文档库 最新最全的文档下载
当前位置:文档库 › 常用温度传感器测量电路设计实验指导书

常用温度传感器测量电路设计实验指导书

常用温度传感器测量电路设计实验指导书
常用温度传感器测量电路设计实验指导书

常用温度传感器测量电路设计

自动化工程学院

常用温度传感器测量电路设计实验指导书

一、实验目的:

本实验要求设计并制作一个常用温度传感器测量电路,要求测量温度在

常温~100℃之间,输出为电压信号。该电路即可用于热电阻温度测量也可用于热电偶温度测量。

二、基本原理:

温度测量过程原理:

图1:温度测量过程原理

温度测量过程原理如图1所示:

信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。

输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出相关的物理量。该部分可以是计算机或数码管或显示仪表等。

该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。

设计思路:

温度检测电路总体设计思路:如图2所示,被测物体温度经过温度传感器元件以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字显示表头显示检测到的温度信号。

图2温度检测电路组成

传感器部分:

热电偶传感器:是将A和B二种不同金属材料的一端焊接而成如图3。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊

称为自由端或参考端,也称冷端(接引线用来连接测量仪表接的一端处在温度T

的两根导线C是同样的材料,可以与A和B不同种材料)。 T与T

的温差愈大,

热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。实验中用分度号为K的热电偶。

表1:K热电偶温度与输出电压的关系

0000

式中:E(t, t

0)---热电偶测量端温度为t,参考端温度为t

=0℃时的热电势值;

E(t, t

0')---热电偶测量温度t,参考端温度为t

'不等于0℃时的热电势值;

E(t

0', t

)---热电偶测量端温度为t

',参考端温度为t

=0℃时的热电势值。

例:用一支分度号为K(镍铬-镍硅)热电偶测量温度源的温度,工作时的参考端

温度(室温) t

'=20℃,而测得热电偶输出的热电势(经过放大器放大的信号,

假设放大器的增益A=10)32.7mv,则E(t, t

')=32.7mV/10=3.27mV,那么热电偶测得温度源的温度是多少呢?

解:由表1 查得:

E(t

0', t

)=E(20,0)=0.798mV

已测得 E(t, t

')=32.7mV/10=3.27mV

故 E(t, t

0)=E(t, t

')+E(t

', t

)= 3.27mV+0.798mV=4.068mV

热电偶测量温度源的温度可以从分度表中查出,与 4.068mV所对应的温度是100℃。

铂电阻:是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图4是铂热电阻的结构图。

在0~500℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中: Ro 系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。A=3.9684×10-3/℃,B=-5.847×10-7/℃2。铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。

图4铂热电阻结构

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再

经放大器放大后直接用电压表显示,如图5所示。

图5热电阻信号转换原理图

图中△V=V1-V2;

V1=[R3/(R3+Rt)]Vc;

V2=[R4/(R4+R1+RW1)]Vc;

△V=V1-V2={[R3/(R3+Rt)]-[R4/(R4+R1+RW1)]}Vc;

Pt100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用

于测量、控制<600℃的温度。

本实验由于受到温度源及安全上的限制,所做的实验温度值<100℃。

表2:Pt100 铂电阻分度表(t—Rt对应值)

分度号:Pt100R o=100Ωα=0.003910

表2是该传感器在不同温度下的电阻值。测量电桥在4V供电情况下温度为100℃时,电桥两端可获得约30mV电压。

信号处理部分:

由于直接从传感器获得的信号一般都很微小,既难以直接精确测量,又不便直接处理。因此,必须采用后续电路,将小信号转换成更大的电压信号或电流信号,以便于测量与处理。

差分放大电路

我们采用差分放大电路对电压进行放大,我们先讨论简单的差动放大器,如图6所示,Vi1、 Vi2为输入,Vo为输出。

Vi1

Vi2

图6 基本差动放大器

输出电压

Vo=-V

i1+(1+)V

i2

本实验中运算放大器采用OP07芯片,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压,同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。OP07管脚图如图7所示。

图7 op07管脚图

OP07芯片引脚功能说明:

1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接负电源或接地,5空脚 6为输出,7接正电源。

实验中采用的差分放大电路如图8所示.

Vi1

Vo

图8 差分放大电路

该电路由三个运算放大器组成,Vo1、Vo2和Vo分别为三运放的输出电压。分析电路知流过R2、R1的电流相等,设为i,可以计算出理想的输出电压Vo.

i=(式1)

V

o1=V

i1

+R

2

i (式2)

V

o2=V

i2

-R

2

i (式3)

Vo=(V

o1-V

o2

)=)(V

i1

-V

i2

) (式4)

由式4知差分放大电路的放大倍数为),主要由及的值决定,

但R1、R3太小会从集成运放中获取太大的电流,太大的R4、R2会增加电阻产生的噪声,故其放大倍数不宜太大,我们可先通过差分放大电路将电压信号放大至100mV左右,再通过后续的放大电路将其进一步放大以达到所要求值。实验中取R2=R3=10kΩ,R4=51kΩ,而将R1用一个1kΩ固定电阻和10kΩ滑动变阻器Rb

串联代替,即放大倍数为5.1(1+),可以通过改变Rb阻值来进行调节。

差分放大电路具有以下优点:

1)高输入阻抗。被提取的信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。

2)高共模抑制比。电路对共模信号几乎没有放大作用,共模电压增益接近零。3)低噪声、低漂移。主要作用是对信号源的影响小,拾取信号的能力强,以及能够使输出稳定。

4)电路的增益可以通过改变电阻R1阻值来调节。

二级放大电路

该部分的主要任务是对已经放大了的信号进行进一步的处理,同时协调整体电路工作,使之满足不同输出任务的需要。后续放大电路原理如图9所示

图9二级放大电路

Vin为输入信号即差分放大电路的输出,Vout为输出。

=(式5)Vout=(式6)

实验总体电路:

实验整体电路如附图1所示。

三、需用器件与单元:

传感器、实验台、实验元件箱。

四、实验内容及步骤

实验内容及步骤(一):电路安装与调试

该部分主要任务:完成实验电路安装、检查、调试任务。确保实验电路能正常工作。

1 按附图1要求认真选择,统计各需要的原件。

2 合理安排各原件在电路板上的位置。按同一功能部分原件相对集中,不同功

能电路相对分开的原则安排原件,便于查找和排除故障。

3 接线时认真看清楚每一根导线与电子原件的连接点,保证每一根导线连接正

确。

4 通电前先检查各部分电路是否连接完成,有无短路现象,特别是电解电容极

性和运算放大器的电源极性。

5 通电后先观察各电子原件有无异常反应,供电电源有无异常反应。

6 一切正常后进行电路调零。

方法如下:短接A,B两端,输出端接数字表,调节RW2使数字表显示为零。

7 电路增益的调节方法按实验不同分为两种:

(1)在PT100热电阻实验中,先将增益调节电位器调节到最大,再反向调节一圈即可。

(2)在K型热电偶实验中,将增益调节电位器调节到最小即可。

实验内容及步骤(二):控制仪表及温度控制软件的使用

该部分主要任务:完成实验台与温度控制箱的连线、实验台温度控制部分的相关设置、温度控制软件的使用方法及相关设置。为实验电路的实验数据采集作准备。

温度控制设备:温度控制设备是由温度传感器,智能控制仪表,冷却风扇,温度试验箱等部分组成,主要任务是为温度检测实验提供稳定的温度源。

实验时,由温度控制器软件调整实验箱的温度。温度控制设备接线图如图10所示。

图10:温度控制设备接线图

温度控制部分连线步骤

1实际实验中需将温度源试验箱的24V端与实验台的0-24V“转速调节”端相连。控制电压调整到22V(可由控制台电表监测)。

2 实验台“控制对象”选择:RtVi挡。

3 将pt100连接至相应的1,2,3端口。

4 连接RS232串口线。

5 连接“加热控制”线。

6 检查1-5步骤完成无误后,开启“调节器电源”。

温度控制软件是针对控制仪表而开发的软件,它可以实现控制仪表内部参数及运行参数的计算机调整从而大大简化了操作过程,降低了仪器设备的损坏率。控制仪表是一种智能型控制仪表,可应用于多种控制场合。其内部参数如表3

所示。

温度控制软件使用方法:

1 进入“温度控制仪软”件文件夹,双击“温度控制仪软”图标,即可进入温度控制界面。

2 控制界面如图11所示。

图11温度控制界面

界面上部为菜单栏,由“通讯设置”,“曲线设置”、“历史记录”、“打印”、“退

出”等选项组成。

3 运行时,先点击菜单栏“通讯设置”进行通讯设置。点击“通讯设置”后,出现图12界面。

温度控制设置项

图12通讯设置界面

注:通讯设置界面的参数选择一般为默认值 点击“确定”后,进入“控制界面” 4 温度“控制界面”如图13所示。

图13温度控制界面

仪表参数的设置:进入仪表参数设置界面,按下面各项要求设置参数。 1 Sn (输入方式):Pt1

2 oP-A (主控输出方式):2(固态继电器)

3 oP-b (副控输出方式):1

4ALP (报警方式) :1(上限报警)

5CooL (正反控制选择) :0(反向控制)

6P-SH (显示上限) :100

7P-SL (显示下限) :0

8AL-1(上限报警):100℃

9Pb (传感器误差修正):0

10P (速率参数):280

11I (保持参数):380

12d (滞后时间) :70

13FILt (滤波系数) :2

14dp (小数点位置) :1

15outH (输出上限) :110

16outL (输出下限) :0

17At (自整定状态) :0(关闭)

18LoCK (密码锁) :0

实验温度设定:实验时进入“实验观察界面”,按实验要求分别设定实验温度。注意:实验时只调整温度设置参数,不要调整其他参数,以免影响实验数据。

实验内容及步骤(三):温度测量电路实验数据采集及处理该部分主要任务:对已安装调试好的温度测量电路进行温度测量实验、记录实验数据、画出实验曲线、分析实验结果、完成实验报告。热电阻,热电偶与测量电路输入端实验连接方法如图14所示。

A

B

热电阻

+ A

- B

热电偶

热电阻,热电偶实验连接示意图

实验内容及步骤(1):pt100热电阻测试实验

1 加入热电阻检测电桥,加入+2V 电压,电桥与测量电路连接方法如图14所示。

2 开启温度实验箱,开启温度控制软件,实验仪器预热5分钟。

3 按实验要求选择相关温度值,待温度控制箱温度稳定后,用数字电压表测量电桥输出电压和测量电路输出电压,并将相关实验数据分别记录在表3,4中。

4 实验报告要求:画出实验曲线。

实验内容及步骤(2):K 热电偶测试实验

1加入热电偶,热电偶与测量电路连接方法如图14所示。

2开启温度实验箱,开启温度控制软件,实验仪器预热5分钟。

3 首先将温度控制输入设定为0(℃),等待温度控制箱温度稳定后,读取此时的温度值T1=?,热电偶输出电压值V1=?(mV )

4按实验要求选择相关温度值,待温度控制箱温度稳定后,用数字电压表测量热电偶输出电压和测量电路输出电压,并将相关实验数据分别记录在表5,6中。

5待温度下降过程实验数据采集完成后将温度控制输入设定为0(℃),等待温度控制箱温度稳定后,读取此时的温度值T2=?,热电偶输出电压值V2=?(mV)

4实验要求:

(1)画出实验曲线。

(2)根据V1(热电偶输出电压值(mV)),计算热电偶输出端测到的温度上升过程实际温度值。

(3)根据V2(热电偶输出电压值(mV)),计算热电偶输出端测到的温度下降过程实际温度值。

(4)分析误差产生的主要原因。

实验总结:

通过本实验设计、安装、调试过程所获得的一些心得体会,实验过程中遇到的问题及解决方法,对本实验的合理化建议等。

工程测量实习指导书

《工程测量》实习指导书 鲁金金主编 桂林理工大学博文管理学院 土木与工程学院

项目一线路工程测量 一、目的与要求 1、了解线路测量的相关测量技术标准规范; 2、了解掌握线路测量的作业过程 3、掌握在选定设计方案的路线上进行中线测量、纵断面和横断面测量的作业方法和过程; 4、掌握纵横断面图的绘制方法和工程土(石)方量的计算方法,并熟悉进行路线坡度设计的依据和方 法。 5、掌握用南方CASS进行土方量计算 二、仪器和工具 全站仪、GPS、木桩、钢尺、铁钉、油漆、记录夹,铁锤等。 三、任务 ××四级公路项目 1.项目概况 ××四级公路项目位于位于桂林理工大博文管理学院食堂附近,是理工大后门通向五塘村的主要通道。该路段长达2.5公里左右,目前是路面是黄土碎石路,其路基所在地区多为荒地,地表比较平坦,无明显起伏,地面自然坡度在三度以内。路线中心两侧是荒地农田,也有林地等。 2.项目要求 道路断面宽度采用单幅路混合交通:行车道宽度4米,两侧人行道个1米,共6米宽。 计算行车速度 采用支路Ⅲ级,20km/h 平面设计指标 圆曲线半径:不设超高最小半径:70米设超高推荐半径:40米 设超高最小半径:20米不设缓和曲线最小半径:500米 圆曲线最小长度:20米缓和曲线最小长度:20米 纵断面设计 最大纵坡:3% 最大合成坡度:4% 坡度最小长度:60米竖曲线最小半径:150米,极限值:100米 竖曲线最小长度:20米 横断面设计 最大超高:2% 超高渐变率:1 /50

停车视距:20米 四、主要内容: 线路初测 为线路工程设计、施工和运营提供完整的控制基准及详细的地形信息; (1)平面控制测量: 根据测量要求,沿道路采用GPS测量方法每隔1KM左右布设1对控制点,若在区域内控制点不能满足中心桩放样及带状图测绘要求,应根据实际情况进行控制点加密。本次实习控制点加密可采用GPS-RTK技术或常规作业模式进行,若采用常规作业时,导线观测要严格按照城市测量规范要求进行,且导线方位角闭合差、导线长度和导线相对闭合差均应满足规范要求。 (2)高程控制测量 基平测量,沿线路布设水准点,并按项目情况进行相应等级的水准测量。 线路定测 定测阶段主要的测量工作任务是,将定线设计的公路中线(直线段及曲线)测设于实地;进行线路的纵、横断面测量,线路竖曲线设计等; 1.中线测量 2.纵断面测量 3.横断面测量 4.纵横断面图的测绘 5.土(石)方的计算 五、作业步骤和方法要求: 各小组在所测地形图上设计含有几个转折点的线路中线,线路转向处用缓和曲线或圆曲线连接。 (1)中线测量 根据中线附近的控制点和地物,可采用穿线交点,拨角放线等方法测设线路各交点,并用测回法观测线路各偏角一测回。然后从线路起点开始,沿中线每隔20m或50m(曲线上根据曲线半径每隔20m、10m 或5m)量距定出整桩,并在地面坡度变换处、中线与其他主要地物(如已有道路、河流、输电线)相交之处设加桩,在曲线交点处设立主点桩。中线定线时,可采用经纬仪定线或目估定线,量距采用一般钢尺量距,曲线测设可采用偏角法、切线支距法或极坐标法。本次实习采用导线测量方法,从已知控制点出发,将交点作为导线点,进行交点坐标采集,最后闭合到已知控制点。并进行内业计算后,得出符合要求的导线点坐标,最后将采集到的坐标,采用南方CASS进行线路设计,按20m一个中桩,得出中桩坐标,倒入全站仪或GPS RTK中,进行外业中桩放样。线路精度要求是:直线部分纵向相对误差应小于1/2000,横向误差应小于5cm;曲线部分纵向相对闭合差应小于1/l000,横向闭合差应小于10cm。 里程桩的编号:0+000,0+020,0+040,….加桩编号按实际距离为准。如:0+027,0+055,…。 (2)纵断面测量 1).中平测量 以相邻水准点为一个测段,从一个水准点出发,按等外水准测量要求逐个测定中桩的地面高程,附合至下一个水准点。作业中应注意:

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

电子测量-实验指导书1

电子测量实验指导书 通信与电子工程学院 通信与测量实验室

实验一、信号发生器和模拟示波器的使用 一、实验目的 1.学会信号发生器、模拟示波器的使用方法 二、实验仪器 函数信号发生器F40 一台 示波器GOS6051 一台 三、实验内容 1.用示波器测量正弦信号 (1)调节信号发生器,使其输出频率为1kHz,峰峰值为1V,不含直流成分的正弦波信号,用示波器观测次信号,记录其实际周期值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (2)调节信号发生器,使其输出频率为5kHz,峰峰值为2V,含1v直流成分的正弦波信号,用示波器观测次信号,记录其实际周期值,并在坐标纸上记录示波器荧光屏上显示的被测波形。2.用示波器测量正弦信号 (1)调节信号发生器,使其输出周期为0.1ms,峰峰值为2V,占空比为50%,不含直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (2)调节信号发生器,使其输出周期为0.2ms,峰峰值为3V,占空比为50%,含1V直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (3) 调节信号发生器,使其输出周期为1ms,低电平为0V,高电平为3V,占空比为20%,不含直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 3.用示波器观测几个通信原理常用调制信号(选作) (1)调节信号发生器,使其产生一个调幅波,载波信号为频率1MHz的正弦波,幅度为2V;调制

信号选内部信号正弦波(波形编号为1),调制信号频率为5kHz,调制深度为80%。 (2)调节信号发生器,使其产生一个FSK波,输出正弦信号幅度为2V;调制信号选内部信号正弦波(波形编号为1),频率在100Hz和10KHz之间交替,交替间隔时间为10ms的正弦波。 4.用示波器观察李萨如图像(演示或者选作) 四、实验步骤 打开电源,并预热信号发生器,进入正常工作状态 4.1 用示波器测量正弦信号 4.1.1 步骤 (1)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“频率”,即完成按键上面对应蓝字的功能,说明完成选择波形为正弦波。在显示屏左端显示“~”。(2)按“频率键”,可显示频率或者时间单位,使其显示频率,完成1kHz的输入,即为:在数字按键上输入1,然后按扫描键,这时选择了按钮下方的单位“kHz”。 (3)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“猝发”,即完成按键上面对应蓝字的第一项功能,说明完成选择偏移功能。在数字按键上输入0,然后按调频键,这时选择了“mV”(或在数字按键上输入0,然后按“shift”,这时选择了“V”)。即说明选择直流分量为0。 (4)按“幅度键”,可显示幅度位,即电压单位。完成1V的输入,即为:在数字按键上输入1,然后按“shift”键,这时选择了“V”。 (5)用示波器观测输出信号,并记录实际周期和波形。 4.1.2 步骤 (1)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“频率”,即完成按键上面对应蓝字的功能,说明完成选择波形为正弦波。在显示屏左端显示“~”。(2)按“频率键”,可显示频率或者时间单位,使其显示频率,完成5kHz的输入,即为:在数字按键上输入5,然后按扫描键,这时选择了按钮下方的单位“kHz”。 (3)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“猝发”,即完成按键上面对应蓝字的第一项功能,说明完成选择偏移功能。在数字按键上输入1,然

信息科学与工程学院综合性设计性实验报告

重庆交通大学信息科学与工程学院 综合性设计性实验报告 专业:通信工程专业11级 学号:0204 姓名:何国焕 实验所属课程:宽带无线接入技术 实验室(中心):软件与通信实验中心 指导教师:吴仕勋 一、题目 OFDM系统的CFO估计技术 二、仿真要求 要求一:OFDM系统的数据传输 ①传输的数据随机产生; ②调制方式采用16QAM; 要求二:要求对BER的性能仿真 设计仿真方案,比较两个CFO的性能(基于CP与基于训练符号Moose),并画出不同SNR下的两种估计技术的均方差(MSE)性能。

三、仿真方案详细设计 1、首先OFDM技术的基本思想和现状了解。认真学习OFDM技术的基本原理,包括OFDM系统的FFT实现、OFDM系统模型、OFDM信号的调制与解调、OFDM信号的正交性原理,根据PPT及网上查阅资料加以学习。其次,了 解OFDM的系统性能,包括OFDM系统的同步技术及训练序列等。 2、同步技术:接收机正常工作以前,OFDM系统至少要完成两类同步任务: ①时域同步,要求OFDM系统确定符号边界,并且提取出最佳的采样时钟,从而减小载波干扰(ICI)和码间干扰(ISI)造成的影响。 ②频域同步,要求系统估计和校正接收信号的载波偏移。在OFDM系统中,N个符号的并行传输会使符号的延续时间更长,因此它对时间的偏差不敏感。对于无线通信来说,无线信道存在时变性,在传输中存在的频率偏移会使OFDM 系统子载波之间的正交性遭到破坏。 3、载波频率的偏移会使子信道之间产生干扰。OFDM系统的输出信号是多个相互覆盖的子信道的叠加,它们之间的正交性有严格的要求。无线信道时变性的一种具体体现就是多普勒频移引起的CFO,从频域上看,信号失真会随发送信道的多普勒扩展的增加而加剧。因此对于要求子载波严格同步的OFDM 系统来说,载波的频率偏移所带来的影响会更加严重,如果不采取措施对这种信道间干扰(ICI)加以克服,系统的性能很难得到改善。 OFDM系统发射端的基本原理图OFDM信号频谱 4、训练序列和导频及信道估计技术 接收端使用差分检测时不需要信道估计,但仍需要一些导频信号提供初始的相位参考,差分检测可以降低系统的复杂度和导频的数量,但却损失了信噪

工程测量实习指导书

《工程测量》实习指导书 测量学基础实习是在课堂教学结束之后而在实习场地集中进行的测绘生产实践性教学,是各项课间实验的综合应用,也是巩固和深化课堂所学知识的必要环节。通过实习,不仅能够了解基本测绘工作的全过程,系统地掌握测量仪器操作、施测、计算、地图绘制等基本技能,而且可为今后从事专门测绘工作或解决实际工程中的有关测量问题打下基础,还能在业务组织能力和实际工作能力方面得到锻炼。在实习中应该具有严格认真的科学态度、踏实求是的工作作风、吃苦耐劳的献身精神、团结协作的集体观念。下面通过本次实习加深对理论知识的理解。 一、实习动员 1.实习目的:测量是一项实践性较强的工作。通过为期四周的野外实习和室内的实践操作,把书本上学到的部份理论知识与实践相结合,以加深理解和巩固,为水利事业培养人才作贡献,使水利工程技术人员掌握工程测量技术的意义和重要性。 2.实习动员:讲明实习的重要性和必要性,介绍实习场地情况,提出实习任务和计划,宣布实习组织机构、分组名单、实习纪律,说明仪器工具借领办法和损耗赔偿规定,指出实习注意事项等,以保证实习的顺利进行。 二、实习内容: 量距导线测量、地形测量 (一)量距导线测量:第一周 ① 准备工作:辅导老师讲授实习内容和注意事项。 ② 选点打桩:选一条7个导线点的独立图根闭合导线。要求导线点间通视良好,没有障碍物。桩点标志埋设10厘米长,顶面锯成十字的钢条。 为已知水准点 ③ 四等水准测量:要求每组联合测一个闭合水准路线, N 3 引测组成四等闭合水准路线。水准测量在一个测站的观测程序为后、后、前、前、视线长度不超过100米,要求前、后视距离大致相等,其不等差不超过±3米,路线中各测站距离累积差不超过±10米,红黑面中丝读数之差与常数K

电子测量原理实验指导书

电子测量原理实验指导书 南京邮电大学自动化学院

目录 电子测量实验系统组成原理及操作 (1) 电子计数器原理及应用 (10) 示波器原理及应用 (16) R、L、C参数测量 (24) 逻辑分析仪原理及应用 (31) 交流电压测量 (40)

电子测量实验系统组成原理及操作 一、实验目的 1.了解SJ-8002B电子测量实验系统的原理和组成。 2.学习操作本实验系统并完成一些简单实验。 二、实验内容 1.操作本系统的实验箱内部DDS信号源,产生出多种信号波形,并用外接示波器观察。 2.使用本实验箱内部数字示波器,去观察外部信号源的信号波形。 3.使用本实验箱内部数字示波器,观察内部DDS信号源产生的信号波形。 三、实验器材 1.SJ-8002B电子测量实验箱 1台 2.双踪示波器(20MHz模拟或数字示波器) 1台 3.函数信号发生器(1Hz~1MHz) 1台 4.计算机(具有运行windows2000和图形化控件的能力) 1台 四、实验原理 SJ-8002B电子测量实验系统由三大部分组成:a电子测量实验箱;b系列化的实验板;c微型计算机(含配套的实验软件),如图1-1所示。此外,实验中根据需要可以再配备一些辅助仪器,如通用示波器、信号源等。 图1-1 电子测量实验系统的基本组成 电子测量实验系统的外貌图如图1-2所示。

图1-2 电子测量实验系统 电子测量实验箱主板如图1-3所示。 S102 短路块 62芯插座,实验电路板 AC9V 温度板用电源 EPP 插座,连接计算机 并口 键盘板接口 电位器直流可调电压 S101 短路块 S702 短路块 S602 短路块 采集1通道输入Ain1信号源1输出Aout1 测频输入Fx 采集2通道输入Ain2信号源2输出Aout2 直流电压输入DCin 图1-3 电子测量实验箱主板 短路块名 短路位置 连接说明 使用场合 S101 左边 7109直流电压差分输入端DC -不接地 温度实验时使用

工程测量实习指导书(全)

工程测量实习指导书(全)

————————————————————————————————作者:————————————————————————————————日期:

工程测量实习指导书 适用班级:15测量1、2班 实习周数: 1周 工程测量教研室 2016年1月11日

说明 《工程测量》是工程测量技术专业的核心专业技术课程,是一门实践性、操作性、综合性很强的课程,通过数字化课程实习,进一步巩固和深化课堂所学内容,验证课堂所学基础理论和基本方法、基本技能,将所学知识变成技巧、变成能力。通过实习,还可以加强学生的仪器操作技能,提高学生的动手能力,培养学生运用所学基本理论和基本技能发现问题,分析问题、解决问题的能力。 一.实习内容的深、广度要求 (一)测量资料的记录要求 1.观测记录必须直接填写在规定的表格内,不得用其他纸张记录再行转抄。 2.凡记录表格上规定填写的项目应填写齐全。 3.所有记录与计算均用铅笔(2H或3H)记载。字体应端正清晰,字高应稍大于格子的一半。一旦记录中出现错误,便可在留出的空隙处对错误的数字进行更正。 4.观测者读数后,记录者应立即回报读数,经确认后再记录,以防听错、记错。 5.禁止擦拭、涂改与挖补。发现错误应在错误处用横线划去,将正确数字写在原数上方,不得使原字模糊不清。淘汰某整个部分时可用斜线划去,保持被淘汰的数字仍然清晰。所有记录的修改和观测成果的淘汰,均应在备注栏内注明原因(如测错、记错或超限等)。 6.禁止连环更改,若已修改了平均数,则不准再改计算得此平均数之任何一原始数。若已改正一个原始读数,则不准再改其平均数。假如两个读数均错误,则应重测重记。 7.读数和记录数据的位数应齐全。如在普通测量中,水准尺读数0325;度盘读数4°03′06″,其中的“0”均不能省略。 8.数据计算时,应根据所取的位数,按“4舍6入,5前单进双不进”的规则进行凑整。如1.3144,1.3136,1.3145,1.3135等数,若取三位小数,则均记为1.314。 9.每测站观测结束,应在现场完成计算和检核,确认合格后方可搬站。实验结束,应按规定每人或每组提交一份记录手簿或实验报告。 (二)建筑轴线放样要求 本次建筑轴线放样,根据给定的轴线数据,假定轴线中心点位置,以及中心点与任一轴线端点的起始方向,按照二级建筑方格网的布设技术要求进行。 表1 建筑方格网的主要技术要求 等级边长(m) 测角中误差(″) 边长相对中误差 一级100~300 5 ≤1/30000 二级100~300 8 ≤1/20000

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

实验指导书-电子测量原理

电子科技大学 实验指导书 《电子测量原理》实验 -----数字存储示波器的使用和带宽测试 一.实验目的 1.熟悉数字示波器基本工作原理 2.了解数字示波器的主要技术指标 3.掌握数字示波器的使用方法和带宽测试 二.实验内容 1.相关测试仪器的熟练使用 2.边沿、脉宽等触发类型的使用 3.触发释抑功能的使用 4.预触发与延迟触发功能的使用 5.脉冲参数的测量 6.获取模式(标准、峰值、平均、高分辨率)的使用 7.触发方式(自动、正常、单次)的使用 8.带宽的测量 三.预备知识 1.了解数字存储示波器原理 2.熟悉掌握数字存储示波器使用和带宽的测试方法。 四.实验设备与工具 数字存储示波器、任意波形发生器、射频信号源 五.实验原理与说明 1.实验仪器简介 ⑴函数发生器 Agilent Technologies 33220A 是高性能的20 MHz 任意波形发生器,其具有内置任意波

形和脉冲功能。实物如图1。 ?10 个标准波形 ?内置的14 位50 MSa/s 任意波形功能 ?具有可调边沿时间的精确脉冲波形功能 ?LCD 显示器可提供数字和图形视图 ?易用的旋钮和数字小键盘 ?仪器状态存储器,用户可自定义名称 ?带有防滑支脚的便携式耐用机箱灵活的系统特性 ?四个可下载的64K 点任意波形存储器 ?GPIB (IEEE-488)、ΜS B 和LAN 远程接口为标准配置?符合LXI Class C 标准?SCPI(可编程仪器的标准命令)兼容 图1 Agilent 33220A 20 MHz 任意波形发生器 ⑵数字存储示波器Agilent DSO5012A Agilent DSO5012A主要指标: ?采样率2 GSa/sec 每通道 ?垂直分辨率8 位 ?模拟带宽:100MHz ?上升时间(= 0.35/ 带宽):3.5 nsec ?水平范围:5 nsec/div 至50 sec/div ?触发系统模式:自动、正常(已触发)、单,释抑时间~60 ns 至10 秒 ?触发类型:边沿、脉冲宽度、码型、TV、持续时间 ?边沿:在任何源的上升沿、下降沿或交变沿触发 ?脉冲宽度:当正向或负向脉冲小于、大于或在任意源通道的特定范围内时触发。 ?最小脉冲宽度设置:5 ns ?最大脉冲宽度设置:10 s

最新工程测量实验指导书

工程测量实验指导书

《工程测量》实验指导书 测量实验注意事项 1、实验前必须阅读有关教材及本实验指导书,初步了解实验内容、要求与步骤。 2、实验记录书写工整,不可潦草或涂改,并按规定填写实验组号、日期、天气、仪器名称及组员的姓名等。 3、各项记录必须于测量进行时立即记下,不可另以纸条记录,事后抄写。 4、记录者在记录数据时,应向观测者回报读数,以免记错。 5、数据要全,不能省略零位。如水准尺读数 1300, 度盘读数中的“ 0 ” 均应全部填写。 6、记录数字若有错误,不得涂改,也不可用橡皮擦拭,而应在错误数字上划一斜杠,将改正之数记于其旁。 7、简单计算及必要的检验,应在测量进行时算出。按四舍六入、五前单进双舍(或称奇进偶不进)的取数规则进行计算。如数据 2.3235 和 2.3245 进位均为 2.324 。 8、实验结束时,应把实验结果交给指导教师审阅,符合要求并经允许,方可收拾仪器结束实验,并按实验开始时领取仪器的位置,归还仪器与工具。 9、实验完毕后要及时编写实验报告。并在下次实验课前上交实验指导教师批阅。

测量仪器操作细则 1、测量仪器必须爱护,防止振动、日晒、雨淋,不应坐在仪器箱子上。 2、开箱提取仪器 1)先安置三脚架,将各架腿插入土中,使三脚架稳妥。启箱取出仪器前应看清仪器在箱中的位置,以免装箱时发生困难。 2)从箱中取出仪器时,不可握拿望远镜,应双手握住基座或远镜望的支架,取出仪器后小心地安置在三脚架上,并立即旋紧仪器与三脚架的中心连接螺旋。 3、野外作业 1)仪器上的光学部分(如镜头等)严禁用手帕、纸张等物擦试,以免损坏镜头上之药膜。 2)作业时须握住支架转动,不得握住望远镜旋转,使用仪器各螺旋必须十分小心,用力要适度。 3)转动仪器时,应先松开制动螺旋,再平衡转动。使用微动螺旋时,应先旋紧制动螺旋。动作要准确、轻捷,用力要均匀。 4)仪器所在地必须时时有人,做到人不离仪器,并防止其他无关人员使弄仪器。 5)在太阳或细雨下使用仪器时,必须撑伞,特别注意仪器不得受潮。 4、搬移仪器 1)搬移仪器前应使望远镜物镜对向度盘中心。若为水准仪,物镜应向后。 2)搬移仪器时先检查一下连接螺旋,必须一手握住仪器的基座或支架,一手抱住三脚架,竖向稳妥地搬移,不得横放在肩上或横抱在胸前以免损坏仪器,当距离较长时,必须装箱搬移。 3)搬移仪器时须带走仪器箱及有关工具。 5、使用完毕 1)应清除仪器及箱子上的灰尘、脏物和三脚架上的泥土,将基座的脚螺旋处于大致相同的高度。 2)测距仪、电子经纬仪、全站仪、GPS 等电子测量仪器,在野外更换电池时,应先关闭仪器的电源;装箱之前,也必须先关闭电源,才能装箱。

《电子测量实验指导书》

《电子测量》实验指导书 电子测量实验室编写

目录 实验一示波器性能研究及使用 实验二交流电压的测量 实验三时间的测量 实验四相位差和频率的测量 实验五测量放大器参数测试 实验六函数信号发生器的设计与调测 实验七扫频仪的使用及有源滤波器性能测试实验八简易数显频率计的设计

前言 《电子测量》是一门理论与实践并重的课程。它主要介绍电学中常见物理量(如电压、电流、电阻、电感、频谱、频率特性等)的测量方法、测量时使用的测量仪器以及基本的测量误差理论。学生通过本课程的学习,应该在理解原理的基础上,掌握各物理量的测量方法,会使用相关的测量仪器。 《电子测量》课程实验开设目的:首先是加深理解在课堂上获得的理论知识,将理论知识形象化;同时学习仪器设备的实际操作,加强动手能力,积累实践经验;另外通过一些综合性实验达到对已学过的其它课程知识融会贯通的效果。

实验一示波器性能研究及使用 一实验目的 熟悉示波器的工作原理; 掌握正确使用示波器测量各种参数的方法。 二实验原理 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其刻度盘移动的指针或数字显示来给出信号电压的测量度数。而示波器则不同,示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压的随时间的变化,即波形。 示波器能把非常抽象的,眼睛看不到的电过程,变换成具体的看得见的图像。因此,使用示波器测量电压和电流时,可在显示被测电压或电流幅值的同时,还可显示波形、频率、相位。这是其它电压测量仪表,如电压表等无法做到的。一般电压表的读数与被测电压波形有关,而用示波器测量时,其精度可不受被测电压和电流波形形状的影响。另外,示波器的响应速度极快,也没有指针式仪表所具有的惯性。但是,示波器作定量测试时,测试值是以屏面上波形幅值所占的垂直刻度值乘Y 轴偏转灵敏度得出的,而屏面上波形幅值所占的垂直刻度值将受到光迹宽度、视差及示波器固有误差和工作误差等因素的影响,往往不易精确读出测试值,这就决定了示波器的测试精度不可能太高。 本次实验目的是熟悉示波器各功能旋钮的使用,掌握用屏面上波形及屏幕标尺测量波形幅值及时间的方法。示波器使用方法见附录一。 三实验设备 1. 示波器一台 2.信号发生器一台 3.超高频毫伏表一台 四实验步骤 1、了解信号发生器的性能与使用方法: 用信号源输出高频信号,用示波器观察高频信号发生器的正弦波输出和调幅波输出,观察改变调制度时波形的变化。 2、熟悉触发器正负极性及触发电平的功能: 用高频信号源输出正弦波,用示波器进行观察。当示波器上出现清晰的波形后,适当将波形右移,使波形的起始端出现在屏幕上。改变触发极性,即将触发极性钮拉出或推入,观察波形的变化。再转动触发电平旋钮,观察波形变化。 3、测试偏转灵敏度: 使信号源输出正弦波信号,频率为100KHz,调节输出幅度,用超高频毫伏表测量,使之为0.5V。示波器探头置于×1档,偏转因数选择开关置于0.2V/cm,微调钮置于“校准”。将信号源输出接入示波器,从荧光屏上读出信号幅度的格数,记录在表1-1中,计算出偏转因数,与选择开关指示值(0.2V/cm)比较。 将信号幅度改为0.1V,示波器偏转因数选择开关置于50mv/cm,重复上面的测量。 4、测试扫描速度: 示波器的扫描速度开关置于0.2ms,扫描微调置于校正,输入函数发生器的1KHz 方波。测出一个信号周期T所占的水平格数,则可算出扫描速度=T/格数,与扫描速度选择开关指示值(0.2ms)相比较,计算出相对误差。记录在表1-2中。

电气测试技术-实验指导书

电气测试技术 实 验 指 导 书 河北科技师范学院 机械电子系电气工程教研室 二00六年十月

实验台组成及技术指标 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、15个(基本型)传感器和相应的实验模板、数据采集卡及处理软件、实验台桌六部分组成。 1、主控台部分:提供高稳定的±15V、+5V、±2V~±1OV可调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。音频信号源(音频振荡器)0.4KHz~10KHz可调);低频信号源(低频振荡器)1Hz~3OHz(可调);气压源0~15kpa可调;高精度温度控制仪表(控制精度±0.5℃);RS232计算机串行接口;流量计。 2、三源板:装有振动台1Hz~3OHz(可调);旋转源0~2400转/分(可调);加热源<200℃(可调)。 3、传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流位移传感器、光纤位移传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt10O 铂电阻,共十五个。 4、实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单采样亦能连续采样。标准RS-232接口,与计算机串行工作。提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 6、实验台桌尺寸为160O×8OO×280(mm),实验台桌上预留计算机及示波器安放位置。 注意事项: 1、迭插式接线应尽量避免拉扯,以防折断。 2、注意不要将从各电源、信号发生器引出的线对地(⊥)短路。 3、梁的振幅不要过大,以免引起损坏。 4、各处理电路虽有短路保护,但避免长时间短路。 5、最好为本仪器配备一台超低频双线示波器,最高频率≥1MHz,灵敏度不低于 2mV/cm。 6、 0.4~10KHZ信号发生器接低阻负载(小于100Ω),必须从L V接口引出。

《电子测量》课件—电子测量实验指导书.doc

《测量技术基础》实验指导书 张海燕编 计算机与信息学院 二O 一三年十月 实验一、示波器的基本原理及其应用 实验目的

1、了解通用示波器和数字实时示波器的基本组成和工作原理 2、掌握通用示波器和数字实时示波器测量电压、时间、相位的基本方法 3、掌握示波器的基本应用 实验仪器 1、双踪小波器一 台 2、数字示波器一台 3、函数信号发生器一 台 4、移相器一 个 三、实验内容 1、掌握通用示波器、数字实时示波器的基本组成和工作原理,主要控制旋 钮的作用以及测量电压、时间、相位差的基本方法。 2、示波器X轴、Y轴偏转系统的灵活应用 向X轴、Y轴输入2KHz的正弦信号,分别显示下列图形: (1)一个光点(调节各控制旋钮使光点亮度适中,聚焦良好) (2)一条垂直线 (3)一条水平线 (4)一条45°斜线 (5)在示波器屏幕上分别显示10个、3个、1个周期波形。 以上各步骤除调出图形外,应记录或说明各主要控制旋钮所放置的位置或范围。 3、电压测量 由信号发生器输出IKHz的脉冲信号,测量其幅值。 (1)直接测量法 直接从示波器屏幕上量出被测电压波形的高度,然后换算成电压值。若已知Y 通道的偏转灵敏度为Vy, Y轴通道处于“校正”位置,被测电压波形峰-峰高度为h,则可求被测电压值:Vp-p二Dy*h

(2)比较测量法 比较测量法就是用已知电压值(一般为峰-峰值)的信号波形与被测信号电压波形比较,并算出测量值。 4、时间的测量 测量一个脉冲信号的时间参数。目前,示波器是测量脉冲时间参数的主要工具。 (1)记录数据 (2)在坐标纸上画出观察到的波形,标上参数。 5、相位差的测量 (1)线性扫描法 利用示波器的多波形显示,是测量信号间相位差的最直观、最简便的方法。 自己设计一个相移网络,将信号发生器输出的正弦信号直接加入YA通道,经相移网络输出的信号加入YB通道,相移网络参数(C=O.OluF, R=1.2K),根据测量数据计算vl、v2的相位差仞。

《土木工程测量学》实验指导书

《土木工程测量学》实验指导书 编著:白萍宫雨生 辽宁科技大学资源与土木工程学院 2010年12月

出版讲明 《测量学实验指导书》是针对矿物、土木、交通、建环等非测量专业的测量学课程实验教学而编写的配套教材。测量学实验是安排在课堂教学期间、某一章节内容讲授之后的课内实践性教学环节,通过测量实验能够加深学生对测量概念的明白得,巩固课堂所学的差不多理论和差不多方法,初步把握测量工具的操作技能,也为本课程的实习打好基础,以便更好地把握测量课程的差不多内容。 《测量学实验指导书》共列五项实验,其中第二项实验为设计性实验,其余均为验证性实验。实验指导书上所列各实验项目,可按照不同专业的需要和教学安排适当选择。不同专业测量学基础实验名称可能不同,但内容差不多相同,任课教师可在原有实验指导书基础上进行适当修改。每项实验的学时数均为2学时,实验小组人数一样为4~5人,但也应按照实验的具体内容以及仪器设备条件作灵活安排,以保证每人都能进行观测、记录、做辅助工作等实践。每项实验的观测要求均列在注意事项中。在每项实验后列出了测量实验报告及相应的观测记录表格形式,在实验中应做到随时测量、随时记录、随时运算检核,实验完成后能够裁减下来,以便上交。 《测量学实验指导书》的明显特点是详细、准确,是对该课程理论教学的专门好补充,必将对测量学这门实践性专门强课程的教学和实践性环节的教学起到更大的主动作用。适用于矿物、土木、交通、建环等非测量专业。

目录 测量学实验须知 1实验一4 实验二10 实验三15 实验四21 实验五30

测量学实验须知 一、实验目的及有关要求 1.测量实验的目的一方面是为了验证和巩固课堂所学的 知识;另一方面是熟悉测量仪器的构造和使用方法,从而培养学生进行测量工作的差不多操作技能,使学到的理论与实践紧密接合。 2.在实验前,应复习教材中的有关内容,认真认真地预习实验指导书,明确目的、要求、方法、步骤及注意事项,以保证按时完成实验任务中相应项目。 3.实验分小组进行,组长负责组织和和谐实验工作,办理仪器工具的借领和归还手续。组内成员必须认真、认真地操作,培养独立工作能力和严谨的科学态度,同时要发扬互相协作精神。实验应在规定时刻内进行,不得无故缺席或迟到早退;不得擅自改变地点或离开现场。实验过程中或终止时,发觉仪器工具有遗失、损坏情形,应赶忙报告指导老师,同时要查明缘故,按照情节轻重,给予适当赔偿和处理。 4. 实验终止时,应提交实验记录,经指导教师批阅同意后,才可交还仪器工具,终止工作。 5. 课后应及时提交书写工整、规范的实验报告。 二、使用测量仪器、工具注意事项 以小组为单位到指定地点领取仪器、工具,借领时,应当场清点检查,如有缺损,能够报告实验室治理员给予补领或更换。

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量围和特点是不同的。 几种重要类型的温度传感器的温度测量围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

相关文档
相关文档 最新文档