文档库 最新最全的文档下载
当前位置:文档库 › 高中物理专题复习——电场与磁场

高中物理专题复习——电场与磁场

高中物理专题复习——电场与磁场
高中物理专题复习——电场与磁场

专题(七)电磁学中的“场”

一、大纲解读

电场和磁场是电磁学的两大基石,与电路共同构建出完整的电磁学知识框架.作为基础,电场和磁场的性质是大纲要求掌握的重点之一,是建立力、电综合试题的切入点.由此建立的力、电综合问题是历届高考考查的热点,纵观近三年高考试题,这部分内容每年至少1题,如仅带电粒子在电场、磁场中的运动,在2008年全国高考中分值约占总分的19%.这类问题从“场对电荷(物质)的作用”的特殊视角,产生与电、磁场的性质相结合的综合考点,涉及运动与力的关系、功和能量的关系、动量和冲量的关系、能量守恒定律和动量守恒定律等重要力学规律,是每年高考必考内容.知识覆盖面广,考题题材新颖丰富,注重与科技背景的结合,综合性强,对学生的空间想象能力、分析综合能力、应用数学知识处理物理问题的能力有较高的要求,是考查考生多项能力的极好载体.除基础题外,试题多是计算题甚至是压轴题,有较高的难度和区分度.

二、重点剖析

“场”的本质源自电荷,电荷的周围存在电场,运动电荷产生磁场,因此知识链条的顶端是电荷

..;同时电场或磁场又反过来对电荷或运动电荷施加力的作用,体现了知识体系的完整,因果轮回.知识结构如图7-1.分“场”的产生、场对物质(电荷或导体)的作用和能量关系三个版块.

1.静止电荷、运动电荷和变化的磁场,在周围空间都产生电场;运动电荷、电流和变化的电场在周围空间产生磁场.

2.电场对静止电荷和运动电荷都有电场力的作用;磁场只对运动电荷和电流有磁场力作用,对静止电荷没有作用力.这与“场”的产生严格对应.由于场力的作用,电荷或导体会有不同形式的运动,因此分析场力是判断电荷或导体运动性质的关键.

3.场力可能

..对电荷或导体做功,实现能量转化.当点电荷绕另一点电荷做匀速圆周运动时,电场力不做功;洛伦兹力不做功.要对带电粒子加速就要对其做功,因此电场即可以加速带电粒子,也可以使带电粒子偏转,而稳定磁场则只能使粒子偏转却不能加速.变化的磁场产生电场,所以变化的磁场则可以改变带电粒子速度的大小.

图7-1

三、考点透视

考点1、“场”的性质

从力和能两个角度去描述场的性质.电场强度E 和磁感应强度B 分别描述电场和磁场对放入其中的物质(电荷、通电导体)力的作用;电势就是从电场能的角度引入的物理量,虽然中学物理没有直接对磁场的能给出量度,但安培力做功则反映了放入磁场中的通电导体与磁场共同具有能量.

例题1:(2008年海南)匀强电场中有a 、b 、c 三点,如图所示.在以它们为顶点的三角形中, ∠a =30°、∠c =90°,.电场方向与三角形所在平面平行.已知a 、b 和c

点的电势分别为(2V

、(2+V 和2 V .该三角形的外接圆上最低、最高电势分别为( )

A

.(2-V

、(2+V

B .0 V 、4 V

C

.(2-V

、(2+ D .0 V

解析:如图所示,取ab 的中点O ,即为三角形的外接圆的圆心,且该点电势为2V ,故Oc 为等势面,MN 为电场线,方向为MN 方向,U OP =

U Oa =3V ,因U ON : U OP =2 :3,故U ON =2V ,N 点电势为零,为最

小电势点,同理M 点电势为4V ,为最大电势点。

答案:B

点拨:匀强电场的电场线与等势面是平行等间距排列,且电场线与等势

面处处垂直,沿着电场线方向电势均匀降落,在公式U=Ed 中,计算时d 虽

然是一定要用沿场强方向的距离,但在同一个匀强电场E 中,电势差U 与距离d 的关系却可以演变为“任意一族平行线上等距离的两点的电势差相等”,体现知识运用的“活”字,平时练习时要注意.

考点2、“场”对物质的作用

电场对放入其中的电荷有力的作

用,由此产生大量的有关电荷在电场中

运动的试题;电场对放入其中的导体的

作用,产生静电感应现象.

磁场只对运动电荷和电流可能..有磁场力作用,当带电粒子的速度和导体与磁感线平行时不受磁场力.洛伦兹力

一般与带电粒子的平衡和匀速圆周运动问题相关.

例题2:如图7-4所示,一重力不计的带电粒子,

图7-3

在垂直纸面的匀强磁场B 1中做半径为r 的匀速圆周运动.那么当匀强磁场突然减弱B 2之后,该带电粒子的动能将( )

A .不变

B .变大

C .变小

D .不确定

解析:当磁感应强度B 突然减弱时,

变化的磁场产生电场,由楞次定律可判

断此电场方向为顺时针方向;由带电粒子的运动方向可判断粒子带正电,因此电场方向与正电荷运动方向相反,对粒子做负功,粒子动能减小,C 正确.

答案:C

点拨:该题综合考查了麦克斯韦电磁理论、电磁感应原理以及楞次定律,“突然减弱”的磁场不仅使带电粒子所受洛伦兹力单纯减小,由变化的磁场产生的电场会对带电粒子做功而改变其动能,使用楞次定律判断电场的方向是难点.同学们一般都只将问题放在带电粒子在匀强磁场中做匀速圆周运动中去分析判断,认为洛伦兹力不做功,带电粒子的动能不变而错选A .

例题3:(02广东理综)如图7-5所示,在原来不带电的金属细杆ab 附近P 处,

放置一个正点电荷,达到静电平衡

后,则( )

A .a 端的电势比b 端的高

B .b 端的电势比d 点的低

C .a 端的电势不一定比d 点的低

D .杆内c 处的场强的方向由a 指向b

解析:静电平衡时,整个导体是等势体,导体表面是等势面,a 、b 电势相等,导体内场强处处为零,AD 错;d 点场强方向即正点电荷产生的场强方向,即由d 指向b ,沿电场线方向电势降低,故b 端的电势比d 点的低,B 对C 错;

答案: B

图7- 4 图7-5

点拨:这部分只要求掌握静电平衡时导体的特性即可.一是不要以带电正、负来判断电势高低,二是要区分静电平衡时导体内部的三种场强:场源电荷的场强、感应电荷的场强和实际场强.

四、热点分析:

电场、磁场问题一直是历届高考关注和考查的重点和热点,其中场对物质的作用更是力、电综合的命题的核心内容,从近两年全国高考试卷中有涉及两“场”试题有考查关于场的性质,有考查了场对物质的作用,特别是带电粒子在“场”中的运动,有考查综合问题,由此可见,场对物质的作用是100%命题热点.解析试题可以完全按力学方法,从产生加速度和做功两个主要方面来展开思路,只是在粒子所受的各种机械力之外加上电场力罢了.热点1、力和运动的关系:根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解.

热点2、功能关系:根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场.因此要熟悉各种力做功的特点.

处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系.特别要注意训练“三维”图的识别.

例题:在如图所示的空间中,存在场强为E的匀强电场,同时存在沿

x轴负方向,磁感应强度为B的匀强磁场。一质子(电荷量为e)在该空间恰

沿y轴正方向以速度v匀速运动。据此可以判断出

A.质子所受电场力大小等于eE,运动中电势能减小,沿着z轴方向

电势升高

B.质子所受电场力大小等于eE,运动中电势能增大,沿着z轴方向

电势降低

C.质子所受电场力大小等于evB,运动中电势能不变,沿着z轴方向

电势升高

D.质子所受电场力大小等于evB,运动中电势能不变,沿着z轴方向电势降低

本题简介:本题为2008年高考北京理综第19题,考点多,考生容易在电场力、洛伦兹力方向上的判断上出现错误,及电势高低的判断上出现错误,要求考生知识面全,能灵活运动所学知识去解答遇到的实际问题.

解析:质子所受电场力与洛伦兹力平衡,大小等于evB,运动中电势能不变;电场线沿z 轴负方向,沿z轴正方向电势升高。

答案:C

反思:本题能够很好地考查考生对电学多个知识点(电场力、洛伦兹力、平衡条件、左手定则、电势高低的判断等)的掌握情况,是一道难得的好题。

例题4:如图7-6所示,一根长L=1.5 m的光滑绝缘细直杆MN,竖直固定在场强为E

=1.0×105N/C、与水平方向成θ=30°角的倾斜向上的匀强电场中.杆的下端M固定一个带电小球A,电荷量Q=+4.5×10-6C;另一带电小球B穿在杆上可自由滑动,电荷量q=+1.0×10-6C,质量m=1.0×10-2kg.现将小球B从杆的上端N静止释放,小球B开始运动.(静电力常量k=9.0×109N·m2/C2,取g=l0 m/s2)

⑴小球B开始运动时的加速度为多大?

⑵小球B的速度最大时,距M端的高度h1为多大?

⑶小球B从N端运动到距M端的高度h2=0.6l m时,速度为v=1.0 m/s,求此过程中

小球B的电势能改变了多少?

本题简介:本题为2007年高考四川理综第24题.试题以匀强电场为背景,叠加了点电荷的电场和重力场,场力两恒一变,考查变力作用下的牛顿第二定律的运用、物体运动状态分析、叠加电场中电荷电势能的变化等,综合运动和力、能量关系,全方位考查两大热点,试题容量大,覆盖面广,综合性强,难度适中.解析:⑴开始运动时小球B

受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由图7-

6

牛顿第二定律得:2sin kQq mg qE ma L θ-

-= 解得:2sin kQq qE a g L m m

θ=-- 代人数据解得:a =3.2 m/s 2

⑵小球B 速度最大时合力为零,即 2

1sin kQq qE mg h θ+=

解得:1h = 代人数据解得:h 1=0.9 m

⑶小球B 从开始运动到速度为v 的过程中,设重力做功为W 1,电场力做功为W 2,库仑力做功为W 3,根据动能定理有:

212312

W W W m ++=v ()12W mg L h =-

()22sin W qE L h θ=-- 解得:()()23221sin 2

W m mg L h qE L h θ=--+-v 设小球B 的电势能改变了△E p ,则:

()23p E W W ?=-+

()2212p E m g L h m ?=--

v 解得:28.410 J p E -?=?

答案:⑴a =3.2 m/s 2;⑵h 1=0.9 m ;⑶28.410 J p E -?=?

反思:由于点电荷A 在空间各点产生的场强并不相等,使小球B 的运动加速度也不恒定,因此不能从运动规律求高度h 1,必须对小球B 在运动中受力情况的变化作出分析和判断,得到“小球B 速度最大时合力为零”的结论,然后通过求合力来计算高度h 1;第⑶问是本题的难点,抛开考生熟悉的点电荷在单一电场中电势能变化与电场力做功的关系模式,考生必须从能量转化与做功的关系的角度出发,确定小球B 电势能的改变与两个力做功有关:匀强电场的电场力和小球A 对小球B 的库仑力,且电场力做的功等于电荷电势能的减少量,才能确定()23p E W W ?=-+.

五、能力突破:

例题5:如图7-7所示,在第一象限的abcO 范围内存在沿x 正向的匀强电场,质量为m 、电量为q 的带电粒子,从原点O 点以与x 轴成θ角的初速度v 0射入电场

中,飞出电场时速度恰好沿y 轴的正方向.不计粒子的重力,则( )

A .粒子穿过电场的过程中,电场力对粒子的冲

图7-7

量的大小是m v 0cos θ,方向沿y 轴负方向

B .粒子射出电场时速度大小为v 0sin θ

C .粒子穿过电场的过程中,电场力做功2201cos 2

m θv D .粒子穿过电场的过程中,电势能减小2201cos 2m θv

解析:带电粒子只受电场力,由轨迹可判断电场力方向沿x 轴负方向,粒子带负电;在y 方向粒子不受力,因此做匀速直线运动,且速度为0sin y =θv v .粒子出电场时速度恰好沿y 轴的正方向,因此x 方向速度恰好减小到零,由动量定理得00cos Ft=-m θv ,即电场力冲量的大小为0cos m θv ,方向沿x 轴负方向,A 错B 对;粒子穿过电场的过程中,只有电场力做功,由动能定理得22222222000011111sin cos 22222

W=m -m =m -m =-m θθv v v v v ,C 错;且电场力做的功等于电势能的减小量,电场力做负功,因此电势能增大,D 错.

答案:B

反思:带电粒子飞出电场时速度恰好沿y 轴的正方向,反过来看,从粒子飞出点到原点O ,该曲线就是一条类平抛运动的抛物线,即粒子的运动为类平抛运动,因此y 方向速度不变,x 方向做匀减速运动,飞出时速度恰好减小到零.

例题6:如图7-8所示,带正电的小球穿在绝缘粗糙倾角为θ的直杆上,整个空间存在着竖直向上的匀强电场和垂直于杆斜向上的匀强磁场,小球沿杆向下滑动,在a 点时动能为100J ,到C 点时动能为零,则b 点恰为a 、c 的中点,则在此运动过程中( ) A .小球经b 点时动能为50J B .小球电势能增加量可能大于其重力势能减少量 C .小球在ab 段克服摩擦力所做的功与在bc 段克服摩擦力所做

的功相等

D .小球到c 点后可能沿杆向上运动

解析:电场力方向竖直向上,因此电场力与重力的合力P 恒定且一定在竖直方向上;小球到C 点时动能为零,说明小球有减速运动.若小球先做加速运动,则随速度的增大洛伦兹力(垂直于杆)增大,小球受到杆的弹力增大,因此滑动摩擦力增大,加速度减小,当加速度减小到零时速度最大,然后做匀速运动,不合题意,故小球一开始就做减速运动,由于速度减小而洛伦兹力减小,则滑动摩擦力随之减小,因此从a 到b 的平均摩擦力大于从b 到c ,两段合力做功不行,A 、C 错;若合力P 若向下,mg >qE ,则运动过程中电势能的增加量小于重力势能的减小量,若P =0,则二者相等,若P 向上,则B 正确;P 向上,当小球速度为零时若有sin F >N θμ,则小球可沿杆向上运动,D 对.

答案: BD

反思:根据洛伦兹力随速度变化的特点,结合运动和力的关系判断小球的运动状态和受力变化是解题要点.难点在于洛伦兹力对杆的弹力的影响.由于磁场方向垂直于杆斜向上,由左手定则可判断小球向下运动时洛伦兹力垂直于杆指向纸内,杆的弹力N 2垂直于杆向外,由于合力P 产生的弹力N 1垂直于杆向下或向上,N 1与N 2的合力N 随洛伦兹力而变.

例题7:如图7-9所示,两导体板水平放置,两板间电势差为U , 带电粒子以某一初速度v 0沿平行于两板的方向从两板正中间射入,穿过两板

后又垂直于磁场方向射入边界线竖直的匀强磁场,则:粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 和v 0的变化情况为( )

A 、d 随v 0增大而增大,d 与U 无关

B 、d 随v 0增大而增大,d 随U 增大而增大

C 、d 随U 增大而增大,d 与v 0无关

图7-8

图7-9

D 、d 随v 0增大而增大,d 随U 增大而减小

解析:带电粒子射出电场时速度的偏转角为θ,如图7-10所示,有:

0cos =

θv v ,又m R=Bq v ,而 022cos 2cos m m d=R ==Bq Bq θθv v ,A 正确. 答案:A 反思:由于粒子的偏转角与U 有关,不少考生由此计算粒子射出电场时的速度v 与d 、U 的关系,

无端多出几个未知量使判断受阻.第一直觉是d 与粒

子在电场的偏转角有关没错,但偏转角和粒子在磁场中的轨道半径又都与粒子射出电场时的速度相关,因此直接围绕偏转角列方程求解即可.

例题(2008年上海)如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy 平面的ABCD 区域内,存在两个场强大小均为E 的匀强电场I 和II ,两电场的边界均是边长为L 的正方形(不计电子所受重力)。

(1)在该区域AB 边的中点处由静止释放电子,求电子离开ABCD 区域的位置。

(2)在电场I 区域内适当位置由静止释放电子,电子恰能从ABCD 区域左下角D 处离开,求所有释放点的位置。

(3)若将左侧电场II 整体水平向右移动L /n (n ≥1),仍使电子从ABCD 区域左下角D 处离开(D 不随电场移动),求在电场I 区域内由静止释放电子的所有位置。

解析:(1)设电子的质量为m ,电量为e ,电子在电场I 中做匀加速直线运动,出区域I 时的为v 0,此后电场II 做类平抛运动,假设电子从CD 边射出,出射点纵坐标为y ,有 2012

eEL mv = 22011()222L eE L y at m v ??-== ???

解得 y =14L ,所以原假设成立,即电子离开ABCD 区域的位置坐标为(-2L ,14

L ) (2)设释放点在电场区域I 中,其坐标为(x ,y ),在电场I 中电子被加速到v 1,然后进入电场II 做类平抛运动,并从D 点离开,有

图7-10 (b ) (a )

2112

eEx mv = 2

211122eE L y at m v ??== ???

解得 xy =2

4

L ,即在电场I 区域内满足方程的点即为所求位置。 (3)设电子从(x ,y )点释放,在电场I 中加速到v 2,进入电场II 后做类平抛运动,在高度为y ′处离开电场II 时的情景与(2)中类似,然后电子做匀速直线运动,经过D 点,则有

2212

eEx mv = 2221122eE L y y at m v ??'-== ??? 2y eEL v at mv ==,2

y L y v nv '= 解得 21124xy L n ??=+ ??

?,即在电场I 区域内满足方程的点即为所求位置。 反思:带电粒子在电场中运动的分析方法,与力学中的这类问题的处理方法相同,只是在受力分析时多了一个电场力,若为匀强电场,既可用牛顿第二定律结合运动学公式求解,又可用动能定理求解,若为非匀强电场,因带电粒子受到的电场力是变力,加速度是变量,只能用能量观点解答。

例题9:地磁场可以有效抵御宇宙射线的侵入,保护地球.赤道剖面外地磁场可简化为包围地球厚度为d 的匀强磁场,方向垂直该剖面,如图7-12所示.只要速度方向在该剖面内的射线粒子不能到达地面,则其它粒子不可能到达地面.宇宙射线中对地球危害最大的带电粒子主要是β粒子,设β粒子的质量为m ,电荷量为e ,最大速度为v ,地球半径为R ,匀强磁场的磁感应强度为B ,不计大气对β在赤道平面内从任意方向射来的β粒子均不能到达地面,度d 应满足什么条件?

解析:设β粒子从A 动的半径为r 图7-13所示.作速度方向的垂线AO ’,O ’为轨道圆心,连接得△OO ’A ,由三角知识得

()R+r +r>R+d ①

则2d r>,即当2

d r=、粒子速度方向与地磁场边界相切射入时轨道半径最小,磁场厚度最小. B d R

图7-12 A B

d R

图7-13 O

O ’ r

r v

而粒子最大轨道半径m r=

Bq v ② 所以有22m d=r=

Be v 为轨道与地面相切的磁场最小厚度,要粒子不到达地面,则磁场厚度应满足2m d>Be

v 答案:2m d>Be

v 反思:不能直接将②代入不等式①求解,那样将得到2m d

v 的结论.①式只用来判断“粒子速度方向与地磁场边界相切射入时轨道半径最小”,但β粒子最大轨道半径轨道为定值,地磁场厚度d 必须大于2r 才能满足要求.

例题10:如图7-14所示,固定的光滑绝缘圆形轨道处于水平方向的匀强电场和匀强磁场中,已知圆形轨道半径R =2.00m ,磁感应强度B =1.00T ,方向垂直于纸面向内,电场强度E =1.00×102V/m ,方向水平向右.一个质量m =4.00×10-2kg

道上的C 点恰好处于静止状态,OC 与竖直直径的夹角θ=37°(g 取10m/s 2,sin37°=0.6,计算结果要求保留三位有效数字)

⑴求小球带何种电荷,电荷量q 是多少? ⑵现将电场突然反向,但强弱不变,因电场的变化而产生的磁场可忽略不计,小球始终在圆弧轨道上运动,试求在小球运动过程

中与初始位置的电势差最大值U m 是多少?对轨道的最大压力是多

大? 解析:⑴由平衡条件有:tan qE =mg

θ 23tan 4.0010100.75C 3.0010C 100

--mg q===E θ

???? 带负电荷

⑵电场反向后,电场力和重力的合力F 大小仍为0.5N cos mg =θ

不变,方向与竖直方向夹角为θ=37°指向右下方,小球的平衡位置O ’,O O ’与OC 的夹角为2θ=74°,故小球从C 点开始向O ’

做加速运动,到达O ’时速度最大,根据对称性,小球会继续运动

到与OO ’成2θ=74°的C ’点,即在CC ’之间振动.由图7-15可知,C 点与同O 等高的D 点间电势差最大,由U =Ed 得

()m 1sin 320V U =ER +=θ

小球经过平衡位置O ’点时速度最大,当小球从C 运动到O ’点时,由左手定则可判断洛伦兹力沿OO ’方向向下,此时小球对轨道的压力最大.从C 到O ’由动能定理得

212sin 2

qE R =m θ?v 在O ’点,由牛顿第二定律得 2

N F -F-q B=m R

v v 即 2

1.24N N F =F+q B+m =R

v v 由牛顿第三定律可知,小球对轨道的压力 1.24N N N F '=F =

答案:⑴负电荷,q =3.00×10-3C ;⑵U m =320V ,F N =1.24N

反思:带电粒子在复合场中的运动问题,解答采用了等效场、对称性等解题常用方法.此

图7-14 图7-15

类试题的“平衡位置”的确定是要点,正确的受力分析和运动状态分析是前提.

六、规律整合:

1.两大思路:运动和力的关系、能量关系——中学物理的重要思路,力、电综合的链条.实际上,几乎所有力学规律和运动状态都可能在两场问题中得到体现;能量关系中注意电场力做功的特点,而洛伦兹力不做功

2.两大法则:等效法则和对称法则——常用解题手段.在匀强电场中以及在三场叠加时,若电场力或电场力与重力的合力恒定,既可采用等效重力场来处理;运动的对称性规律为解题提供快捷途径,包括类竖直上抛运动、类平抛运动、匀速圆周运动、振动等都具体对称性;

3.一个偏角:带电粒子垂直于电场方向进入电场而发生偏转时,注意偏转角

02arc tan arctan y ==x

θv v ; 4.三个确定:当带电粒子在匀强磁场中做匀速圆周运动时,相关问题的解答关键在三个确定,如图7-16所示:

⑴圆心O :总是位于粒子在不同位置的两点A 、B 处所受

洛仑兹力F 作用线的交点上或弦AB 的中垂线OO′与任一个洛仑兹力F 作用线的交点上;

⑵半径R :①物理方法——m υR qB =; ②几何方法——一般由三角计算来确定. ⑶圆心角α与时间t :粒子的速度偏向角φ等于回旋角α,并等于弦AB 与切线的夹角(弦切角)θ的2倍,且有 22,(S t t )T R S R t υυπ?αθωαα====

===或几何方法,或

七、高考预测

从近两年高考试题看,本专题包括的考查点:一是库仑定律,电场强度、电势;二是电容和带电粒子在电场中的运动;三是安培力和洛伦兹力。电磁场知识是历年高考试题中考点分布重点区域,尤其是在力电综合试题中常巧妙地把电场、磁场的概念与牛顿定律、动能定理等力学、电学有关知识有机地联系在一起,还能侧重于应用数学工具解决物理问题方面的考查。对07年、08年全国理综Ⅰ、Ⅱ两“场”试题(不包括电磁感应)统计来看平均约占总分23%,其他卷也都在23到36分之间.预计2009年高考本专题占分比例仍在26%左右,选择题和计算题各一道的组合形式不会有多大变化,实验题有可能出现在“用描迹法画出电场中平面上的等势线”,选择题单独命题考基础,难度系数约0.60,如2007全国理综Ⅰ第20题,考查匀强电场中电势分布规律及电势差与场强的关系的灵活运用,理综Ⅱ第19题则考查点电荷的电场叠加匀强磁场中带电粒子的运动周期;计算题一般考查综合运用能力,知识覆盖面广,综合性强,多为综合场中带电粒子的运动问题,难度系数一般较大,在0.50左右.

八、专题专练

一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的或不答的得0分)

1. 一个电子穿过某一空间而未发生偏转,则此空间( )

A.一定不存在磁场

B.可能只存在电场

C.可能存在方向重合的电场和磁场

D.可能存在正交的磁场和电场

图7-16

2. 据报道,我国第21次南极科考队于2005年在南极考查时观察到了美丽的极光,极光是由来自太阳的高能量带电粒子流高速冲进高空稀薄大气层时,被地球磁场俘获的,从而改变原有运动方向,向两极做螺旋运动,如图1所示,

这些高能粒子在运动过程中与大气分子或原子剧

烈碰撞或摩擦从而激发大气分子或原子,使其发

出有一定特征的各种颜色的光,由于地磁场的存

在,使多数宇宙粒子不能达到地面而向人烟稀少

的两极偏移,为地球生命的诞生和维持提供了天

然的屏障,科学家发现并证实,向两极做螺旋运

动的这些高能粒子的旋转半径是不断减少的,这

主要与下列哪些因素有关( )

A.洛伦兹力对粒子做负功,使其动能减小

B.空气阻力做负功,使其动能减小

C.向南北两极磁感应强度不断增强

D.太阳对粒子的引力做负功

3..一个质子在匀强磁场和匀强电场中运动时,动能保持不变,已知磁场方向水平向右,则质子的运动方向和电场方向可能是(质子的重力不计)( )

A.质子向右运动,电场方向竖直向上

B.质子向右运动,电场方向竖直向下

C.质子向上运动,电场方向垂直纸面向里

D.质子向上运动,电场方向垂直面向外

4. 如图2所示,一带电粒子以水平初速度0v (0E v B

<)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为1W ;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度0v 穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为2W ,比较1W 和2W ,有( )

A.一定是12W W > B.一定是12W W =

C.一定是1W W < D.可能是1W W <,也可能是12W W >

5. 如图4所示,匀强电场E方向水平向左,带有正电荷的物体沿绝缘水平面向右运动,经

过A点时动能是100J,经过B点时 ,动能是A点的

15,减少的动能有35

转化成电势能,那么,当它再次经过B点时动能为( )

A.16J

B.8J

C.4J

D.20J

6. 如图5所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a 点进入电磁场并刚好能沿ab

直线向上运动,下列说法正确的是( )

A 、微粒一定带负电

B 、微粒动能一定减小

C 、微粒的电势能一定增加

D 、微粒的机械能一定增

7. 如图6所示,质量为m,初速度为0v 的带电体a,从水平面的P点向固定的带电体b运动,b与a电性相同,当a向右移动s时,速度减为零,设a、b与地面间的摩擦因数均为 ,那么当a从P向右移动的位移为2

s 时,a的动能( )

A.等于初动能的一半

B.小于初动能的一半

C.大于初动能的一半

D.减小量等于电势能的增加量

8. 如图7所示,在重力加速度为g的空间中,有一个带电量为+Q的场源电荷置于O点,B、C为以)为圆心,半径为R的竖直圆周上的两点,A、B、O在同一竖直线上,AB=R,O、C在同一水平线上,现在有一质量为m,电荷量为q

-的有孔小球,沿光滑绝缘细杆AC从A点由静止开始下滑,滑

,下列说法正确的是( )

A.从A到C小球做匀加速运动

B.从A到C小球的机械能守恒

C.B、A两点间的电势差为2mgR q

D.若小球不通过杆从A点自由释放,则下落到B点时的速度

9. 空间某区域电场线分布如图8所示,带电小球(质量为m,电量为q)在A点速度为1v ,方向水平向右,至B点速度为2v ,2v 与水平方向间夹

角为α,A、B间高度差为H,以下判断错误 是

( )

A.A、B两点间电势差222111()22mv mv U q

-= B.球由A至B,电场力的冲量为21(cos )m v v α-

C.球由A至B,电场力做功为

22211122

mv mv mgH -- D.小球重力在B点的瞬时功率为2sin mgv α

10. 如图9所示,绝缘光滑半圆环轨道放在竖直向下的匀强电场

中,场强为E ,在与环心等高处放有一质量为m 、带电q

的小球,

由静止开始沿轨道运动,下述说法正确的是( )

A、小球在运动过程中机械能守恒

B、小球经过环的最低点时速度最大

C、小球经过环的最低点时对轨道压力为3(mg+qE)

D、小球经过环的最低点时对轨道压力为(mg+qE)

二、填空题(本题2小题,共18分,把答案填在题中的横线上或按要求答题)

11. .在用模拟法描绘静电场等势线的实验中

(1)某同学发现描绘的等势线发生畸变,则产生误差的可能原因是()

A.电流表的灵敏度不高

B.电极与导电纸接触不良

C.导电纸涂层不均匀

D.有一个电极靠近导电纸边缘

(2)某同学进行了实验探究,做了以下的实验:把两长

条形电极紧压在导电纸上(导电纸铺在平木板上),并分

别接在低压恒定直流电源两极,现取一金属环,将圆环放

在两电极中间的导电纸上,再在灵敏电流计正、负接线柱

上分别接两探针Ⅰ和Ⅱ(电流从灵敏电流计正接线柱流入

时,指针右偏)做如下测试,如图10所示:

a当两探针Ⅰ和Ⅱ与金属环内导电纸上任意两点接触时,

电流表指针将。(填“右偏”或“左偏”或“指

零”)

b当两探针Ⅰ和Ⅱ与金属环上任意两点接触时,电流表指针将(填“右偏”或“左偏”或“指零”)

c当两探针Ⅰ和Ⅱ分别与环上,环内导电纸接触时,电流表指针将。(填“右偏”或“左偏”或“指零”)

d当两探针Ⅰ和Ⅱ分别与环上、导电纸上a点接触时,电流表指针将。(填“右偏”或“左偏”或“指零”)

12.如图11所示,实验中如果探针在导电纸上不论如

何移动,电流表指针都不动,若改用多用表直流电压

挡直接测A、B两极对导电纸的电压,电压正常,再

测A电极对导电纸的电压,发现电压处处相等,且等

于电源的电动势,这说明

三、计算题(共5小题,共92分。解答下列各题时,应写出必要的文字说明、表达式和重要步骤。只写最后答案的不得分。有数值计算的题,答案中必须明确写出数值和单位。)13. 一细棒处于磁感应强度为B的匀强磁场中,棒与磁场方向垂直,与水平方向夹角为θ。磁感线水平指向纸里,如图12所示,棒上套一个可在其上滑动的带负电的小球C,小球质量为m,带电量为q,球与棒间的动摩擦因数为μ,让小球从棒上端静止下滑,求:(1)小球的最大速度;

(2)动摩擦因数μ应具备的条件。

14. 如图13所示,质量为m的小球A在绝缘细杆上,杆的倾角为α,小球A带正电,电量为q。在杆上B点处固定一个电量为Q的正电荷,将小球A由距B点竖直高度为H处无初速度释放,小球A下滑过程中电量不变,不计A与细杆间的摩擦,整个装置处在真空中,已知静电力常量k和重力加速度g

(1)A球刚释放时的加速度是多大?

(2)当A球的动能最大时,球此时A球与B点的距离

15. 如图14所示,ABCD表示竖立在场强为4

10/E V m

=的水平匀强电场中的绝缘光滑轨道,其中轨道的B

CD部分是半径为R的半圆环,轨道的水平部分与

半圆环相切,A为水平轨道上的一点,而且,AB

=R=0.2m,把一质量m=10g、带电量q=510C -+的小球在水平轨道的A点由静止释放后,

小球在轨道的内侧运动(g=102

/m s )。求:

(1)小球到达C点时的速度

(2)小球达到C点时对轨道的压力

(3)要使小球刚好能运动到D点,小球开始运动

的位置应离B点多远?

16. 设在讨论的空间范围内有磁感应强度为B的匀

强磁场,B的方向垂直于纸面向里,如图15所示,在纸平面上有一长为h 的光滑绝缘空心细管MN,管的M端内有一带正电的小球P1,在纸平面上N端的正右前方2h 处有一个不带电的小球P2,开始时P1相对管静止,管向运动,小球P2在纸平面上沿着以于MN延长线方向成045角的速度2u 运动,设管的质量远大于P1的质量,P1在管内的运动对管的运动的影响可以忽略。

已知P11,且在离开管后最终能与P2相

碰,试求:(1)P1的比荷

(2)1u 和2u 的比值

17. 如图16所示,在足够大的空间内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T,小球1带正电,其电荷量与质量之比

114/q C kg m =,所受重力与电场力的大小相等,小球2不带电,静止放置于固

定的水平悬空支架上,小球1向右以023.59/v m s =的水平速

度与小球2正碰,碰后经过0.75s再次相碰。设碰撞前后两小

球带电情况不发生改变,且始终在同一竖直平面内。(g=

102/m s )问

(1) 电场强度E的大小是多少?

(2) 两小球的质量之比21

m m 是多少?

参考答案:

1. BCD

2. BC

3.D

4.A

5. C

6. AD

7.C

8. CD

9. AB 10.BC

11.(1)CD(2)指零 指零 指零 左偏

12. 电极A与导电纸接触不良

13. 解:(1)小球速度最大时,棒对它的弹力垂直于棒向下,受力分析如图,沿杆方向,sin mg f θ=,垂直杆方向:cos m qv B mg N θ=+,f N μ=联立以上各式,

sin (cos )m mg qv B mg θμθ=- 所以:(sin cos )m mg v qB

θμθμ+= (2)小球C从斜置的绝缘棒上由静止开始运动,必须满足条件sin f mg F θ>,而cos f F mg μθ=即sin cos mg mg θμθ>,所以tan μθ>

14. 解:(1)根据牛顿第二定律sin mg F ma α-=,根据库仑定律2Qq F k r =,sin H r α

=,解得22sin sin kQq a g mH

αα=- (2)当A球受到的合力为零即加速度为零时,动能最大,设此时A球与B点间的距离为R,

则2sin kQq mg R α=,解得R = 15. 解:(1)、(2)如图所示,设小球在C点的速度大小是C v ,对轨道的压力大小为C N ,则对于小球由A→C 的过程中,应用动能定理列出:2122

C qE R mgR mv -=-0,在C点的园轨道径向应用牛顿第二定律,有2C C v N qE m R

-=,解得

2/,520.3

C C v m s N qE mg N ===-= (3)如图所示,设小球初始位置应在离B点xm的A '点,对小球由A '→D的过程应用动能定理,有:2122

D qEx mg R mv -=,在D点的圆轨道径向应用牛顿第二定律,有2D v mg m R

=,解得50.52mgR x m qE == 16. 解:(1)F 1为P 1参与的运动而受到指向N端的洛伦兹力,其值为:11F qu B =(其中 0q >,为1P 的电量),1P 对应有指向N端的加速度:1qu B F a m m

== (其中m为1P 的质量) 1P 在管中运动会使它受到另一个向左的洛伦兹力,此力与管壁对1P 向右的力所抵消,1P 到

达N端时具有沿管长方向的速度:u ==

所以,1P 对纸平面的速度大小为: v =

又因为1v =

,故:1u u = 即:2112q u Bh u m

= 所以1P 的比荷为:12u q m Bh

= (2)1P

从M端到N端经历的时间为:11

2h t u === 1P

离开管后将在纸平面上做匀速圆周运动,半径与周期分别为:mv R qB =

= 1

24m h T qB u ππ== 1P 经t1时间已随管朝正右方向运动:1111

122h s u t u h u === 的距离

所以1P 离开N端的位置恰好为2P 的初始位置

2P 经时间t1已知运动到如图所示的位置S2走过的路程为22211

2u s u t h

u == 1P 只能与2P 相碰在图中的S处,相遇时刻必为 11(),0,1,2,32

t t k T k =++=… 且要求2P 在这段时间内恰好走过2R的路程,因此有

22u t R ==

即得:121(21)u k π

==++

所以:120,1,2,3,u k u ==…) 17. 解:mg qE =……① 14

mg E g q == 由于重力和电场力平衡,电粒子在洛伦兹力作用下做圆周运动,小球平抛且碰时动量守恒,根据条件,碰后1m 反向

'10102m v m v m V =-+……① 另有'2'

010

1v q Bv m r =……② 解得'01

v qB r m ω==……③ 对平抛:212

x vt r

y gt r ==== 解得'015/432v m s v v π=

=

高中物理选修3-1公式

高中物理选修3-1公式 第一章 静电场 1、库仑力:221r q q k F = (适用条件:真空中静止的点电荷) k = 9.0×109 N ·m 2/ c 2 静电力常量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场性质的物理量。是矢量。 定义式: q F E = 单位: N / C 或V/m 点电荷电场场强 2r Q k E = 匀强电场场强 d U E = 3、电势能:电势能的单位:J 通常取无限远处或大地表面为电势能的零点。 静电力做功等于电势能的减少量 PB PA AB E E W -= 4、电势: 电势是描述电场能的性质的物理量。是标量。 电势的单位:V 电势的定义式:q E p = ? 顺着电场线方向,电势越来越低。 一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。 5、电势差U ,又称电压 q W U = U AB = φA -φB 电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动 2 22022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角度 2 0tan mdv qUl v at v v x y == = θ 8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。单位:F 定义式: c Q U = 电容器的带电荷量: Q=cU 平行板电容器的电容: kd S c πε4= 平行板电容器与电源的两极相连,则两极板间电压不变

高中物理电场图像专题

场强图像 1.如图所示,两个带电荷量分别为2q和-q的点电 荷固定在x轴上,相距为2L。下列图象中,两个点电荷连线上场强大小E与x关系的图象可能是( ) 2.一带正电粒子在正点电荷的电场中仅受静电力作用,做初速度为零的直线运动。取该直线为x轴,起始点 O为坐标原点,则下列关于电场强度E、粒子动能E k、粒子电势能E p、粒子加速度a与位移x的关系图象可能的是( ) 3如图所示x轴上各点的电场强度如图所示,场强方 向与x轴平行,规定沿x轴正方向为正,一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位置速度第一次为零,在x3位置第二次速度为零,不计粒子的重力。下列说法正确的是( ) A.O点与x2和O点与x3电势差U Ox2=U Ox3 B.点电荷从O点运动到x2,再运动到x3的过程中, 加速度先减小再增大,然后保持不变 C.点电荷从O点运动到x2,再运动到x3的过程中,速度先均匀减小再均匀增大,然后减小再增大D.点电荷在x2、x3位置的电势能最小 4.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t=0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v0,t=T时刻粒子刚好沿MN 板右边缘射出电场。则( ) A.该粒子射出电场时的速度方向一定是沿垂直电场方向的 B.在t= T 2 时刻,该粒子的速度大小为2v0 C.若该粒子在 T 2 时刻以速度v0进入电场,则粒子会打在板上 D.若该粒子的入射速度变为2v0,则该粒子仍在t=T 时刻射出电场 5.在x轴上关于原点对称的a、b两点处固定两个电荷量相等的点电荷,如图所示的E-x图象描绘了x轴上部分区域的电场强度(以x轴正方向为电场强度的正方向)。对于该电场中x轴上关于原点对称的c、d两点,下列结论正确的是( ) A.两点场强相同,c点电势更高 B.两点场强相同,d点电势更高 C.两点场强不同,两点电势相 等,均比O点电势高 D.两点场强不同,两点电势相等,均比O点电势低 6.(多选)静电场在x轴上的 场强E随x的变化关系如图所 示,x轴正方向为场强正方向, 带正电的点电荷沿x轴运动, 则点电荷( )

高考物理复习专题突破篇专题带电粒子在电场中的运动讲练

专题七带电粒子在电场中的运动 考点1| 电场的性质难度:中档题题型:选择题五年7考 (2014·江苏高考T4)如图1所示,一圆环上均匀分布着正电荷,x轴垂直于环面且过圆心O.下列关于x轴上的电场强度和电势的说法中正确的是( ) 图1 A.O点的电场强度为零,电势最低 B.O点的电场强度为零,电势最高 C.从O点沿x轴正方向,电场强度减小,电势升高 D.从O点沿x轴正方向,电场强度增大,电势降低 【解题关键】解此题的关键有两点: (1)圆环正电荷均匀分布,x轴上各处的场强方向与x轴平行. (2)沿电场方向电势降低,但电场强度不一定减小. B[根据电场的叠加原理和电场线的性质解题.根据电场的对称性和电场的叠加原理知,O点的电场强度为零.在x轴上,电场强度的方向自O点分别指向x轴正方向和x轴负方向,且沿电场线方向电势越来越低,所以O点电势最高.在x轴上离O点无限远处的电场

强度为零,故沿x轴正方向和x轴负方向的电场强度先增大后减小.选项B正确.] (2016·江苏高考T3)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图2所示,容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( ) 图2 A.A点的电场强度比B点的大 B.小球表面的电势比容器内表面的低 C.B点的电场强度方向与该处内表面垂直 D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同 【解题关键】解此题的关键有三点: (1)电场线越密的地方电场强度越大 (2)电场线一定与该处的等势面垂直. (3)电场力做功的大小由始末两点的电势差与移动的电荷量共同决定. C[由题图知,B点处的电场线比A点处的密,则A点的电场强度比B点的小,选项A 错误;沿电场线方向电势降低,选项B错误;电场强度的方向总与等势面导体表面垂直,选项C正确;检验电荷由A点移动到B点,电场力做功一定,与路径无关,选项D错误.] (多选) (2014·全国卷ⅠT21)如图3所示,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°.M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN,φP=φF,点电荷Q在M、N、P三点所在平面内,则( ) 图3 A.点电荷Q一定在MP的连线上 B.连接PF的线段一定在同一等势面上 C.将正拭探电荷从P点搬运到N点,电场力做负功 D.φP大于φM 【解题关键】解此题的关键有两点:

高中高二物理电学公式大全

高中物理电学公式总结 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速(V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P 出/P总 9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成 反比) 电阻关系(串同并反) 10.欧姆表测电阻(1)电路组成(2)测量原理(3)使用方法(4)注意事项 11.伏安法测电阻电流表内接法:电流表外接法: 三、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单 位:(T),1T=1N/A 2.安培力F=BIL; 3.洛仑兹力f=qVB(注V⊥B);质谱仪 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动 情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹 力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动, 四、电磁感应 1.感应电动势的大小计算公式: 1)E=nΔΦ/Δt(普适公式){法拉第电 磁感应定律, 2)E=BLV垂(切割磁感线运动) 3)E m=nBSω(交流发电机最大的感应电动势) 4)E=BL2ω/2(导体一端固定以ω旋转切割) 2.磁通量Φ=BS

2020_2021学年高中物理专题十电场演练测评含解析选修3_1

高中物理选修3_1: 电 场 姓名:__________ 班级:__________ 正确率:__________ 一、单项选择题 1.关于静电的应用和防止,下列说法不正确的是( ) A .为了美观,通常把避雷针顶端设计成球形 B .为了防止静电危害,飞机轮胎用导电橡胶制成 C .为了避免因尖端放电而损失电能,高压输电导线表面要很光滑 D .为了消除静电,油罐车尾装一条拖地铁链 答案:A 2.下列关于点电荷的说法中,正确的是( ) A .只有电荷量很小的带电体才能看成是点电荷 B .体积很大的带电体一定不能看成是点电荷 C .当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成点电荷 D .一切带电体都可以看成是点电荷 答案:C 3.真空中有两个静止的点电荷,它们之间的作用力为F ,若它们的带电荷量都增大为原来的3倍,距离增大为原来的2倍,它们之间的相互作用力变为( ) A .16F B .9 4F C .3 2F D .12 F 答案:B 4.在真空中有两个点电荷,它们之间的距离是L 时,相互作用的库仑力大小是F ,如果把两个电荷之间的距离缩短10 cm ,则相互作用的库仑力变为4F ,由此可知L 的大小是( ) A .20 cm B .13.3 cm C .30 cm D .50 cm 答案:A 5.两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r

的两处,它们间库仑力的大小为F .两小球相互接触后将其固定距离变为r 2,则两球间库仑力的 大小为( ) A .1 12F B .34F C .4 3F D .12F 答案:C 6.小强在加油站加油时,看到加油机上有如图所示的图标,关于图标涉及的物理知识及其理解,下列说法正确的是( ) A .制作这些图标的依据是静电屏蔽原理 B .工作人员工作时间须穿绝缘性能良好的化纤服装 C .化纤手套与接触物容易摩擦起电存在安全隐患 D .用绝缘的塑料梳子梳头应该没有关系 答案:C 7.下列说法中正确的是( ) A .点电荷就是体积小的带电体 B .带电荷量少的带电体一定可以视为点电荷 C .大小和形状对作用力的影响可忽略的带电体可以视为点电荷 D .根据库仑定律表达式F =kQq r 2 ,当两电荷之间的距离r →0时,两电荷之间的库仑力F →∞ 答案:C 8.如图所示,两个带电球,大球的电荷量大于小球的电荷量,可以肯定( ) A .两球都带正电 B .两球都带负电 C .大球受到的静电力大于小球受到的静电力 D .两球受到的静电力大小相等 答案:D

高中物理公式大全8:电场

八、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中) {F:点电荷间的作用力(N),k:静电力常量k=9.0×109N·m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式) {E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量 (C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=U AB/d {U AB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C),U AB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:E A=qφA {E A:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔE AB=E B-E A {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔE K或qU=mV t2/2,V t =(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平抛运动: 垂直电场方向: 匀速直线运动L=V0t(在带等量异种电荷的平行极板中:E=U/d) 平行电场方向: 初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强 方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线

高中物理静电场题经典例题

高中物理静电场题经典 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、 B 、 C 三点的电势分别为1V 、6V 和9V 。则 D 、 E 、 F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) B a b P · m 、q 。 。 U + - E · B ·

A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势 面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运 动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8 E K 7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动 到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子 的动能为8eV 时,其电势能为( ) A 、12eV B 、 2eV 4

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解 析 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。 (1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度; (2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。 【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】 解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有: 20 0v qv B m r = 可得:r =0.20m =R 根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012 l v t y at == , 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =?N/C (2)粒子飞离电场时,沿电场方向速度:30 5.010y qE l v at m v ===?g m/s=0v 粒子射出电场时速度:02=v v 根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '= 根据洛伦兹力提供向心力可得: 2 v qvB m r '=' 联立可得所加匀强磁场的磁感应强度大小:4mv B qr '= =' T 根据左手定则可知所加磁场方向垂直纸面向外。

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点的 电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

高中物理带电粒子在电场中的运动技巧很有用及练习题.doc

高中物理带电粒子在电场中的运动技巧 ( 很有用 ) 及练习题 一、高考物理精讲专题带电粒子在电场中的运动 1. 如图所示,竖直面内有水平线 MN 与竖直线 PQ 交于 P 点, O 在水平线 MN 上, OP 间 距为 d ,一质量为 m 、电量为 q 的带正电粒子,从 O 处以大小为 v 0、方向与水平线夹角为 θ= 60o 的速度,进入大小为 E 1 的匀强电场中,电场方向与竖直方向夹角为 θ= 60o ,粒子 到达 PQ 线上的 A 点时,其动能为在 O 处时动能的 4 倍.当粒子到达 A 点时,突然将电场 改为大小为 E 2,方向与竖直方向夹角也为 θ= 60o 的匀强电场,然后粒子能到达 PQ 线上的 B 点.电场方向均平行于 MN 、 PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。 已知粒子从 O 运动到 A 的时间与从 A 运动到 B 的时间相同,不计粒子重力,已知量为 m 、 q 、 v 0、 d .求: (1)粒子从 O 到 A 运动过程中 ,电场力所做功 W ; (2)匀强电场的场强大小 E 1、 E 2; (3)粒子到达 B 点时的动能 E kB . 3 2 (2)E 1 = 3m 02 3m 2 14m 02 【答案】 (1)W mv 0 4qd E 2 = (3) E kB = 2 3qd 3 【解析】 【分析】 (1) 对粒子应用动能定理可以求出电场力做的功。 (2) 粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。 (3) 根据粒子运动过程,应用动能计算公式求出粒子到达 B 点时的动能。 【详解】 (1) 由题知:粒子在 O 点动能为 E = mv 0 粒子在 A 点动能为: E =4E ko ,粒子从 O 到 A ko 1 2 kA 2 运动过程,由动能定理得:电场力所做功: W=E kA -E ko = 3 mv 02 ; 2 (2) 以 O 为坐标原点,初速 v 0 方向为 x 轴正向,

物理选修3-1公式总结

?选修3-1知识点记忆 【第一章 静电场】 1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109?= k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ??- =( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 1314、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速: 2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 2 02 202)v (21=?= 16 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。

高中物理 静电场及其应用精选测试卷专题练习(word版

高中物理 静电场及其应用精选测试卷专题练习(word 版 一、第九章 静电场及其应用选择题易错题培优(难) 1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。取无穷远处电势为零,则( ) A .只有MN 区间的电场方向向右 B .在N 点右侧附近存在电场强度为零的点 C .在ON 之间存在电势为零的点 D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】 AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为 12Q Q >,根据2Q E k r =在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确; C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确; D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。 故选BC 。 2.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则() A .小球运动到 B 2gR B .小球运动到B 点时的加速度大小为3g C .小球从A 点运动到B 点过程中电势能减少mgR D .小球运动到B 点时对轨道的压力大小为3mg +k 12 2 q q R 【答案】AD 【解析】

高中物理静电场经典习题30道 带答案

一.选择题(共30小题) 1.(2014?山东模拟)如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若 三个小球均处于静止状态,则匀强电场场强的大小为( ) D c 的轴线上有a 、b 、 d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ) D 系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( ) ﹣ 个小球,在力F 的作用下匀加速直线运动,则甲、乙两球之间的距离r 为( ) D

7.(2015?山东模拟)如图甲所示,Q1、Q2为两个被固定的点电荷,其中Q1带负电,a、b两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a、b两点时的速度分别为v a、v b,其速度图象如图乙所示.以下说法中正确的是() 8.(2015?上海二模)下列选项中的各圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各圆环间 D 12 变化的关系图线如图所示,其中P点电势最低,且AP>BP,则() 以下各量大小判断正确的是()

11.(2015?丰台区模拟)如图所示,将一个电荷量为1.0×10C的点电荷从A点移到B点,电场力做功为2.4×10﹣6J.则下列说法中正确的是() 时速度恰好为零,不计空气阻力,则下列说法正确的是() 带电粒子经过A点飞向B点,径迹如图中虚线所示,以下判断正确的是() 实线所示),则下列说法正确的是()

高中物理专题:带电粒子在电场中的运动

带电粒子在电场中的运动 新桥中学胡中兴 一、教材内容和学情分析:拓展二《第八讲A带电粒子在电场中的运动》,是在高二学习了基础教材电场、电场强度、电势差、电场力做功与电势能等内容的之后,再学习的拓展内容。通过本专题的学习,进一步理解力与运动、功与能的关系。把电场概念与运动学、力学中的平衡问题、匀变速运动问题、功、能等有机结合起来。学习运用运动的合成与分解、牛顿定律、动能定理解题,提高分析问题能力、综合能力、用数学方法解决物理问题的能力。在高考中,是重点内容。要求学生有较高的综合解题的能力。由于本校学生的基础比较差,学习时有一定难度,所以在题目设计上,尽可能比较简单的题,且对同一类型题,用多题强化。 二、课标要求和三维目标 课标要求:学习水平为c级,即能联系相关内容,解决简单问题。2009高考手册要求为C 即:掌握。(限于粒子的初速度与电场强度的方向平行或垂直的简单情况)。 三维目标: 知识与技能: 1.理解并掌握带电粒子在电场中加速和偏转的原理, 2.能用牛顿运动定律或动能定理分析带电粒子在电场中加速和偏转。 过程与方法: 1.体验类比平抛运动,运用分解的方法,处理曲线运动。 2.归纳用力学规律处理带电粒子在电场中运动的常用方法。 情感、态度和价值观: 1.感受从能的角度,用动能定理分析解答问题的优点, 2.进一步养成科学思维的方法。 三、知识结构疏理: 主要讨论两个问题:一是如何利用电场使带电粒子速度大小改变;二是如何利用电使带电粒子速度方向改变,发生偏转。这里把它们分成四个小问题,用四课时来完成此内容。 带电粒子在电场中的加速问题 带电粒子在匀强电场中做类平抛运动 带电粒子在电场中的加速、偏转综合问题 带电粒子在交替变化的电场中的直线运动 用二课时来完成此内容。

高二物理公式大总结

高二物理公式总结 一、电场1?.库仑定律: 22 1r q q k F = 方向:沿两电荷连线方向,同性相斥,异性相吸 2.电场强度:E =F/q(定义式、适用于任何电场),方向:正电荷所受电场力方向 2 r Q k E = (决定式,适用于真空中点电荷)? E=U AB /d (适用于匀强电场,d 为AB 两点沿场强方向上的距离) 3?.电势与电势差:UAB =φA -φB , UAB =W A B/q 电势能:E p =q φ 电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关 4.电场力做功:WAB=qU A B=-ΔEp AB =Ep A-E p B (电场力做功与路径无关,电场力做正 功,电势能减小,电场力做负功,电势能增加), 5.电容:C=Q/U(定义式) C=εS /4πk d((决定式) 6.带电粒子在电场中的加速:qU=mV t 2/2- mV 02/2 7.带电粒子沿垂直电场方向以速度Vo 进入匀强电场时的偏转(不考虑重力作用)? 水平:匀速运动,vx =v 0 ,l =v0t 竖直:a=F/m=qE /m , E =U /d ,v y =a t ,y=at 2/2, 可求出d mv U ql y 2022= d mv qlU v v x y 20tan ==φ 220y v v v += 二、恒定电流 1.电流强度:I=q /t I =n qvs 欧姆定律:I=U /R 2.电阻定律:R=ρL/S 金属电阻率随温度升高而增大,半导体电阻率随温度升高而减小 3.闭合电路欧姆定律:I =E /(r+R) 或E=Ir+IR , Ir U E += ,E=U内+U 外 闭合电路的动态分析可采用“串反并同”的规律 4.短路:R=0,I=E/r ,可以认为U=0,路端电压等于零 断路:当R→∞,也就是当电路断开时,I→0则U =E 5.电功:W=UIt , 电功率:P=U I6 ?.焦耳定律:Q =2 I Rt 热功率:P 热=2I R

高中物理知识点电场

2019年高中物理知识点电场 1.两种电荷 (1)自然界中存在两种电荷:正电荷与负电荷。 (2)电荷守恒定律: 电荷守恒定律物理表达式 2.★库仑定律 (1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上。 (2)公式:F=k*(q1*q2)/r^2(可结合万有引力公式F=Gm1m2/r^2来考虑) (3)适用条件:真空中的点电荷。 点电荷是一种理想化的模型。如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少。 3.电场强度、电场线 (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体。电场是客观存在的,电场具有力的特性和能的特性。(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度。定义式:E=F/q方向:正电荷在该点受力方向。(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线

叫做电场线。电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹。 (4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场。匀强电场中的电场线是间距相等且互相平行的直线。 (5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和。 4.电势差U: 电荷在电场中由一点A移动到另一点B时,电场力所做的功W AB与电荷量q的比值W AB/q叫做AB两点间的电势差。 公式:UAB=W AB/q 电势差有正负:UAB=-UBA,一般常取绝对值,写成U。 5.电势: 电场中某点的电势等于该点相对零电势点的电势差。 (1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势)。因此电势有正、负,电势的正负表示该点电势比零电势点高还是低。 (2)沿着电场线的方向,电势越来越低。 6.电势能:

高中物理电磁场练习试题

专题练习电磁场 第1讲电场及带电体在电场中的运动 微网构建核心再现 知识规律(1)电场力的性质. ①电场强度的定义式:E= F q. ②真空中点电荷的场强公式: E=k Q r2. ③匀强电场场强与电势差的关系式:E= U d. (2)电场能的性质. ①电势的定义式:φ= E p q. ②电势差的定义式:U AB= W AB q. ③电势差与电势的关系式: U AB=φA-φB. ④电场力做功与电势能: W AB=-ΔE p. 思想方法(1)物理思想:等效思想、分解思想. (2)物理方法:理想化模型法、比值定义法、控制变量法、对称法、合成法、分解法等. 高频考点一电场的特点和性质

知能必备 1.电场强度的三种表达形式及适用条件. 2.电场强度、电势、电势能大小的比较方法. 3.电场的叠加原理及常见电荷电场线、等势线的分布特点. 例1直角坐标系xOy中,M、N两点位于x轴上,G、H两点坐标如图.M、N两点各固定一负点电荷,一电量为Q的正点电荷置于O点时,G点处的电场强度恰好为零.静电力常量用k表示.若将该正点电荷移到G点,则H点处场强的大小和方向分别为() A. 3kQ 4a2,沿y轴正向 B. 3kQ 4a2,沿y轴负向 C. 5kQ 4a2,沿y轴正向 D. 5kQ 4a2,沿y轴负向 [例2](2016·全国大联考押题卷)(多选) 如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是() A.粒子在a点的加速度大小小于在b点的加速度大小 B.粒子在a点的电势能大于在b点的电势能 C.粒子在a点的速度大小大于在b点的速度大小 D.a点的电势高于b点的电势 电场性质的判断方法 1.电场强度的判断方法:

高中物理公式:电场公式

高中物理公式:电场公式 两种电荷、电荷守恒定律、元电荷:(e=1.60*10-19C);带电体电荷量等于元电荷的整数倍 库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0*109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)} 电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q 电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量(C), UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),

φA:A点的电势(V)} 常见电容器 带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d) 注: 两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; 电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; 常见电场的电场线分布要求熟记; 电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; 处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零, 电容单位换算:1F=106μF=1012PF; 电子伏(eV)是能量的单位,1eV=1.60*10-19J; 其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。

相关文档
相关文档 最新文档