(40G/100G) 、宽带接入 FTTH、3G 及 LTE 无线通信、高速光互联、智能光网络中所应用的芯片、器件及模块的技术正成为竞相开发的 热点,而以光集成、高速光信号调制技术、高速光器件封装技术等为代表的光器件平台技术 也越来越被广大 OC 厂商所重视。 上接“我国光通信有源器件产业的重大发展(一)” 2.我国光通信有源器件的产业发展 我国从 70 年代开始了光电子器件的研究开发和产业化, 培养了大批有经验的工程师和技 术工人,有源器件方面以光迅科技等为代表的一批民族企业茁壮成长,与此同时也为外企在 国内建立生产基地创造了条件。从 2000 年以来,外企通过一些方式进入中国,如:①直接投 资,招聘人员,如 Oclaro,JDSU 等;②购并国内企业, 如 Neophotonics 购并 Photon,MRV 购并 Fiberxon 等; ③通过 CM、OEM 或 ODM 等方式建立生产基地。至今可以说,中国已成为 国际上最大的光电子器件生产基地,为世界光器件产业的发展做出了巨大的贡献。 尽管经历了金融海啸的影响,但近几年来国内光器件产业仍然保持着快速增长的势头, 有源光器件无论从传统的中低端器件, 还是 PON 器件、高速器件等各方面,已经形成了具备 国际影响力的产业群,但无庸讳言,在一些核心高端光电器件方面,和世界上领先的国家相 比, 还存在较大的差距。在光收发模块方面,目前中国有大约 200 多家企业,但真正具有从 芯片到器件到模块的垂直集成能力的厂家却屈指可数。 就产业规模而言, 按生产制造地划分, 2008 年中国生产制造的光器件已占全球 25%的市 场份额,其中大陆本土企业的销售约占全球光电元器件市场 17%的份额;而到 2009 年,仅大 陆本土光器件企业的市场份额就已经增长到全球的 26%,市场规模达到约 75 亿人民币,其 中有源部分约 51 亿,占据了相当大的部分。在全球的中低端光收发模块中,国内企业占据了 相对大的比例,据中国信息产业网数据表明,全球中低端有源光器件市场上光迅科技的份额 已超过三分之一,充分展现了中国品牌的世界影响力。 2.1 10G 以上高速器件 随着光传输网向更高速率、 更大容量、 更长距离的发展, 10G 产品的产业化以及 40G、 100G 产品的批量投放,新的高速率调制格式、相干探测等已经成为了我国有源器件发展的重点。 目前,就 10G 及 10G 以下的有源器件而言,除了 TIA、LDD、LA 等系列的集成芯片外,其 余部件包括 L D 芯片、PD 芯片、金属陶瓷件、WDM 滤光片等,均有国产化能力。近几年来 10G 产品市场需求大幅增

长,这刺激了 10G 模块的销售的大幅增长, 来自光迅科技的数据表明, 10G 产品销售的年增长率自 2008 年以来均达到了 100%以上, 成为了产品结构转型的重点方向。 就 40G/100G 系统而言,在 2009 年,40G 的系统应用只出现在骨干网中, 2011 年之后, 40G 甚至 100G 的系统逐步应用在骨干网、城域网中,只是在接入网方面维持在 10G 及以下速 率。同时来自 Lightcounting 的数据分析表明,在 40G 今后几年的增长中,来自线路端和客 户端的需求几乎是保持在同一水平上。 由于缺乏高端器件的相关核心资源和技术积累, 国内光器件厂家在 40G/100G 器件与模块 的开发上显然受到了种种局限,尤其体现在以 DP-QPSK 调制方式为代表的产品上,因为引入 了发射端的偏振模复用以及接收端的平衡相干探测等复杂的技术。但即便如此,国内还是有 少数厂家能够自主研发出 40G 的器件和 Transponder 收发合一模块,并且已将目光投向了更 高端的 100G 光电模块。 图 1 展示的是光迅科技在 40G 系列产品上的垂直集成资源的情况, 表 明了其从有源芯片、发射接收器件、一直到收发一体模块的垂直整合能力。
2.2 PON 器件 目前, 全球每年新增光纤接入宽带用户有几千万户, 我国的 FTTx 已经处在大量应用前期 阶段,xPON 的产品市场日趋火爆,同时市场对 PON 产品的低成本、大规模的可制造性、高可 靠度、向更高带宽平滑升级等的要求进一步提高。 中国光通信行业 2009 年的高增长已无疑异,步入 2010 年后,FTTH 催生的巨大增量市场 维系了中国光通信行业的高速增长态势。事实上,FTTH 的规模增长,2008 年已经显现,其后 的驱动因素则是:政策支持;运营商搁置了技术制式争议,明确当前以 EPON、GPON 并举的发 展思路。 国家七个部委于 2010 年 3 月联合印发了《关于推进光纤宽带网络建设的意见》 ,计划在 3 年内投资于光纤宽带网总额超过 1500 亿元。值得一提的是: 广电系统未来进行的双网改 造和 NGB 实质上与电信网络差异并不大,都是基于 PON 的架构,加上未来物联网的支持,上 述预期应该是较为客观的。 受上述大环境的影响, 国内 PON 模块厂家的业务呈现蒸蒸日上的势头,据专家分析, FTTx 这个势头至少还能火 10 年,目前已经成为了光通信市场上最大的一块蛋糕。在国内,已有多 个厂家拥有系列的 EPON/GPONONU/OLT 光收发模块产品线, 在很多产品的出货量上基本占据了 全球的半壁江山,但其中真正拥有完善解决方案,能够完全采用自主研制的 FP/DFB/PIN/APD 管芯,在 PON 系列上具备垂直整合能力,并且已经规模化生产的厂家,却是凤毛麟角,这也 是许多专家大力呼吁全力打造&

quot;中国芯"的原因, 同时也进一步表明, 打造中国芯, 就要从 PON 器件开始。 为了适应模块的小型化封装要求,GEPON 模块用的器件 BOSA( Bidirectional Optical Sub-Assembly) 的体积也越来越小了,即使是采用 SC/UPC 光接口插拔的 BOSA 器件,也可方 便地应用于 SFP 的小型化封装中(参见图 2) 。 受到各种带宽需求的驱动,光接入网势必要向下一代接入网演进。目前国内厂家都在关 注速率达到 10Gb/s 的 PON, 并且在 10G EPON 以及 XG PON 的技术、产品的研发上作了非常 积极的投入。 举例来说,由 GEPON 向 10G EPON 的平滑升级可分四步进行: 第一步:ONU 向 10G/1G 转变,而 OLT 则向 10G/1G 单纤双向转变; 第二步:ONU 向 10G/10G 转变,而 OLT 则向 10G/10G 单纤双向转变; 第三步:ONU 向 10G/1G 转变,而 OLT 则向 10G/1G 单纤三向转变; 第四步:ONU 向 10G/10G 转变,而 OLT 则向 10G/10G 单纤三向转变; 目前国内大多数的器件还集中在第一、第二和第三步,器件的典型外形。而对于将来模 块的封装形式,业界普遍希望是 OLT 端采用 XFP,ONU 端采用 SFP+。但目前在 OLT 端由于发 射是 1577nmEML 激光器,即使暂不集成 1490nm 的 1G 的激光器,实现 XFP 封装也是对 OLT 器 件的一个挑战。 至于 XG PON 的器件, 发展态势与 10G EPON 大致类似。目前,国内厂家的光模块光器件 的研发主要集中在 XG-PON1, 即: 非对称的 10G/2.5G 的 GPON 上, 该产品与非对称的 10G/1G EPON 在技术上有细微差别。 2.3 ROF 器件 在国内, 无线通信的发展随着三大运营商的激烈竞争, 争夺的战场由 3G 一直向 LTE 延伸。 根据工信部公布的数据,全国建设的 3G 基站数超过了 43 万个, 投资超 1800 亿元。而对于
4G LTE 来说,要实现相同的覆盖范围,将布置更多的基站。目前,3G 和 LTE 的网络大量采用 的是 BBU+RRU 分布式光纤基站的技术方案,而 BBU 和 RRU 都要采用光模块。 目前,在宽频光收发器件、模块的研究方面,50MHz~3GHz 模拟传输光电器件与收发模 块、CATV 用带智能预失真处理的光发射模块、2G、3G 光纤直放站光收发合一模块、GPS 及卫 星信号接收光电收发模块等相关产品均已批量投放市场,其典型外形可参见图 4。 为了进一步解决 ROF 的 BBU 以及 RRU 在 400M~4GHz 射频工作频段的器件、 模块在商用阶 段的重大性能和关键质量问题, 光迅科技与大唐移动、 浙江大学等单位开展了联合科技攻关, 并着力解决针对密集小区组网应用时的一些关键问题。 2.4 集成器件 光电集成技术作为一种平台技术,几乎可以应用到光通信领域中的每个角落。刚开始, 绝大多数厂家都将光集成器件的开发集中在了出货量最大的 FTTx 产品上, 但通

过几年的实践 发现,由于技术和工艺离大规模的商用还有相当大的距离(如采用 PLC 技术的单纤双向器件 与模块) , 致使光集成产品的成品率和成本难以达到预期的效果, 因此难以真正替代传统的同 轴工艺封装的产品。 虽然很多企业正在加大力量继续开发 FTTx 用光电集成器件和模块, 但在 目前这种形势下,CSFP 产品似乎成了光电集成器件的新的热门研究方向。 CSFP(Compact Small Form Factor Pluggable)即是紧凑型 SFP,是在现在流行的 SFP 封装基础上,发展更为先进、更为紧凑的 CSFP 封装。通过采用双通道、四通道的设计,CSFP 采用现有 SFP 通用接口,但将外形尺寸缩小到现有工业标准的一半和四分之一,通过组合还 可灵活配置通道数量。 如果继续采用传统分立元件方案,那么在技术上将很难实现上述功能。 CSFP 结合高集成度的光电集成技术, 在拥有 SFP 所有的技术优势的基础上,可大幅度减小 光收发模块和光系统设备的外形尺寸, 显著增加通信端口密度及数据吞吐量, 降低系统成本, 可望在数据通信市场上大显身手。国内企业中, 已经有光迅科技、海信分别成为 CSFP MSA 国际联盟的第 5、第 8 家正式成员,并且正在积极开发该类产品,相关的国内行业标准也正 在积极的准备之中。 从图 5 可以看到 CSFP 器件与模块的一些基本情况。 国内企业中,已经有光迅科技、海信分别成为 CSFP MSA 国际联盟的第 5、第 8 家正式成 员,并且正在积极开发该类产品,相关的国内行业标准也正在积极的准备之中。 2.5 光电互连器件 中国的天河-1A 超级计算机成功晋级为全球 HPC500 强,它采用了数万个 AOC(Active Optical Cable)即有源光缆产品连接整个系统的交换机 /路由器。该系统中,高达 80Gb/s 的网络连接和两个 4X10G AOC 绑定在一起,以满足带宽需求。 权威调查机构 Ovum 在对全球光通信区域市场调查后, 得出的一个这样的结论: 并行光电 技术是一项决定性的重大技术。然而,在此技术领域内,国内企业的基础却非常令人担忧。 由于缺乏核心的高速 VCSEL 芯片,以及相应的器件阵列的耦合封装技术积累,光互连产品几 乎为国外企业所垄断。近年来,国家也正在大力支持包括片上光互连等高端技术的投入,从 目前的形势来看,在加大光互连的投入的同时,国内企业在电互连器件、模块方面还是非常 有条件取得突破的。图 6 为电互连模块示意图,单个模块速率已经可以高达 40Gb/s,国内已 经具备批量的生产能力,在短距离的通信互连方面的优势十分明显。
结语 历史上,光纤通信对于现代通信的最大贡献就在于根本上解决了干线传输问题。下一步
光纤通信要

光通信中的重要技术及发展趋势

光通信中的重要技术及发展趋势 [摘要] 随着信息化社会的到来,通信技术也得到了日新月异的发展。在过去的几年中,人们对传输速率的要求越来越高,使用高速率数据传输的用户数量每年都在递增,而光通信技术在过去几年中也有了长足的发展,光纤通信凭借其传输高速率的数据,成为广域通信网的骨干网络,如今在广域通信网中绝大部分是通过光纤传输的。本文主要讨论在光通信中的主要技术以及未来光通信的几个发展趋势。 [关键词] 光通信光接入光交换全光网无线光通信 随着用户对接入带宽要求的日益增加以及三网融合后对数字高清信号的传送,对运营商接入侧及骨干核心传输有了更高的要求,而光通信在其中起了举足轻重的作用,光通信技术的发展决定了电信业的未来方向,近几年,不论在接入层以及核心层,光通信技术都有了长足的发展。 1.在接入层: 1.1无源光网络(PON) 无源光网络主要用于解决宽带最终用户接入终端局的问题,由于这种接入技术使得接入网的局端(OLT)与用户(ONU)之间只需光纤、光分路器等光无源器件,不需租用机房和配备电源,因此被称为无源光网络。无源光网络以其容量大、传输距离长、较低成本、全业务支持等优势成为热门技术。目前已经逐步商用化的无源光网络主要有TDM-PON(APON、EPON、GPON)和WDM-PON。 无论是核心网、传输网还是接入网,其发展的首要因素就是业务,是终端用户的需求。从业务发展现状来看,高带宽的消耗业务逐步涌现,带宽提速成为迫切需求,而PON以其容量大、传输距离长、较低成本、全业务支持等优势成为宽带接入的热点,它在提供业务组合的同时,实现了高可靠性和高性能,已经成为了下一代光接入网的发展方向。 1.2无线光通信技术 从光纤骨干网到用户之间的”最后一英里”,如果铺设光缆,不仅花费大而且耗时;许多无线通信技术可以解决”最后一英里”的问题,但是这些技术需要向无线电管理委员会申请频率执照,不仅要使用户支付大量的频率占用费,而且申请也要花费数月的时间。无线光通信因为无需频率申请,机型小方便架设,能够简单的解决最后一英里的问题,为宽带接入的快速部署提供一种灵活的解决方案。 无线光通信系统是以大气作为传输媒质来进行光信号的传送的。只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,就可以进行通信。一个无线光通信系统包括三个基本部分:发射机、信道和接收机。在点对点传输的

光通信器件产业全球现状

光通信器件产业全球现状 历经近1个月的艰难谈判,2018年5月27日,来自外媒的报道称,美国即将取消对中兴的制裁。在中兴终于松口气的同时,却不得不面对特朗谱的“不平等条约”(注,6月18日,美国参议院通过法案支持继续对中兴制裁) ——中兴基站或者其他通讯设备所需要的零部件,必须购买美国的,这意味着中兴自主研发之路将更加艰难,同时也为中国光通信器件产业发展带来了更大的阻力。 01 【光通信器件产业链】 光通信产业链主要包含光通信器件、光通信系统、光通信应用三部分,上游还包括光学、半导体、装备、测试仪器仪表配套行业。其中光通信器件包含的典型产品如图: (备注:图片数据来源“金鸡湖智库“) 产业链中有源光收发模块的产值最大,约占65%,不仅规模大,它的性能也主导着光通信网络的升级换代,在接入端、传输端等不同细分市场发挥着至关重要的作用。 02 【光通信器件产业全球现状】 根据咨询机构Ovum的数据,2015-2021年,全球光通信器件市场规模总体呈增长趋势。2016年,全球光通信器件市场规模达96亿美金,并始终保持快速增长,预期2020年收入规模将达166亿美元。 光通信器件领域厂商众多,集中度低,市场份额相对分散。全球高端光器件晶圆及芯片技术主要由由美国Finisar, Lumentum, ACaCia,NeoPhotoniCs, OClaro,日本NEL等厂商掌握。从产品技术看,有源光芯片、器件与光模块产品是全球技术研发热点。全球主要光器件厂均积极布局有源光芯片、器件与光模块产品,并达到100Gb/s速率以上水平。中国企业在无源器件、低俗光收发模块等中低端市场份额较大,但高端市场与其他国家相比差距较大。 03 【光通信器件产业中国现状】

光通信背景

我国拥有全世界最大的光通信市场,却只能造就一些在低端市场竞争的企业;拥有最完整的光通信产业链,但核心的光器件却依然靠进口。一个光通信大国却不是光通信强国,不得不让人担忧。 “雄州雾列,俊采星驰,台隍枕夷夏之交,宾主尽东南之美。”用《滕王阁序》中的这段话来描述通信展期间的光通信企业,可谓应其时、逢其景。得益于中国通信业大发展,多数光通信企业都已经颇具规模,在国内乃至国际都有很大的影响力。巧的是,通信展也是时维九月,与王勃作序时间相同,这些光通信企业也基本来自江浙、深圳一带。 上演盛况 本次通信展,我国光纤光缆、线缆制造的代表企业为烽火科技、亨通集团、俊知集团、中利集团。这些企业在通信行业都有多年的积累,他们所展示的产品已经覆盖了整个通信行业对于线缆的需求:从电信到广电,再到航天、海洋、能源等,凡是需要线缆的地方都能完成覆盖。 值得一提的是,亨通集团本次展出了其具备完全自主知识产权的光纤预制棒,将光纤预制棒刻上了中国印记,可谓民族企业技术研发的典范。美中不足的是目前产能只能自给自足,对于我国仍有60%光纤预制棒靠进口的局面尚没有带来直接的改变,但相信这只是时间问题。 此外,本次通信展上所有的光纤光缆企业均无一例外地展示了其ODN整体解决方案。今年初,中国电信发布了“光网城市”战略、中国联通(600050,股吧)也启动了FTTH工程。一石激起千层浪,行业内所有的企业都迅速转型,能生产ODN无源器件的都在扩容;不能生产的纷纷通过并购、建厂等方式参与进来。国内企业发现市场的反应之快令人惊叹。 但如此迅速的扩产,也充分说明了一个问题:我国的ODN市场门槛太低,所生产的产品没有太多技术含量,市场很容易饱和。大部分厂商只能靠着频繁打价格战来保证市场份额。

论述光纤通信系统的原理及技术发展

论述光纤通信的基本原理、系统构成与技术发展。 随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。 光纤通信的基本原理 光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。光纤传输基于可用光在两种介质界面发生全反射的原理。光纤是由单根玻璃光纤、紧靠纤心的包层、一次涂履层以及套塑保护层组成。纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高,因此当光从折射率高的一侧射入折射率低的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。 由发光二极管LED 或注入型激光二极管ILD 发出光信号沿光纤传播,在另一端则有PIN 或APD 光电二极管作为检波器接收信号。为确保信号的有效传输,在光发送端之前需增加光放大器,以提高入纤的光功率,在接收端的光电检测器之后将微信号进行放大,以提高接收能力。 光纤通信系统构成 (1)光发射机 光发射机的功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成,光源是光发射机的核心。光发射机的性能主要取决于光源的特性,对光源的要求是:输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。目前广泛使用的光源有半导体发光二极管(LED)、半导体激光二极管(LD)和动态单纵模分布

光通信产业及相关上市公司分析

光通信产业及相关上市公司分析 我国光通信行业的成长性刚刚展现出来,而且在未来2-3年光通信行业可能会出现快速增长。 光通信传输设备是光通信行业发展前景最好的领域,年平均增长率在50%左右,是光通信行业重点投资领域。其次是光无源器件和光有源器件:光无源器件的成长性在30%左右,亦是优先考虑的投资领域;光有源器件的成长性在15-20%左右,但光有源器件技术含量较高,比传输设备和光无源器件有较高的技术壁垒,利润率较高。光纤近年来的平均成长率在20%左右,有较好的成长性。发展前景十分广阔 随着人们对网络带宽需求的爆发性增长和科技的飞速发展,信息服务业迅速膨胀,鉴于光通信传输网络是未来宽带移动通信和数据通信的基础传输网络,必然成为各国通信行业发展的重点。 光通信传输网络是利用光束通过光纤传送语音、数据及视频流量,在突破带宽瓶颈及消除网络延迟方面成效显著,能够从根本上提高网络服务性能、减少开支、增强服务弹性。 光通信产品可分为四类。即:①光纤光缆、②传输设备、③光有源器件、④光无源器件。光纤光缆是光信号传输的物理载体;传输设备是整个光通信传输系统的核心设备,支撑光通信网络传输功能的正常运行;光有源器件是指在光通信网络中具有光电能量转换功能的器件;光无源器件是指在光通信网络中起连接作用的器件。 据权威部门统计分析,世界光通信行业不同产品在未来几年都有较大的增长(见表1)。 由(表1)的数据可以看出,光通信行业发展最好的领域传输设备,年平均增长率在50%左右;其次是光无源器件和光有源器件,光无源器件的成长性在30%左右;光有源器件的成长性在15-20%左右。但光有源器件技术含量较高,比

国内光通信产业发展现状分析

国内光通信产业发展现状分析 一、光电线缆及光器件发展成就 中投顾问在《2017-2021 年光通信行业深度调研及投资前景预测报告》中指出,2011-2015 年,我国光电线缆及光器件行业企业紧跟国家发展战略部署,围绕创新驱动、转型发展作出了艰苦努力,取得令人鼓舞的成绩。截止十二五末,行业企业完成工业产值同比增加26%。对国家的税收贡献达900.07 亿。行业31 家上市公司的总销售规模达到2205.78 亿人民币。占整个产业比例41.3%。产业资本边界清晰,以民营+上市为主的格局基本形成。产业结构不断优化,光纤预制棒、光纤光缆、光器件、战略新兴产业和传统的同轴电缆、数据电缆、铁路信号电缆、高频电子线缆组件等五大产业格局市场竞争能力不断提高。 我国光纤预制棒、光纤、光缆产品,光纤预制棒十二五末打破国外垄断国产化率由不到30%提高至约80%,预制棒技术实现了群体突破,国内总的预制棒产能超过5000 吨。已成功开发出了自主知识产权的光纤预制棒制造设备。总规模已达935 亿人民币。光纤、光缆产能充足,供应全球市场份额的一半以上。光纤、光缆的产能分别是2.4 亿公里和2.8 亿芯公里。企业总数达150 家以上,其中规模较大的光缆企业在40 家左右,能同时生产光纤、光缆的企业在20 家左右,光纤预制棒、光纤及光缆一体化的企业有10 家左右。已经成为全球光纤光缆第一产能大国,同时一些领军企业已经进入了国际领先行列。实现了光纤拉丝成套设备国产化,而且部分光纤拉丝成套设备开始销售到海外。生产OPGW、OPPC 和海光缆等光单元用的焊管生产线基本实现国产化。该产业集群十二五未共完成销售收入1330.63 亿人民币,占

光器件基础知识

光器件基础知识 目录 一、光纤通信基础 (2) 1、光纤通信的概念 (2) 2、光纤通信的优点 (2) 二、光纤基础知识 (2) 1、光纤的结构 (2) 2、光纤的工作波长 (3) 3、光纤的分类 (3) 3.1按照光纤的模式分类 (3) 3.2按照光纤的材料分类 (3) 3.3按照光纤的折射率分类 (4) 4、光纤的尺寸 (4) 5、光纤接头类型 (5) 6、光功率的换算 (6) 7、光纤损耗 (6) 三、常用光器件介绍 (6) 3.1法兰盘 (6) 3.2光衰减器 (7) 3.3光模块 (8) 2、光模块的主要参数 (8) 3、光模块的种类 (9) 四、光器件的工程应用 (11) 1、单收光模块的使用 (11) 2、双纤双向模块的使用 (11) 3、长距离高灵敏度模块的使用 (11) 4、QSFP+ MPO模块的使用 (12) 5、万兆高速电缆的使用 (12) 六、光模块和光纤使用注意事项 (13) 七、光模块和光纤的故障排查方法 (14) 八、光功率计的使用 (14)

一、光纤通信基础 1、光纤通信的概念 所谓光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。一般由数据源、光发射端、光纤、光接收端组成。 2、光纤通信的优点 1)通信容量大,比传统的电缆、微波等高出几千乃至几十万倍的通信容量。 2)传输距离远,光纤具有极低的衰耗系数,传输距离可达一千公里以上。 3)保密性能好,光信号不具备向外辐射的特点,不易被侦听。 4)适应能力强,具有不怕外界强电磁场的干扰、耐腐蚀等优点。 5)体积小、重量轻。原材料丰富、价格低廉。 二、光纤基础知识 1、光纤的结构 如上图所示,光纤呈圆柱形,主要由纤芯和包层和保护套三部分组成。 1、纤芯:位于光纤的中心部位,成分为高纯度的二氧化硅,掺有极少量杂 质,折射率较高,用来传送光。 2、包层:位于纤芯的周围,其成分也是含有极少量掺杂质的高纯度二氧化 硅,折射率较低,与纤芯一起形成全反射条件。 3、涂覆层:光纤的最外层,由丙烯酸酯、硅橡胶和尼龙组成,强度大,能

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

光通信器件-光开关

一、光开关的概念及作用、性能参数与分类 1.光开关的概念及作用 一种具有一个或多个可选择的传输端口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。 目前主要是:光交换系统和主备倒换,即利用光开关技术实现全光层的路由选择、波长选择、光交叉连接以及自愈保护等功能。1,将某一光纤通道的光信号切断或开通;2,将某波长光信号由一光纤通道转换到另一光纤通道去;3,在同一光纤通道中将一种波长的光信号转换为另一波长的光信号(波长转换器) 多信道光通信系统还需要光插/分复用技术和快速的网间信息交换技术以及光的交叉连接(OXC)技术都需要超高速大规律集成的光开关矩阵。 网络监视功能:使用简单的13N光开关可以将多纤联系起来。当需要监视网络时,只需在远端监测点将多纤经光开关连接到网络监视仪器上(如OTDR),通过光开关的动作,可以实现网络在线监测。 光器件的测试:可以将多个待测光器件通过光纤连接,通过13N光开关,可以通过监测光开关的每个通道信号来测试器件。 光传感系统:空分复用的光纤传感系统,节约解调系统,降低成本。 2.光开关的性能参数 光开关的特性参数主要有插入损耗、消光比、开关时间、回波损耗、隔离度、远端串扰、近端串扰等。 插入损耗:输入和输出端口间光功率的减少。 回波损耗:从输入端返回的光功率与输入光功率的比值。 隔离度:两个相隔离输出端口光功率的比值。 消光比:端口处于导通和非导通状态的插入损耗之差。 开关时间:指开关端口从某一初始转为通或断所需的时间从在开关上施加或撤去转换能量的时刻起测量。 3.光开关的分类 驱动方式可分为:机械式光开关、非机械式光开关。 原理可分为:机械光开关、热光开关、电光开关和声光开关。 交换介质可分为:自由空间交换光开关和波导交换光开关。 二、机械式光开关 这是靠微型电磁铁或压电器件驱动光纤或反射光的光学元件发生机械移动,使光信号改变光纤通道的光开关。传统机械光开关的工作原理:通过热、静电等动力,旋转微反射镜,将光直接送到或反射到输出端。特点是开关速度比较慢、性价比好,在很多领域有市场前景,但体积大、不易规模集成的缺点限制了其在未来光通信领域的应用。在此基础上,近几年发展很快的是MOEMS光开关,它是微机电系统和传统光技术相结合的新型开关,特别是具有光信号的数据格式透明、与偏振无关、差损小、可靠性好、速度快、容易集成的优点。下面介绍几种机械式光开关。 1.移动光纤式光开关 移动光纤式光开关结构简单、重复性好、插入损耗低。移动式光纤的输入或输出端口中,一段光纤固定,而另一端光纤式活动的。通过移动活动光纤,使之与固定光纤中的不同端口相耦合,从而实现光路切换。如图1所示

光通信的历史及其发展现状

光通信的历史、现状、发展趋势 06007235 方云龙光通信的历史: 原始形式的光通信是通过中国古代的“烽火台”报警,欧洲人用旗语传送信息。1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。 1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。 1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向。 1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。 1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。在以后的10 年中,波长为1.55 μm的光纤损耗:1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km,接近了光纤最低损耗的理论极限。 1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。1977 年,贝尔实验室研制的半导体激光器寿命达到10万小时。1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 μm的连续振荡半导体激光器。 1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980 年,美国标准化FT - 3光纤通信系统投入商业应用。 1976 年和1978 年,日本先后进行了速率为34 Mb/s的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线。 随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。第一条横跨太平洋TPC-3/HAW-4 海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。 现状: 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH(光纤到户)用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM(Wavelength Division Multiplexing:波分复用)和PON(Passive Optical Network:无源光纤网络),这两个已经相对比较成熟。 今天,40Gbps的光通信系统得到广泛商用。作为新一代光网络的领军技术,40G商用大门的开启,满足日益增长的带宽需求同时,还为ROADM、先进光调制技术、超强EFC等新技术的应用赢得了市场发展空间,并为全光网的演进、升级创造了条件。不过,这只是40Gbps的一个开始,要承担起未来传输主力的重任,40G还需要很多路要走。现在对40Gbps,乃至更高速率的100Gbps而言,光学硬件的发展是关键,同时还必须与其他光通讯技术协同发展,包括复杂的调制技术、信号处理技术、并行接口、主动追踪和补偿技术,这些条件

光通信技术现状及其发展趋势探讨

光通信技术现状及其发展趋势探讨 前言:光通信是以光导纤维(即光纤)为传输媒质,以光波作为载波的一种通信方式。光通信涉及的技术领域包括光器件、光传输、光信号处理、光交换技术、光网络技术以及光网络的融合技术等等。光通信正朝着高速率、大容量。长距离、网络化、智能化的方向发展。本文主要对光通信技术现今的发展状况,以及在今后的发展趋势进行了简要的阐述。 一、目前光通信技术的发展现状 1.1密集播分复用技术 密集波分复用技术简称DWDM,是光纤数据的一种传输技术,该种技术是利用激光的波长,按照比特位并行传输或字符串行传输方式在光纤内传送数据。DWDM是光网络的重要组成部分,它可以让IP协议、ATM和同步光纤网络、同步数字序列协议下承载的电子邮件、视频、多媒体、数据和语音等数据都通过统一的光纤层传输。在被开发后,基于其能在很大的程度上提高了光纤系统对于信息数据的传输量,而被广泛关注与应用。 1.2光纤接入网技术

光纤接入网,指的是在接入网过程中,利用光纤为核心的传输媒质,以此来实现用户数据信息传递的形式。光纤接入网并不是传统意义方面光纤传输系统,实际上是针对接入网环境中,所设计的较为特殊的光纤传输网络。光纤接入网主要有以下几方面的特点,其一是网络覆盖范围一般较小,在实际应用过程中不需要中继器,基于众多用户的信息数据共享光纤,导致光功率及波长的配比,存在需要利用光纤放大器来进行功率补偿的状况。其二是满足各种宽带业务的传输,并且传输质量好、数据信息传递的可靠性较高。其三是光纤接入网所应用的范围较为广阔。其四是,该项技术投放使用的过程中投资成本大,在网络管理方面较为复杂,在远端供电方面较难。 1.3 EDFA技术 EDFA是掺铒光纤放大器的缩写,是对数据信号光放大的有源光器件。基于EDFA工作时的波长为1550nm,与光纤的较低损耗波段较为一致,并且该种技术研发至今比较成熟,在实际中得到广泛的应用。掺铒光纤就是EDFA的核心元件,掺铒光纤主要将石英光纤当做基质材料,在其纤芯当中融入了相应比例稀土原素铒离子。在一定的泵浦光注入到掺铒光纤中时,铒离子从低能级直接被激发到高能级,基于铒离子在高能级时寿命较短,这就使得较快以非辐射跃迁的状态,直接到较高能级上,与此同时在该能级以及低能级间迅速形成粒

中国光通信芯片发展现状及分析

中国光通信芯片发展现状及分析 我国大力推进信息化建设将极大地拉动光通信行业的发展,随着3G网络、4G网络、FTTx光纤接入、智能电网、广电网络、三网融合、“宽带中国”等多项信息化工程的实施,我国光通信行业将出现爆炸式增长,如中国电信在2012年新增光纤到户2500万,新增固定宽带接入互联网家庭用户1600万。在光网建设计划中,中国电信计划投入400亿资金,从事光纤基础设施建设等工作,加速推进光纤入户。光通信网络建设的加速必将极大带动光通信芯片市场的快速增长。 通信基础设施建设受到中国政府高度重视,各大运营商均已加速光通信网络建设。中国政府将下一代互联网、数字电视网与第三代移动通信网络并列作为扩大内需的重大投资方向,预期总投资将超过6000亿元。在3G、4G、FTTx、三网融合、智能电网等因素的推动下,光通信产业相对于电信运营、服务等通讯行业的其他子行业将保持15%以上高速发展。在光纤通信领域,目前中国市场已经占到全球份额的30%。 中国光通信芯片行业发展现状分析 受移动互联网、三网融合等新型应用对于带宽需求推动,中国光通信市场开始进入高速成长期。由于中国光通信

网络投资额高、建设规模大、建设计划明确,未来将持续快速增长。光通信市场需求高涨也带来了对上游芯片产品的需求。中国市场的光通信芯片主要依赖外国供应商。目前,在芯片领域已经有少数中国企业取得了突破,但是仍主要是低端产品。在GPON芯片领域,华为、中兴等设备厂商都自行参与了芯片的设计。国内一些领先的光器件企业也开始向上游拓展,在芯片领域取得了一定的突破,但是还没有形成规模。 光器件的生产具有劳动密集型的特征,中国企业拥有成本优势,主要从事光器件的封装工作。由于在光通信芯片方面主要依赖进口,因此中国光器件企业在市场需求高涨的同时利润空间并不大,芯片成为下游企业竞争力的一个制约因素。中国光通信芯片产业未来发展可能会主要来自下游光器件、系统企业向上游的延伸。在上游的芯片和下游的系统设备领域均比较集中的情况下,光器件厂商有较强的动力向上游拓展,一些实力较强的光器件厂商将会在上游取得突破。

光通信器件

光通信器件

主要研究内容: ?光通信为现代通信技术的重要分支之一,也是目前国内外通信技术发展的热点技术。 ?属于通信与光电子技术相结合的应用基础学科。包括现代光学与光电子学、光通信、光通信技术和激光技术等。 ?本方向以光电子学及激光技术为理论基础,重点研究光电通信器件及系统等关连技术;光电传感等光信息检测及传输技术。

主要研究内容 ?1.侧重于光纤通信系统关连技术、光纤通信器件技术、光纤传感技术等方面的基础和应用研究。 ?2. 应用先进的FBG光纤传感技术,尤其是其网络化技术的研究。同时,还侧重于光纤传感与光信息处理,光纤传感技术与分布式光纤传感系统的结构原理和器件的研制,研究光传感器设计与光电信息检测等光信息传输技术。 ?3. 光通信网中关键技术和关键器件的研究。光电器件特性研究以及噪声在半导体器件可靠性评价中的应用。 ?4. 新型光纤放大器,新型光纤激光器,全光OADM, 非线性光子晶体光开关等新型全光通信器件研发。

光子作为信息载体之特色及优势 光子技术优越性---- (1)器件响应和系统处理速度快。 光开关器件响应时间最快达10-9s即纳秒(ns)量级,几乎到了其固有极限值。 利用多重波长和并行互联及并行处理,能克服冯·诺依曼结构的电子计算机的瓶颈效应;由于光可以进行并列处理,且没有阻抗匹配和必要布线回路,故可作高速信号处理。

光子作为信息载体之特色及优势 光子技术优越性---- (2)传输容量大 光子信息系统的带宽和连接性的彻底改善使系统的信息交换和传递更加通畅。这一优异特性已在现代光通信中得以充分体现。光纤通信容量从原理上讲比微波通信大1万倍到10万倍以上,一路微波通道可传送一路彩色电视或1千多路数字电话信号;而一根光纤则可同时促进传送1千多万甚至1亿路电话。

XXXX年光通信技术发展趋势和预测

我们对2011年光通信技术发展趋势和预测如下: ·光通讯行业更加精简,但是仍然期待着更完善的供应链 那些在经济低迷前期和中期合并的网络设备制造商将在2011年发挥明显的优势,因为届时越来越少的大型企业能够独自赢得网络业务的大单。预计2011年,阿尔卡特-朗讯和华为将角逐第一的位置,而Ciena凭借对北电网络光纤业务的收购将加速缩小与前者之间的差距,紧随其后。 预计2011年,网络设备制造商将控制其外包光元件供应商的数量,采取精简供应链的战略。因此,除非那些规模较小的元件供应商能提供独一无二且切合需求的产品,否则2011年对他们来说,将是比较困难的一年。 此外,光产品供应商在2011年将继续面对供应链中需求波动的挑战。所有供应商都将逐步认识到缩短回收时间、提高预测的精确度和落实库存保有战略需求的重要性。因此,即使面对持续大幅度的增长需求,供应链的改善将使大部分主要产品的交付时间缩短至一到两周的时间。 ·感知型网络即将登场 2011年将研发出能促进网络传输层向前演进的组件和系统。研发这些新型光产品的最终目的是为了创建感知型的网络,它们拥有

灵活的光子层,能够有意识、完全无缝地应对不断变化的流量情况、新型应用或者突发的带宽波动。 目前行业里最热门的三大关键词——任何波长(colorless)、任何方向(directionless)和任何竞争(contentionless)——都是感知型网络的重要组成部分,它们所具备的特征赋予了任意类型的网络波长在任何方向都能达到任意目的地的能力。 目前,业界正在研发复杂的光学转换器件,来构建网络和节点架构,进而实现自动端到端波长、转发器和路由的灵活转换。这些新组件和体系架构将建立在波长选择开关(WSS)的基础上并完善WSS,成为灵活光网络的核心结构单元。 此外,我们认为,功能集成式光电路板的受关注度将越来越高,因为它可以将更多的光功能和硬件集成到体积更小的产品中,而这一优势亦将促使网络设备生产商加速将其应用于各自的开发流程中。这种线路卡已被证明能通过子模块层面的集成提供显著的成本和密度优势。 我们预计,有望在2013—2014年间,实现现有网络向包含以上光元件的感知型网络演进。 ·传输更快速、更灵活

光纤通信发展与现状解析

公选课课程论文 (2010 -2011 学年第二学期光纤通信发展与现状 学生:周丹丹 提交日期:2011 年 4 月 18 日学生签名:周丹丹 光纤通信发展与现状 周丹丹 摘要:

本文通过介绍及时、准确全面地获取信息在当今这个竞争时代的重要性,指出光纤通信与我们的生活息息相关对我们的生产和生活中起到了相当关键的作用。并简单介绍了了国际光纤通信四十多年来的发展历程,并进一步描述了自 1960年光纤之父高锟等人首先提出了用低吸收的光纤做光通信至今,光纤通信的发展。并具体针对在我国出现不久的 3G 手机上网和手机网上银行做了一些介绍,并提出自己的一些观点和看法。最后结合现状和相关文献对光纤通信未来的发展趋势和方向做一些介绍。 关键字:光纤通信、发展、手机、 3G 、光联网 一、信息的重要性 回顾历史,古人烽火狼烟、快马加鞭、鸿雁传书……这些历史典故都告诉我们一个道理——只有具备及时获取全面、准确的信息,把握动态、解决问题的能力,才能抓住机遇、才能充分展示和发挥自己的才华、扬长避短,取得成功。 一直到信息大爆炸的今天,竞争日益激烈。各个国家、企业甚至个人想要在竞争中掌握主动权,就一定要及时、详细了解当今世界的各个行业的发展的现状和趋势,结合自身条件及时调整自己的战略,使之与时代环境相符合。只有这样才可能在竞争中取得最后的胜利,使人类文明不断前进、不断进步。 如何才能满足人们的需求,有效、及时地传递大量信息呢?人们迫切需要一种新的传输媒介。 二、关于光纤通信 【 1】 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。光纤通信系统可分为三个基本单元:光发射机、光纤和光接收机。它首先要在发射端将需传送的信号进行光电转换,再经光纤传输到接收端,接收端将接收到的光信号转变成电信号, 最后还原成原信号。光纤通信系统的构成具体如下:

光纤通信技术的特点和发展前景综述

光纤通信技术的特点和发展前景综述一,光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 二,光纤通信的特点 (1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传

输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0,20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。 三,光纤通信技术发展的以及前景 1,光纤通信的发展

2020年光通信行业深度研究报告

2020年光通信行业深度研究报告 筱宇轩2020.5.4 本文系统性地从架构的变化衍生出对设备、光芯片、光模块、连接器件以及PCB 材料演进路径的分析。 1. 5G 时代光通信的再思考——流量爆发下的数据密度革命 我们一直在思考一个问题:5G 流量再爆发中,光模块的产业演进路径如何?结合此前日韩5G 研究、光博会草根调研,我们本文系统性地从架构的变化衍生出对设备、光芯片、光模块、连接器件以及PCB 材料演进路径的分析。站在当前时点,市场担心光通信同质化竞争严重,会影响产品毛利率进而拖累业绩增长,但我们看到,5G 对数通设备、400G、MPO 连接器、高频高速材料等提出新的要求,流量爆发下的数据密度革命即将到来,新产品、新市场的出现将极大提振盈利能力,优秀企业在产品能力、渠道能力、成本管控等方面的竞争优势将进一步体现,从而拉开业绩差距。因此,不必过分担心同质化竞争而忽略了5G 的大机遇,在全球5G 放量的前夕,光通信仍是最确定的方向。 1.1 流量驱动下的东西向"叶脊架构"需求增长 5G 与400G 数据中心是双生式同步发展。当前,全球主要国家正在积极参与5G 的商用化。运营商正在全速部署下一代网络设备,为2020 年及以后的5G 服务做好准备。4K/8K 高清视频、直播、视频会议、VR/AR 等大带宽的持续发酵酝酿,NB-IoT 等技术引发物联网产业新一轮增长,海量

移动设备的接入,应用端的发展正指向着流量的大爆发。在当下5G 应用尚未大规模兴起的情况下,依靠高清视频、AR/VR 等既有业务,韩国在5G 推出半年的时间点,实现了流量近3 倍增长(DOU 从约8G 到25G),结合近期不断涌现的新型应用(如一夜爆红的AI 视频换脸ZAO),我们预计在5G 时代随着高宽带应用的逐步落地,流量的爆发将会是数十倍的量级。 云成为大趋势,大型数据中心规模继续增长。根据Synergy Research 数据显示,2018 年年底全球超大规模数据中心数量已经达到430 个,美国占据其中40%。超大规模数据中心的增长势头不减,公司收入每年平均增长24%,而资本支出增长则超过40%——其中大部分用于建设和装备数据中心。据思科预测,2021 年全球数据中心流量将增长到每年20.5ZB,且95%的数据中心流量将是云流量。在即将到来的5G 时代,流量的爆发将汇聚成数字海啸。过去几年,海外云厂商经历了从需求爆发到去库存的周期轮回,但随着5G 到来,我们认为,数据中心的需求增长仍是确定性的。近期市场担心四季度海外能否起量也仅是短期维度的压制因素,随着2020 年5G 整体起量,大型数据中心是不可或缺的基础设施。 大型数据中心叶脊架构已成主流架构,新的交换模式可以带来更低的延时,传统三层架构退出历史舞台。首先大型云厂商在即将到来的5G 时代,以及云进程的进一步深入加速,大型云厂商数据规模越来越大,数据中心内部东西向流量已然占据主导地位,更适于数据中心内部数据交互的扁平胖宽的叶脊架构已成为数据中心的首选。叶脊架构使得数据中心规模变得更

光通信的一些常识

光通信的一些常识 一、光收发一体模块定义 光收发一体模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定 值后会输出一个告警信号。 二、光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH应 用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6 1×9封装--焊接型光模块,一般速度不高于千兆,多采用SC接口 SFF封装--焊接小封装光模块,一般速度不高于千兆,多采用LC接口。SFF(Small Form Factor)小封装光模块采用了先进的精密光学及电路集成工艺,尺寸只有普通双工SC(1X9)型光纤收发模块的一半,在同样空间可以增加一倍的光端口数,可以增加线路端口密度,降低每端口的系统成本。又由于SFF小封装模块采用了与铜线网络类似的MT-RJ接口,大小与常见的电脑网络铜线接口相同,有利于现有以铜缆为主的网络设备过渡到更高速率的光纤网络以满足网络带宽需求 的急剧增长。 GBIC封装--热插拔千兆接口光模块,采用SC接口。GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC 设计上可以为热插拔使用。GBIC是一种符合国际标准的可互换产品。采用GBIC 接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。SFP封装--热插拔小封装模块,目前最高数率可达4G,多采用LC接口。SFP是SMALL FORM PLUGGABLE的缩写,可以简单的理解为GBIC的升级版本。SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。SFP模块的其他功能基本和GBIC一致。有些交换机厂商称SFP模块为小型化GBIC (MINI-GBIC) XENPAK封装--应用在万兆以太网,采用SC接口 XFP封装--10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口 1.发展的方向之一:小型化

光纤通信系统的发展趋势及现状分析

光纤通信系统的发展趋势及现状分析 1、光纤通信技术概述及特点1.1光纤通信技术概述光纤通信系统整体由数量众多的光纤组成,其主要制作材料为玻璃,本身属电气绝缘体,无需考虑接地回路问题。自光纤通信技术研发开始,该技术凭借良好的性能而发展迅猛,尤其在现今信息大爆炸时代,光纤通信技术的应用对于通信行业的发展乃至整个社会的变革做出了巨大的贡献。1.2光纤通信的特征1.2.1通信宽频带,容量高在单一波段光纤通信系统中,光纤通常会受到终端设备的影响,无法将宽频带这一特点充分表现,而通过光纤通信传输技术,这一缺陷可以得到完美解决。光纤通信的宽频带、高容量特点对于信息的传输意义重大,能够满足未来宽带综合业务的发展需求。 1.2.2低损耗,中继距离长相较于其他传输介质而言,实用石英材质光纤损耗可在0.2dB/km 以下,远小于其他介质,即使将来应用非石英材质光纤,其损害值也在10-9dB/km左右。光纤低损耗的特点便决定了光纤通信可以实现长远的中继距离,实际建设过程中可以大幅度降低通信系统成本,有利于提升系统的稳定性和可靠性。 1.2.3强抗干扰性能制作光纤的材质具有绝缘性能,受到雷电、电离层等的干扰作用较弱,也可以一定程度上抵抗电气化设备和高压设备等工业电气造成的干扰,可用于与高压输电线进行平行架设、或者与电力导体复合组成复合型光缆进行通信传输。光纤这一良好的抗干扰性能决定了其可广泛应用于军事、电气等领域中。 1.2.4无串音干扰,保密性强传统通信传输过程中,载体承载信息极易被窃取泄露,所以传统通信传输的信息保密效果较差。而光纤通信传输过程中,不存在干扰现象,信息很难从光纤中泄露。光波在转弯处,由于弯曲半径过小,容易泄露,但其强度也十分微弱。对于该问题,可采用涂敷消光剂措施消除,这样既可实现信息的保密,也能够满足屏蔽串音干扰问题。 1.2.5线径细、重量小光纤内芯半径约0.1mm左右,为单管同轴电缆的1%。线径低这一特点使得整个传输系统占用空间小,具备节约地下管道资源、减少占地面积的优点。此外,光纤属玻璃材质,重量极轻,构成的光缆重量也较小,1m单管同轴电缆重量为11kg,而

相关文档
相关文档 最新文档