文档库 最新最全的文档下载
当前位置:文档库 › 力学计算题

力学计算题

力学计算题
力学计算题

51两块长木板A、B的外形完全相同、质量相等,长度均为L=1m,置于光滑的水平面上.一小物块C,质量也与A、B 相等,若以水平初速度v0=2m/s,滑上B木板左端,C恰好能滑到B木板的右端,与B保持相对静止.现在让B静止在水平面上,C置于B的左端,木板A以初速度2v0向左运动与木板B发生碰撞,碰后A、B速度相同,但A、B不粘连.已知C与A、C与B之间的动摩擦因数相同.(g=10m/s2)求:

(1)C与B之间的动摩擦因数;

(2)物块C最后停在A上何处?

54.如图所示,两个完全相同的质量为m的木板A、B置于水平地面上,它们的间距s=2.88m。质量为2m,大小可忽略的物块C置于A板的左端,C与A之间的动摩擦因数为μ1=0.22,A、B与水平地面之间的动摩擦因数为μ2=0.10。

最大静摩擦力可以认为等于滑动摩擦力。开始时,三个物体处于静止状态。现给C施加一个水平向右,大小为0.4mg 的恒力F,假定木板A、B碰撞时间极短,且碰撞后粘连在一起。要使C最终不脱离木板,每块木板的长度至少应为多少?

63.(12分)

如图15所示。一水平传送装置有轮半径均为R=1/π米的主动轮1Q和从动轮2Q及转送带等构成。两轮轴心相距8.0m,轮与传送带不打滑。现用此装置运送一袋面粉,已知这袋面粉与传送带之间的动摩擦力因素为μ=0.4,这袋面粉中的面粉可不断的从袋中渗出。

(1)当传送带以4.0m/s的速度匀速运动时,将这袋面粉由左端

2

Q正上方的A点轻放在传送带上后,这袋面粉

由A端运送到

1

Q正上方的B端所用的时间为多少?

(2)要想尽快将这袋面粉由A端送到B端(设初速度仍为零),主动能

1

Q的转速至少应为多大?

(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉的痕迹,这袋面粉在传送带上留下的痕迹最长能有多长(设袋的初速度仍为零)?此时主动轮的转速应满足何种条件?

19(14分)如图所示,物块A的质量为M,物块B、C的质量都是m,并都可看作质点,且m<M<2m。三物块用细线通过滑轮连接,物块B与物块C的距离和物块C到地面的距离都是L。现将物块A下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力。求:

(1)物块A上升时的最大速度;

(2)物块A上升的最大高度。

C

B A

2v0

A

C

B

F

s

A B

L

2017年全国2卷

24.(12分)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s 0和s 1(s 1

【参考答案】(1)220102v v gs -(2)2

1012

()2s v v s + 24.(12分)

如图,在竖直平面内由

14圆弧AB 和1

2

圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接。AB 弧的半径为R ,BC 弧的半径为2R 。一小球在A 点正上方与A 相距4

R

处由静止开始自由下落,经A 点沿圆弧轨道运动。

(1)求小球在B 、A 两点的动能之比;(6分)

(2)通过计算判断小球能否沿轨道运动到C 点。(6分) 25.(20分)

轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l ,现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示,物块P 与AB 间的动摩擦因数0.5μ=。用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动,重力加速度大小为g .

⑴若P 的质量为m ,求P 到达B 点时的速度的大小,以及它离开圆轨道后落回

到AB 上的位置与B 点之间的距离;

⑵若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围. 【答案】⑴ 6gl

22l ⑵5

5'32

m m m ≤≤

25.(18分)

如图,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为

5

6

R 的光滑圆弧轨道相切于C 点,AC=7R ,A 、B 、C 、D 均在同一竖直面内。质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高

点到达F 点,AF=4R ,已知P 与直轨道间的动摩擦因数1

4

μ=

,重力加速度大小为g 。(取0sin 370.6=,0cos370.8=) (1)求P 第一次运动到B 点时速度的大小。(2)求P 运动到E点时弹簧的弹性势能。

(3)改变物块P 的质量,将P 推至E 点,从静止开始释放。已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点。G 点在C 点左下方,与C 点水平相距

7

2

R 、竖直相距R ,求P 运动到D 点时速度的大小和改变后P 的质量。 【答案】(1)2gR (2)

125mgR (3)1

3

m 25.(20分)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1。某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s 。A 、B 相遇时,A 与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2

。求(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离。 【答案】(1)1m/s ;(2)1.9m

10.【2015·福建·21】如图,质量为M 的小车静止在光滑的水平面上,

小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿轨道滑下,重力加速度为g 。 (1)若固定小车,求滑块运动过程中对小车的最大压力;

(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车,已知滑块质量2

M

m =

,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:

① 滑块运动过程中,小车的最大速度v m ;(2)滑块从B 到C 运动过程中,小车的位移大小s 。 【答案】(1)3mg (2)①gR v m 3

1

=

②s=L /3 15.【2015·全国新课标Ⅱ·25】下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°(sin37°=

5

3)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示。假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为

8

3

,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变。已知A 开始运动时,A 离B 下边缘的距离l =27m ,C 足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g =10m/s 2。求: (1)在0~2s 时间内A 和B 加速度的大小;(2)A 在B 上总的运动时间。

1.如图甲所示,ABC 为竖直放置的半径为0.1 m 的半圆形轨道,在轨道的最低点A 和最高点C 各安装了一个压力传感器,可测定小球在轨道内侧通过这两点时对轨道的压力为F A 和F C 。质量为0.1 kg 的小球,以不同的初速度v 冲入ABC 轨道。(g 取10 m/s 2

)(最后结果可用根式表示)

(1)若F A =13 N ,求小球滑经A 点时的速度v A 的大小;

(2)若F C 和F A 的关系图线如图乙所示且F A =13 N ,求小球由A 滑至C 的过程中损失的机械能。

2.如图所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点。已知h =2 m ,s = 2 m 。取重力加速度大小g =10 m/s 2

(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;

(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小。

3.如图所示,一质量为m =2 kg 的滑块从半径为R =0.2 m 的光滑四分之一圆弧轨道的顶端A 处由静止滑下,A 点和圆弧对应的圆心O 点等高,圆弧的底端B 与水平传送带平滑相接。已知传送带匀速运行的速度为v 0=4 m/s ,B 点到传送带右端C 点的距离为L =2 m 。当滑块滑到传送带的右端C 时,其速度恰好与传送带的速度相同。(g =10 m/s 2

),求: (1)滑块到达底端B 时对轨道的压力;(2)滑块与传送带间的动摩擦因数μ; (3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q 。

4.如图是检验某种平板承受冲击能力的装置,MN 为半径R =0.8 m 、固定于竖直平面内的1

4光滑圆弧轨道,轨道上端切

线水平,O 为圆心,OP 为待检验平板,M 、O 、P 三点在同一水平线上,M 的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m =0.01 kg 的小钢珠,小钢珠每次都在M 点离开弹簧枪。某次发射的小钢珠沿轨道经过N 点时恰好与轨道无作用力,水平飞出后落到OP 上的Q 点,不计空气阻力,取g =10 m/s 2

。求:(1)小钢珠经过N 点时速度的大小v N ;(2)小钢珠离开弹簧枪时的动能E k ; (3)小钢珠在平板上的落点Q 与圆心O 点的距离s 。

46.(20分)

如题46图,半径为R 的光滑圆形轨道固定在竖直面内。小球A 、B 质量分别为

m 、βm (β为待定系数)。A 球从在边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为

R 4

1

,碰撞中无机械能损失。重力加速度为g 。试求: (1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;

(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。

9.如图所示,水平传送带的右端与竖直面内的用内壁光滑钢管弯成的“9”形固定轨道相接,钢管内径很小。传送带的运行速度为v 0=6 m/s ,将质量m =1.0 kg 的可看做质点的滑块无初速地放到传送带A 端,传送带长度为L =12.0 m ,“9”字全高H =0.8 m ,“9”字上半部分圆弧半径为R =0.2 m ,滑块与传送带间的动摩擦因数为

μ=0.3,重力加速度g =10 m/s 2,试求:(1)滑块从传送带A 端运动到B 端所需要的时间;(2)滑块滑到轨道最高点C

时受到轨道的作用力大小;

(3)若滑块从“9”形轨道D 点水平抛出后,恰好垂直撞在倾角θ=45°的斜面上P 点,求P 、D 两点间的竖直高度h (保留两位有效数字)。

7.(18分)为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°.长为L=2.0m 的粗糙的倾斜轨道AB ,通过水平轨道BC 与竖直圆轨道相连,出口为水平轨道DE ,整个轨道除AB 段以外都是光滑的。其中AB 与BC 轨道以微小圆弧相接,如图所示。一个小物块以初速度0 4.0/v m s =,从某一高处水平抛出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数0.50.μ=(g 取10m/s 2,

sin 370.60,cos370.80==)求: (1)小物块的抛出点和A 点的高度差;

(2)要使小物块不离开轨道,并从水平轨道DE 滑出,求竖直圆弧轨

道的半径应该满足什么条件;

(3)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB ,则竖直圆

轨道的半径应该满足什么条件。

24.(14分)

冰壶运动是在水平冰面上进行的体育项目,运动场地示意图如下。在第一

次训练中,运动员从起滑架处推着冰壶出发,在投掷线上的A 处放手,让冰壶以一定的速度沿虚线滑出,冰壶沿虚线路径运动了s =28.9m ,停在圆垒内的虚线上。已知冰壶与冰面间的动摩擦因数为μ=0.02,重力加速度大小为g =10m/s 2。 (1)运动员在投掷线A 处放手时,冰壶的速度是多大?

(2)在第二次训练中,该运动员在投掷线A 处放手让冰壶以同样的速度滑出,同时,多名擦冰员用毛刷不断地擦冰壶运行前方的冰面,冰壶沿虚线路径比第一次多走了s'=5.1m停下。假设用毛刷擦冰面后,被擦冰面各处粗糙程度相同,求冰壶与被擦冰面间的动摩擦因数。

24.(浙江省温州市十校联合体2013届高三上学期期初考试物理试题)质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑的圆孤轨道下滑。B、C为圆弧的两端点,其连线水平。已知圆弧半径R=1.0m圆弧对应圆心角?

=106

θ,轨道最低点为O,A点距水平面的高度h=0.8m,小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的

动摩擦因数为

1

μ=

3

1

(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:

(1)小物块离开A点时的水平初速度v1;(2)小

物块经过O点时对轨道的压力;

(3)假设小物块与传送带间的动摩擦因数为

=

2

μ0.3,传送带的速度为5m/s,则P A间的距离是多少?

(4)斜面上CD间的距离。

10.(10分)(2013北京海淀期中)如图16所示,光滑斜面与水平面在B点平滑连接,质量为0.20kg 的物体从斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在水平面上的C点。每隔0.20s通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据。取g=10m/s2。

t/s 0.0 0.2 0.4 … 1.2 1.4 …

v/m?s-10.0 1.0 2.0 … 1.1 0.7 …

求:(1)物体在斜面上运动的加速度大小;

(2)斜面上A、B两点间的距离;

(3)物体在水平面上运动过程中,滑动摩擦力对物体做的功。

(2012海南)15.如图,在竖直平面内有一固定光滑轨道,其中AB是

长为R的水平直轨道,BCD是圆心为O、半径为R的

3

4圆弧轨道,两

轨道相切于B点.在外力作用下,一小球从A点由静止开始做匀加速直线运动,到达B点时

图16

C

A

B

撤除外力.已知小球刚好能沿圆轨道经过最高点C,重力加速度大小为g.求

(1)小球在AB段运动的加速度的大小;

(2)小球从D点运动到A点所用的时间.

如图4所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.

(1)求滑块与斜面间的动摩擦因数μ;

(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;

(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.

如图8所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC 部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,试求:

(1)小球水平抛出的初速度v0及斜面顶端与平台边缘的水平距离x;

(2)小球从平台顶端O点抛出至落到斜面底端B点所用的时间;

(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D时对轨道的压力.

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

土力学考题与答案

1、在自然状态下,土是由固体颗粒、和组成; 2、若土的粒径级配曲线较陡,则表示土的颗粒级配;反之,粒径级配曲线平缓,则表示土的颗粒级配; 3、土的三个基本指标、、; 4、粘性土的液性指数的表达式为; 5﹑土中应力按产生的原因可分为和; 6、土的压缩系数 a 越大,土的压缩性越,土的压缩指数C C越 大,土的压缩性越; 7、地基最终沉降量的计算常采用法和法; 8、根据固结比 OCR 的值可将天然土层划分为、、和超固结土; 9、根据土体抗剪强度的库伦定律,当土中任意点在某一方向的平面上所 受的剪应力达到土的抗剪强度时,就称该点处于状态; 10、按挡土结构相对墙后土体的位移方向(平动或转动),可将土压力分为、、; 二、判断题 1、级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因而土的 密实度较好。() 2、粘性土的抗剪强度指标是指土体的粘聚力 c 和内摩擦角φ。() 3、在计算土的自重应力时,地下水位以下采用土的饱和重度。() 4、在基底附加应力P0作用下,基础中心点所在直线上附加应力随深度Z 的增大而减小, Z 的起算点为地基表面。() 5、深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力曲 线增大。() 6、大量抽取地下水,造成地下水位大幅度下降,这将使建筑物地基的沉 降减小。() 7、三种土压力之间的大小关系为: E p < E < E a。()

8、土中某点发生剪切破坏,剪破面上剪应力就是该点的最大剪应力,剪破面与大主应力面的夹角为 45°+φ/2 。( ) 9、墙背和填土之间存在的摩擦力将使主动土压力减小、 被动土压力增大。( ) 10、进行粘性土坡稳定分析时,常采用条分法。 ( ) 三、选择题 1、孔隙比的定义表达式是( )。 A 、 e=V /V s B 、 e=V /V C 、e=V /V D 、e=V /V v V V w v s 2、不同状态下同一种土的重度由大到小排列的顺序是( ) sat >γ >d γ>γ ' B. γsat >γ '> γd >γ A . γ D. γd >γ '> γsat >γ C. d >γ >sat γ>γ' γ 3、成层土中竖向自重应力沿深度的增大而发生的变化为 :( ) A 、折线减小 B 、折线增大 C 、斜线减小 D 、斜线增大 4、土中自重应力起算点位置为: ( ) A 、基础底面 B 、天然地面 C 、地基表面 D 、室外设计地面 5、某场地表层为 4m 厚的粉质黏土,天然重度 γ=18kN/m3,其下为饱和 重度 γsat 4m 处,经计算 =19 kN/m3 的很厚的黏土层,地下水位在地表下 地表以下 2m 处土的竖向自重应力为( )。 A 、 72kPa B 、36kPa C 、 16kPa D 、 38kPa 6、当摩尔应力圆与抗剪强度线相离时,土体处于的状态是: ( ) A 、破坏状态 B 、安全状态 C 、极限平衡状态 D 、主动极限平衡状态 7、计算时间因数 时,若土层为单面排水,则式中的 H 取土层厚度的 ( )。 A 、一半 B 、1 倍 C 、2 倍 D 、4 倍 8、用朗肯土压力理论计算挡土墙土压力时,适用条件之一是( )。 A 、墙后填土干燥 B 、墙背粗糙 C 、墙背垂直、光滑 D 、墙 背倾 9、土体积的压缩主要是由于( )引起的。 A. 孔隙水的压缩 B.土颗粒的压缩

中考物理力学综合计算题含答案

中考物理力学综合计算题 1.如图24所示,质量为60kg 的工人在水平地面上,用滑轮组把货物运到高处。第一次运送货 物时,货物质量为130kg,工人用力F 1匀速拉绳,地面对工人的支持力为N 1,滑轮组的机械效率为η1;第二次运送货物时,货物质量为90 kg,工人用力F 2匀速拉绳的功率为P 2,货箱以0.1m/s 的速度匀速上升,地面对人的支持力为N 2, N 1与 N 2之比为2:3。(不计绳重及滑轮摩擦, g 取10N/kg) 求:(1)动滑轮重和力F 1的大小; (2)机械效率η1; (3) 功率P 2。 2.火车与公路交叉处设置人工控制的栏杆,图22是栏杆的示意图。栏杆全长AB =6m ,在栏杆的左端安装配重,使栏杆和配重总体的重心位于O 点。栏杆的P 点安装转轴,转轴与支架C 连结,使栏杆能绕P 在竖直平面无摩擦转动,支架C 用两块木板做成,中间空隙可以容纳栏杆。栏杆的B 端搁置在支架D 上,当支架D 上受到压力为F D 时,栏杆恰好在水平位置平衡。当体重为G 人的管理人员双脚站在水平地面时,他对地面的压强是p 1;当他用力F 1竖直向下压A 端,使栏杆的B 端刚好离开支架,此时人双脚对地面的压强是p 2。管理人员继续用力可使栏杆逆时针转动至竖直位置,并靠在支架C 上。火车要通过时,他要在A 端用力F 2使栏杆由竖直位置开始离开支架C ,使栏杆能顺时针转动直至栏杆B 端又搁置在支架D 上。已知AP =OP =1m ,PE = 2 3 m ,O 点到栏杆下边缘的距离OE =0.5m ,p 1∶p 2=2∶1,栏杆与配重的总重G 杆=2403N 。 求:(1)F D (2)G 人 (3)F 2的最小值,此时F 2的方向。(计算和结果可带根号)(6分) 图24

力学综合计算题

24.(20分) 雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g 。 (1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中克服空气阻力 所做的功W 。 (2)将雨滴看作半径为r 的球体,设其竖直落向地面的过程中所受空气阻力 f = kr 2v 2, 其中v 是雨滴的速度,k 是比例系数。 a .设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m 与半径r 的关系式; b .示意图中画出了半径为r 1、r 2(r 1> r 2)的雨滴在空气中无初速下落的v -t 图线,其中______对应半径为r 1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v -t 图线。 (3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴 简化为垂直于运动方向面积为S 的圆盘,证明:圆盘以速度v 下落时受到的空气阻力f ∝2v (提示:设单位体积内空气分子数为n ,空气分子质量为m 0)。 22.(16分) 2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h = 10 m ,C 是半径R = 20 m 圆弧的最低点。质量m = 60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a = 4.5 m/s 2,到达B 点时速度v B = 30 m/s 。取重力加速度210m/s g =。 (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量I 的大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力 图,并求其所受支持力N F 的大小。 B h C A

高考物理力学计算题(二十)含答案与解析

高考物理力学计算题(二十) 组卷老师 一.计算题(共50小题) 1.甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1m/s,甲、乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为1m/s和2m/s.求甲、乙两运动员的质量之比. 2.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示。质量为m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动。经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求 (1)弹簧的劲度系数; (2)物块b加速度的大小; (3)在物块a、b分离前,外力大小随时间变化的关系式。 3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A=2kg、m B=1kg.初始时A静止于水平地面上,B悬于空中.先将B竖直向上再举高h=1.8m(未触及滑轮)然后由静止释放.一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触.取g=10m/s2. (1)B从释放到细绳绷直时的运动时间t;

(2)A的最大速度v的大小; (3)初始时B离地面的高度H. 4.游船从某码头沿直线行驶到湖对岸,小明对过程进行观测,记录数据如表: (1)求游船匀加速运动过程中加速度大小a1及位移大小x1; (2)若游船和游客的总质量M=8000kg,求游船匀减速运动过程中所受的合力大小F; (3)求游船在整个行驶过程中的平均速度大小. 5.为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1<s0)处分别设置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板:冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1.重力加速度为g.求 (1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度.

土力学练习题(带答案)2

1、IL ≤0时,粘性土处于坚硬状态。( √ ) 2、两种不同的粘性土,其天然含水率相同,则其软硬程度相同。(× ) 3、碎石土可用孔隙比划分密实度。( × ) 4、砂土的密实状态对其工程性质影响较小。(×) 5、液限、塑限联合试验使用的试样杯直径是40 ~50mm 。(√) 6、达西定律适用于层流状态。(√) 7、土的渗透系数会随着水头差的变化而变化。( × ) 8、碎石土的渗透系数可通过变水头渗透试验测得。( × ) 9、土层在各个方向上的渗透系数都一样。( × ) 10、在同一土层中,可能发生的渗透变形的破坏形式有流土和管涌。(√) 11、土的压缩曲线越陡,土的压缩性越高。(√) 12、土的抗剪强度指标是指土的粘聚力和土的内摩擦角。(√) 13、土体的剪切破坏面与最大主应力的作用方向的夹角为45°+2 。( × ) 14、对于同一土料,即使击实功能不同,其所能得到的最大干密度必相同。( × ) 15、常水头渗透试验时取具有代表性的风干试样3~4kg,称量准确至1.0g,并测定试样的风干含水率。(√) 16、粘性土的渗透系数采用常水头法测定。( × ) 17、缩短渗透途径是防止渗透变形的工程措施之一。( × ) 18、Ⅱ级土样为完全扰动土样。(×) 19、Ⅰ级和Ⅳ级土样都可以进行土类定名。(√) 20、土样的含水率约为55% ,含水率试验时2次平行测定允许平行差值为2%。(√) 21、密度试验时测定的结果为1.795006g/cm3,修约后为1.79g/cm3。(×) 22、物理风化作用使岩石产生机械破碎,化学成分也发生变化。(×) 23、在外界条件的影响下,岩石与水溶液和气体发生化学反应,改变了岩石化学成分,形、成新的矿物的作用称为化学风化作用。(√) 24、层状构造不是土体主要的构造形式。(×) 25、在静水或缓慢的流水环境中沉积,并伴有生物、化学作用而形成的土为冲积土。(×) 26、湖边沉积土和湖心沉积土成分上没有区别。(×) 27、软弱土天然含水率高、孔隙比大,主要是由粘粒和粉粒组成。(√) 28、植物根系在岩石裂隙中生长,不断地撑裂岩石,可以引起岩石的破碎。(√) 39、土的矿物成分取决于成土母岩的成分以及所经受的风化作用。(√) 40、膨胀土地区旱季地表常出现地裂,雨季则裂缝闭合。(√) 41、具有分散构造的土体分布均匀,性质相近,常见于厚度较大的粗粒土。(√) 42、靠近山地的洪积物颗粒较细,成分均匀。( × ) 43、土中的弱结合水可以在土颗粒表面作缓慢的移动。(√)。 44、土中固体颗粒的大小、形状、矿物成分及粒径大小的搭配情况,是决定土的物理力学性质的主要因素。(√) 45、《土工试验规程》SL237-1999粒组的划分中粒径d >200mm 的为漂石(块石)。(√) 46、小于某粒径的土粒质量占总质量的10%时相应的粒径称为限制粒径。(×) 47、筛分法无粘性土称量时当试样质量多于500g 时应准确至0.1g 。(× ) 48、土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示,称为土的颗粒级配。

2019年高考真题+高考模拟题 专项版解析汇编 物理——专题20 力学计算题(原卷版)

t 专题20力学计算题 1.(2019·新课标全国Ⅰ卷)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜 轨道上保持静止。物块A运动的v–图像如图(b)所示,图中的v 1 和t 1 均为未知量。已知A 的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。 (1)求物块B的质量; (2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功; (3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。 求改变前后动摩擦因数的比值。 2.(2019·新课标全国Ⅱ卷)一质量为m=2000kg的汽车以某一速度在平直公路上匀速行驶。 行驶过程中,司机突然发现前方100m处有一警示牌。立即刹车。刹车过程中,汽车所 受阻力大小随时间变化可简化为图(a)中的图线。图(a)中,0~t 1 时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行 驶),t 1 =0.8s;t 1 ~t 2 时间段为刹车系统的启动时间,t 2 =1.3s;从t 2 时刻开始汽车的刹车 系统稳定工作,直至汽车停止,已知从t 2 时刻开始,汽车第1s内的位移为24m,第4s 内的位移为1m。 (1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线; (2)求t 2 时刻汽车的速度大小及此后的加速度大小; (3)求刹车前汽车匀速行驶时的速度大小及t 1 ~t 2 时间内汽车克服阻力做的功;从司机 发现警示牌到汽车停止,汽车行驶的距离约为多少(以t 1 ~t 2 时间段始末速度的算

最新大学土力学试题及答案

第1章 土的物理性质与工程分类 一.填空题 1. 颗粒级配曲线越平缓,不均匀系数越大,颗粒级配越好。为获得较大密实度,应选择级 配良好的土料作为填方或砂垫层的土料。 2. 粘粒含量越多,颗粒粒径越小,比表面积越大,亲水性越强,可吸附弱结合水的含量越 多,粘土的塑性指标越大 3. 塑性指标p L p w w I -=,它表明粘性土处于可塑状态时含水量的变化范围,它综合反 映了粘性、可塑性等因素。因此《规范》规定:1710≤

p I 为粘土。 4. 对无粘性土,工程性质影响最大的是土的密实度,工程上用指标e 、r D 来衡量。 5. 在粘性土的物理指标中,对粘性土的性质影响较大的指标是塑性指数p I 。 6. 决定无粘性土工程性质的好坏是无粘性土的相对密度,它是用指标r D 来衡量。 7. 粘性土的液性指标p L p L w w w w I --= ,它的正负、大小表征了粘性土的软硬状态,《规范》 按L I 将粘性土的状态划分为坚硬、硬塑、可塑、软塑、流塑。 8. 岩石按风化程度划分为微风化、中等风化、强风化。 9. 岩石按坚固程度划分为硬质岩石,包括花岗岩、石灰岩等;软质岩石,包括页岩、泥岩 等。 10.某砂层天然饱和重度20=sat γkN/m 3,土粒比重68.2=s G ,并测得该砂土的最大干重度1.17max =d γkN/m 3,最小干重度4.15min =d γkN/m 3,则天然孔隙比e 为0.68,最大孔隙比=max e 0.74,最小孔隙比=min e 0.57。 11.砂粒粒径范围是0.075~2mm ,砂土是指大于2mm 粒径累计含量不超过全重50%,而大于0.075mm 粒径累计含量超过全重50%。 12.亲水性最强的粘土矿物是蒙脱石,这是因为它的晶体单元由两个硅片中间夹一个铝片组成,晶胞间露出的是多余的负电荷,因而晶胞单元间联接很弱,水分子容易进入晶胞之间,而发生膨胀。 二 问答题 1. 概述土的三相比例指标与土的工程性质的关系? 答:三相组成的性质,特别是固体颗粒的性质,直接影响土的工程特性。但是,同样一种土,密实时强度高,松散时强度低。对于细粒土,水含量少则硬,水含量多时则软。这说明土的性质不仅决定于三相组成的性质,而且三相之间量的比例关系也是一个很重要的影响因素。

2004年至2013年天津高考物理试题分类——力学综合计算题 (1)

2004年至2013年天津高考物理试题分类——力学综合计算 (2004年)24.(18分)质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。(2 /10s m g =) 解:设撤去力F 前物块的位移为1s ,撤去力F 时物块速度为v ,物块受到的滑动摩擦力 mg F μ=1 对撤去力F 后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v s s 2 1= - 对物块运动的全过程应用动能定理011=-s F Fs 由以上各式得2 22gt s mgs F μμ-= 代入数据解得F=15N (2005年)24.(18分)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为 0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。木板突然受到水平向右的12N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L 。 解:(1)设水平向右为正方向0v m I A = ① 代入数据解得s m v /0.30= ② (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的初速分别为v A 和v B ,有 0)(v m v m t F F A A A CA BA -=+- ③ B B AB v m t F = ④ 其中F AB =F EA g m m F B A CA )(+=μ ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B ,有 2022 121)(v m v m s F F A A A A CA BA -= +- ⑥ AB B AB E s F = ⑦ 动量与动能之间的关系为 kA A A A E m v m 2= ⑧

2020年中考物理力学综合计算题含答案

2020年中考物理力学综合计算题 1.如图24所示,质量为60kg 的工人在水平地面上,用滑轮组把货物运到高处。第一次运送货 物时,货物质量为130kg,工人用力F 1匀速拉绳,地面对工人的支持力为N 1,滑轮组的机械效率为η1;第二次运送货物时,货物质量为90 kg,工人用力F 2匀速拉绳的功率为P 2,货箱以0.1m/s 的速度匀速上升,地面对人的支持力为N 2, N 1与 N 2之比为2:3。(不计绳重及滑轮摩擦, g 取10N/kg) 求:(1)动滑轮重和力F 1的大小; (2)机械效率η1; (3) 功率P 2。 2.火车与公路交叉处设置人工控制的栏杆,图22是栏杆的示意图。栏杆全长AB =6m ,在栏杆的左端安装配重,使栏杆和配重总体的重心位于O 点。栏杆的P 点安装转轴,转轴与支架C 连结,使栏杆能绕P 在竖直平面无摩擦转动,支架C 用两块木板做成,中间空隙可以容纳栏杆。栏杆的B 端搁置在支架D 上,当支架D 上受到压力为F D 时,栏杆恰好在水平位置平衡。当体重为G 人的管理人员双脚站在水平地面时,他对地面的压强是p 1;当他用力F 1竖直向下压A 端,使栏杆的B 端刚好离开支架,此时人双脚对地面的压强是p 2。管理人员继续用力可使栏杆逆时针转动至竖直位置,并靠在支架C 上。火车要通过时,他要在A 端用力F 2使栏杆由竖直位置开始离开支架C ,使栏杆能顺时针转动直至栏杆B 端又搁置在支架D 上。已知AP =OP =1m ,PE = 2 3 m ,O 点到栏杆下边缘的距离OE =0.5m ,p 1∶p 2=2∶1,栏杆与配重的总重G 杆=2403N 。 求:(1)F D (2)G 人 (3)F 2的最小值,此时F 2的方向。(计算和结果可带根号)(6分) 图24

土力学试题含答案

试卷1 一、解释或说明 (每题2分,共10分) 1. 孔隙比 2. 相对密实度 3. 附加应力 4. 主动土压力 5. 前期固结压力 二、判断题(正确者在题后的括号中打“√”,错误者打“×”且不需改正。每题1分,共计8分) 1.粘土矿物是化学风化的产物。 ( ) 2.粉土通常是单粒结构形式。 ( ) 3.土的压缩通常是土中孔隙减小及土颗粒压缩的结果。 ( ) 4.压缩模量是土在无侧限压缩时的竖向应力与应变之比。 ( ) 5.按太沙基一维固结理论,固结度与地表荷载大小无关。 ( ) 6.在直剪试验时,剪切破坏面上的剪应力并不是土样所受的最大剪应力。( ) 7.地基的局部剪切破坏通常会形成延伸到地表的滑动面。 ( ) 8.墙背光滑是朗肯土压力理论的基本假设。 ( ) 三、单项选择题(每题2分,共30分) 1.当 时,粗粒土具有良好的级配。 A. 5u C ≥且13c C ≤≤ B. 5u C ≤且13c C ≤≤ C. 5c C ≥且13u C ≤≤ D. 5u C ≤或13c C ≤≤ 2.下列矿物质中,亲水性最强的是 。 A. 伊利石 B. 蒙脱石 C. 高岭石 D. 石英 3.对填土,我们可通过控制 来保证其具有足够的密实度。 A. s γ B. γ C. d γ D. sat γ 4.一块1kg 的土样,置放一段时间后,含水量由25%下降到20%,则土中的水减少了 kg 。 A. 0.06 B. 0.05 C. 0.04 D. 0.03 5. 在下列指标中,不可能大于1的指标是 。 A. 含水量 B. 孔隙比 C. 液性指数 D. 饱和度 6. 测得某粘性土的液限为40%,塑性指数为17,含水量为30%,则其相应的液性指数为 。 A. 0.59 B. 0.50 C. 0.41 D. 0.35 7. 地基表面作用着均布的矩形荷载,由此可知,在矩形的中心点以下,随着深度的增加,地基中的 。 A. 附加应力线性减小,自重应力增大 B. 附加应力非线性减小,自重应力增大 C. 附加应力不变,自重应力增大 D. 附加应力线性增大,自重应力减小 8. 饱和粘土层上为粗砂层,下为不透水的基岩,则在固结过程中,有效应力最小的位置在粘土层的 。 A. 底部 B. 顶部 C. 正中间 D. 各处(沿高度均匀分布)

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

土力学答案解析计算题

第二章 2-2、有一饱和的原状土样切满于容积为21.7cm 3的环刀内,称得总质量为72.49g ,经105℃烘干至恒重为61.28g ,已知环刀质量为32.54g ,土粒比重为2.74,试求该土样的湿密度、含水量、干密度及孔隙比(要求汇出土的三相比例示意图,按三相比例指标的定义求解)。 解:3/84.17 .2154 .3249.72cm g V m =-==ρ %3954 .3228.6128 .6149.72=--== S W m m ω 3/32.17 .2154 .3228.61cm g V m S d =-== ρ 069.149 .1021.11=== S V V V e 2-3、某原状土样的密度为1.85g/cm 3,含水量为34%,土粒相对密度为2.71,试求该土样的饱和密度、有效密度和有效重度(先推导公式然后求解)。 解:(1)V V m W V s sat ρρ?+= W S m m m +=Θ S W m m = ω 设1=S m ρω +=∴1V W S S S V m d ρ= Θ W S W S S S d d m V ρρ?=?= ∴1 ()()()()()()3 W S S W S S W W sat cm /87g .1171 .20.341171.285.1d 11d 11d 111d 11111=+?+-?=++-= +++???? ? ? - = +-++=+???? ???-++= ∴ρωρω ρωρω ρρωρρ ω ρρρωρW S d 有 (2)()3 '/87.0187.1cm g V V V V V V V m V V m W sat W V S sat W V W V W S S W S S =-=-=+-=-+-=-= ρρρρρρρρρ (3)3''/7.81087.0cm kN g =?=?=ργ 或 3 ' 3/7.8107.18/7.181087.1cm kN cm kN g W sat sat sat =-=-==?=?=γγγργ 2-4、某砂土土样的密度为1.77g/cm 3,含水量9.8%,土粒相对密度为2.67,烘干

初中物理力学综合计算题(有答案)

初中物理力学综合计算 题(有答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、图31是某建筑工地利用滑轮组和卷扬机提起重物的示意图。当以速度v 1匀速提起质量为m 1的建筑材料时,滑轮组的机械效率为η1,卷扬机拉力的功率为P 1;当以速度v 2匀速提起质量为m 2的建筑材料时,滑轮组的机械效率为η2,卷扬机拉力的功率为P 2。若η2-η1=5%,P 1: P 2=2:3,m 1=90kg ,动滑轮受到的重力G 动=100N 。滑轮与轴的摩擦、细绳受到的重力忽略不计,g=10N/kg 。求: (1)提起质量为m 1的建筑材料时卷扬机对绳的拉力F 1; (2)两次工作过程中,建筑材料上升的速度v 1与v 2之比。 2.在生产玻璃过程中,常用位于天车上的卷扬机(其内部有电动机提供动力)通过滑轮组和真空吸盘提升玻璃,如图22甲所示。当卷扬机通过滑轮组提升质量为60kg 的玻璃并使玻璃以速度v 1匀速上升时,卷扬机对滑轮组绳端的拉力为F 1,天车对卷扬机的支持力为N 1,拉力为F 1的功率为P ,滑轮组的机 械效率为η;当卷扬机通过滑轮组提升质量为80kg 的玻璃并使玻璃以速度v 2匀 速上升时,卷扬机对滑轮组绳端的拉力为 F 2,天车对卷扬机的支持力为N 2。已 知拉力F 1所做功随时间变化的图像如图22乙所示,卷扬机的质量为120 kg ,图31 卷扬机 240 W/J 480 720 960 0 2.0 卷扬机 A B C 玻璃 吸盘 天车

滑轮A 、B 的质量均为4kg ,3v 1=5v 2,η=75%,吸盘和绳的质量及滑轮与轴的摩擦均可忽略不计,g 取10N/kg 。求: (1)P 的大小; (2)v 2的大小; (3)N 1与N 2的比值。 解:(1)由题中W -t 图像解得P =2s 960J = t W =480W …………………(2分) (2)根据η = %75W 480N 600111=?== = v P gv m P P W W 有总 有………………………(1分) 解得:v 1 =0.6m/s 已知:3v 1=5v 2 解得:v 2=0.36m/s ……………………………………………………………(1分) (3)设动滑轮C 所受重力为G 0,卷扬机提升60kg 玻璃时,滑轮组的机械效率为η=75% 所以有 η =%753B 011=++= g m G g m g m W W 总 有,代入数据解得G 0=80 N ………(1 分) 第一次提升60kg 玻璃的过程中,玻璃、动滑轮C 受力分析如答图5(1)所示,动滑轮B 受力分析如答图5(2)所示,卷扬机受力分析如答图5(3)所示。

高三物理力学综合计算题

高三物理力学综合计算题 2011.4 1.如图是为了检验某种防护罩承受冲击力的装置,M 是半径为R =1.0m 的固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平。N 为待检验的固定曲面,该曲面在竖直面内的截面为半径44.0=r m 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点。M 的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量m =0.01kg 的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到曲面N 的某一点上,取g =10 m/s 2。求: ⑴钢球刚进入轨道时,初动 能是多大? ⑵钢珠从M 圆弧轨道最高点飞出至落到圆弧N 上所用的时间是多少? 2.如图所示,一平板车以某一速度v 0匀速行驶,某时刻 一货箱(可视为质点)无初速度地放置于平板车上,货箱 离车后端的距离为l =3m ,货箱放入车上的同时,平板车开始刹车,刹车过程可视为做a =4m/s 2的匀减速直线运动。已知货箱与平板车之间的摩擦因数为μ=0.2,g =10 m/s 2。求: ⑴为使货箱不从平板上掉下来,平板车匀速行驶时的速度v 0应满足什么条件? ⑵如果货箱恰好不掉下,最终停在离车后端多远处? 3.一平板车质量M =100kg ,停在水平路面上,车身的平板离地面的高度h =1.25m 。一质量m =50kg 的物块置于车的平板上,它到车尾的距离b =1.00 m ,与车板间的动摩擦因数μ=0.20,如图所示。今对平板车施加一水平方向的恒

力使车向前行驶,结果物块从车板上滑落,物块刚离开车板的时刻,车向前行驶的距离S0=2.0m 。求物块落地时刻, 物块的落地点到车尾的水平距离S。(不计路面与车间及轮 轴间的摩擦,g取10 m/s2). 4. (2010德州一模)如图所示,一质量为M= 5.0kg的平 板车静止在光滑的水平地面上,平板车的上表面距离地面 高h=0.8m,其右侧足够远处有一障碍A,一质量为m=2.0kg 可视为质点的滑块,以v0=8m/s的初速度从左端滑上平板 车,同时对平板车施加一水平向右的、大小为5N的恒力F。 当滑块运动到平板车的最右端时,二者恰好相对静止,此 时撤去恒力F。当平板车碰到障碍物A时立即停止运动, 滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点 切入光滑竖直圆弧轨道,并沿轨道下滑。已知滑块与平板 车间的动摩擦因数μ=0.5,圆弧半径为R=1.0m,圆弧所对 的圆心角∠BOD=θ=106°。取g=10m/s2,sin53°=0.8, cos53 °=0.6。求: (1)平板车的长度; (2)障碍物A与圆弧左端B的水平距离; (3)滑块运动到圆弧轨道最低点C时对轨道压力的大小。 5.在如图所示的装置中,两个光滑的定滑轮的半径很小, 表面粗糙的斜面固定在地面上,斜面的倾角为θ=30°。 用一根跨过定滑轮的细绳连接甲、乙两物体,把甲物体放 在斜面上且连线与斜面平行,把乙物体悬在空中,并使悬 线拉直且偏离竖直方向α=60°。现同时释放甲乙两物体, 乙物体将在竖直平面内振动,当乙物体运动经过最高点和 最低点时,甲物体在斜面上均恰好未滑动。已知乙物体的 质量为m=1㎏,若取重力加速度g=10m/s2。求:甲物体 F

三年高考(2017-2019)物理真题分项版解析——20 力学计算题(解析版)

专题20 力学计算题 1.(2019·新课标全国Ⅰ卷)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B 静止于水平轨道的最左端,如图(a )所示。t =0时刻,小物块A 在倾斜轨道上从静止开始下滑,一段时间后与B 发生弹性碰撞(碰撞时间极短);当A 返回到倾斜轨道上的P 点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A 运动的v –t 图像如图(b )所示,图中的v 1和t 1均为未知量。已知A 的质量为m ,初始时A 与B 的高度差为H ,重力加速度大小为g ,不计空气阻力。 (1)求物块B 的质量; (2)在图(b )所描述的整个运动过程中,求物块A 克服摩擦力所做的功; (3)已知两物块与轨道间的动摩擦因数均相等,在物块B 停止运动后,改变物块与轨道间的动摩擦因 数,然后将A 从P 点释放,一段时间后A 刚好能与B 再次碰上。求改变前后动摩擦因数的比值。 【答案】(1)3m (2) 2 15 mgH (3)11=9μμ' 【解析】(1)根据图(b ),v 1为物块A 在碰撞前瞬间速度的大小, 1 2 v 为其碰撞后瞬间速度的大小。设物块B 的质量为m ',碰撞后瞬间的速度大小为v ',由动量守恒定律和机械能守恒定律有 11()2v mv m m v ''=-+① 22211111 ()2222 v mv m m v ''=-+② 联立①②式得 3m m '=③ (2)在图(b )所描述的运动中,设物块A 与轨道间的滑动摩擦力大小为f ,下滑过程中所走过的路程为s 1,返回过程中所走过的路程为s 2,P 点的高度为h ,整个过程中克服摩擦力所做的功为W ,由动能定理有 2 11102 mgH fs mv -= -④

土力学试题解答

模拟题一 一、名词解释(20分) 不均匀系数库仑定律前期固结压力平均固结度地基容许承载力 二、填空(20分) 1.土中的矿物类型有,其中等矿物在粘性土中最为常见。 2.土孔隙中水的类型有。 3.土的压缩性指标有等。 4.根据超固结比,将土可分为 三种固结状态。 5.三轴剪切试验根据排水条件,可分为 三种试验方法。 6.饱和粘性土在局部荷载作用下,其沉降可认为是由机理不同的 三部分组成。 7.竖直荷载下地基的破坏形式为。 三、简述题(20分) 1.侧限渗压模型有效应力与孔隙水压力随时间的转换过程(6分)。 2.产生主动土压力和被动土压力的条件(6分)。 3.粘性土坡稳定性分析中条分法的基本原理(8分)。

四、计算(40分) 1.均布竖直荷载p作用于图中的阴影部分,用角点法写出A 点以下某深度处σ z的表达式 (8分)。 2.某地基砂层下,有一粘土层厚6m,其下为不透水的基岩,地面施加大面 积(无限均布)荷载。已知室内试验取得该粘土层初始孔隙比e 1 =0.815,在与大面积荷载相等的压力下压缩稳定后的孔隙比为e2=0.795,固结系 数C v =4.6×10-3cm2/s,当固结度U t =60%时,时间因数T v =0.287。试预估 粘土层的最终沉降量和固结度达60%所需的时间(10分)。 3.已知某土样的抗剪强度参数c=50kPa,φ=20°,承受三向应力σ 1 =450kPa, σ 3 =200kPa的作用(10分)。 (1)绘制应力园与抗剪强度曲线; (2)判断该土样是否产生破坏。 4.已知某粘性土样的土粒密度ρ S =2.70g/cm3,天然密度ρ=2.00g/cm3,含 水量ω=30%,液限ω L =40%,塑限ω P =20%(12分)。 (1)求:干密度,孔隙度,孔隙比,饱和度; (2)求液性指数和塑性指数,判断土样的稠度状态,按《岩土工程勘察规范》中的分类法给该土样定名。 模拟题二 一、名词解释(24分) 粒度成分压缩定律渗透固结 角点法主动土压力临塑荷载 二、填空(16分)

初中物理力学综合计算题-(有答案)

精品学习资料--------------极力推荐
1、图 31 是某建筑工地利用滑轮组和卷扬机提起重物的示意图。当
以速度 v1 匀速提起质量为 m1 的建筑材料时,滑轮组的机械效率为 η1,
卷扬机拉力的功率为 P1;当以速度 v2 匀速提起质量为 m2 的建筑材
料时,滑轮组的机械效率为 η2,卷扬机拉力的功率为 P2。若 η2-η1=5%,
P1: P2=2:3,m1=90kg,动滑轮受到的重力 G 动=100N。滑轮与轴的摩
擦、细绳受到的重力忽略不计,g=10N/kg。求:
(1)提起质量为 m1 的建筑材料时卷扬机对绳的拉力 F1;
(2)两次工作过程中,建筑材料上升的速度 v1 与 v2 之比。
卷扬机
建筑材料
图 31
2.在生产玻璃过程中,常用位于天车上的卷扬机(其内部有电动机提供动力)通过滑
轮组和真空吸盘提升玻璃,如图 22 甲所示。当卷扬机通过滑轮组提升质量为 60kg 的玻璃并
使玻璃以速度 v1 匀速上升时,卷扬机对滑轮组绳端的拉力为 F1,天车对卷扬机的支持力为
N1,拉力为 F1 的功率为 P,滑轮组的机械效率为 η;当卷扬机通过滑轮组提升质量为 80kg
的玻璃并使玻璃以速度 v2 匀速上升时,卷扬机对滑轮组绳端的拉力为 F2,天车对卷扬机的
支持力为 N2。已知拉力 F1 所做功随时间变化的图像如图 22 乙所示,卷扬机的质量为 120 kg,
滑轮 A、B 的质量均为 4kg,3v1=5v2,η=75%,吸盘和绳的质量及滑轮与轴的摩擦均可忽略
不计,g 取 10N/kg。求: (1)P 的大小; (2)v2 的大小;
卷扬机 天车
W/J 960
(3)N1 与 N2 的比值。
A
720
解:(1)由题中 W-t 图像解得B P= W 960J =480W ………480…………(2 分) t 2s
240
(2)根据 η= W有 W总
P有 P
m1gCv1 吸盘P
600N v1 75% ………………………(1 分)
480W玻璃
0
0.5 1.0 1.5 2.0
t/s
解得:v1 =0.6m/s
甲 图 22

已知:3v1=5v2
解得:v2=0.36m/s……………………………………………………………(1 分) (3)设动滑轮 C 所受重力为 G0,卷扬机提升 60kg 玻璃时,滑轮组的机械效率为 η=75%
1/5

相关文档