文档库 最新最全的文档下载
当前位置:文档库 › 一种欠驱动移动机器人运动模式分析

一种欠驱动移动机器人运动模式分析

一种欠驱动移动机器人运动模式分析
一种欠驱动移动机器人运动模式分析

天津比利科技发展有限公司

李艳杰

’马岩1,钟华2,吴镇炜2

'

隋春平2

(1.沈阳理工大学机械工程学院,沈阳110168;2.中国科学院沈阳自动化研究所,沈阳110016)

摘要:介绍了一种欠驱动移动机器人的机械结构。分析了该欠驱动移动机器人在平地行进

模式的特点,提出一种越障控制模式。在该越障控制模式中加入了障碍物高度计算算法,

使得移动机器人在越障过程中的智能控制更加高效。利用VB编写控制程序人机界面,在移

动机器人实物平台上进行了实验,实验结果证明了控制方法的有效性。

关键词:AVR单片机;欠驱动移动机器人;越障模式

中图分类号:TP242文献标志码:A

Analysis of a Underactuated Mobile Robot Moving Mode

LI Yan-jie',MA Yan',ZHONG Hua2,WU2hen-wej2,SUI Chun-ping2

(l.School of Mechanical Engineering,Shenyang Ligong University,Shenyang110168,China;2.Robotics Lab,Shenyang

Institute of Automation,Chinese Academy of Sciences,Shenyang110016,China)

Abstract:The mechanical structure of a kind of underactuated mobile robot was described in this paper.The charac-

teristics of the underactuated mobile robot in the plains traveling mode was analyzed and a kind of obstacle-negotia-

tion control mode was proposed.Due to calculate algorithm of obstacle's height was added to the the obstacle-nego-

tiation control mode,the intelligent control of obstacle-negotiation becomes more efficient.The control procedure HMI

was programmed by VB and the experiment was performed on the mobile robot platform.Experiment results show the

control method was effective.

Key words:AVR SCM;underactuated mobile robot;obstacle-negotiation mode

欠驱动机械系统是一类特殊的非线性系统,该容错控制的作用。因此,欠驱动机器人被广泛应用系统的独立控制变量个数小于系统的自由度个数【l】o于空间机器人、水下机器人、移动机器人、并联机器

欠驱动系统结构简单,便于进行整体的动力学分析人、伺服机器人和柔性机器人等行业。

和试验。有时在设计时有意减少驱动装置以此来增本文以四驱动、八自由度的欠驱动移动机器人加整个系统的灵活性。同时,由于控制变量受限等为实验对象,通过切换驱动器的工作模式来克服系原因,欠驱动系统又足够复杂,便于研究和验证各统不完全可控造成反馈控制失效【2】的缺点。以工控

种算法的有效性。当驱动器故障时,可能使完全驱机作为上位机,通过工控机的RS232串口与AVR

葫系统成为欠驱动系统,欠驱动控制算法可以起到单片机进行无线通讯。通过对驱动器反馈数据的分

收稿日期:2013-01-22:修订日期:2013-02-19

基金项目:国家科技支撑计划项目(2013BAK03801,2013BAK03802)

作者筒介:李艳杰(1969-),女,博士,教授,研究方向为智能机器人控制及机器人学;马岩(1988-),男,硕士研究生,研究方向为嵌入式控制;钟华(1977-),男,博士,副研究员,研究方向为机器人控制及系统集成。

Automation&Instrumentation2013(9)

一种欠驱动移动机器人运动模式分析

析、计算使得机器人在遇到障碍时能够自动地翻越

障碍,并且可以对正在工作的机器人进行实时监控。1系统硬件设计

移动机器人实物图如图1所示。

图1移动机器人实物图

Fig.l Physical map of the mobile robot

本机器人使用的电机为FAULHABER公司的3257024CR系列直流有刷电机。电机与谐波减速器相连,减速比为l:1000电机输出轴经过减速后与履带轮相连,本履带轮是一种2K-H(即两个太阳轮、一个行星架)的差动机构【3】,根据地面的约束条件履

带轮可能发生的运动情况有:翻转运动、平动以及两种运动复合的情况。履带轮结构如图2所示。履带轮的差动原理是:①当履带轮发生翻转运动时,履带4的速度为O,同时主动轮5、连接带7、联轮6、齿轮8的速度也为Oo此时,经输入轴9输入的力矩通过齿轮10直接施加到联架上,从而带动支撑轴11运动,即履带轮发生翻转运动;②当履带轮发生平动时,履带轮4、主动轮5、连接带7、联轮6、齿轮8的速度不为O,经输入轴9输入的力矩并没有完全施加到联架上,其中的一部分力矩经传动机构被分配到主动轮5上。若施加到联架的力矩不足以使履带轮翻转,则履带轮平动。若施加到联架的力矩大于履带轮的翻转力矩时,则履带轮同时发生翻转

运动与平动。

注:1.从动轮;2.连接板;3.支撑轮;4.履

带;5.主动轮;6.联轮;7.连接带;8.齿轮;9.输

入轴;10.齿轮;11.支撑轴。

图2履带轮结构图

Fig.2Structure diagram of the crawler whee

自动化与仪表2013(9)

2控制系统设计

2.1控制系统总体结构

上位机选择新汉公司的NISE2000无风扇工控机,该工控机配有支持VGA显示的USB接口以及RS232串口,能够满足实验的需求。

控制器选择ATmel公司AT90CAN64单片机,该单片机内部集成了CAN控制器以及UART。控制器通过无线串口接收来自上位机的工控机数据,以此控制电机的动作。

驱动器选择Elmo公司的SOL-WHI10/64E01智能数字式伺服驱动器,支持CANopen DS301,DS305,DS401通讯协议【4】,可通过CAN总线实现与

控制器的快速、同步通讯。该驱动器支持四种工作模式:电流模式(转矩模式)、速度模式、位置模式、高级位置模式。利用驱动器自带的CAN总线收发器,控制器可以接收来自驱动器的数据,如电机的有效电流值、电机轴主反馈位置、电机的工作状态等,根据驱动器返回的数据可以进行进一步的控制处理。控制结构如图3所示。

图3控制系统结构图

Fig.3Structure diagram of the control system

2.2系统软件设计

对电机的控制及采集电机状态是整个软件系

统的核心部分,用于对电机工作状态的设置、监测、

报警等处理。VB的MS C o m m通信控件提供了一系

列标准通信命令的接口圈,它允许建立串口连接,还

可以发送命令、进行数据交换以及监视和响应在通

信过程中可能发生的各种错误和事件,从而可以用

它创建全双工、事件驱动的、高效实用的通信程序。

因此通过MS C o m m控件工控机能够对控制器进行

设置,可以准确、实时地控制车体的运动情况,如电

机模式的选择、电机电流值与速度值的设定等。

利用MSComm控件工控机可以及时地处理来

自驱动器的报警数据,通过解读报警数据便可以掌握电机当前的工作状态,以求达到最佳的控制效果。例如,处于电流模式下的电机在运动过程中很容易发生过速而导致驱动器进入自我保护状态从而使电机下电,这时就需要根据驱动器返回的状态报告判断电机意外下电的原因,若是电机过速引起的下电则应该重新上电继续工作,若是因为其他原因引起的下电则需要根据情况做出相应的调整,避免损坏电机及驱动器。

3系统运动模式分析

车体在行进时分为平地行驶阶段和越障阶段两个阶段,两个阶段分别采取了平地行进控制模式和越障控制模式。

3.1平地行进控制模式

在平地行驶阶段,对移动机器人的要求是:①平稳:即机器人在行进过程中履带轮不会发生翻滚或是履带打滑。②高效:即要求机器人能够快速地通过平地区域。为了满足机器人在平地行进阶段的平稳、高效要求,采用前轮速度模式、后轮电流模式的控制模式。该种控制模式的特点是:(1)在遇到障碍物时,处于速度模式的前轮会立刻发生翻滚并且攀上障碍物,反应迅速。(2)与全速度控制模式(前、后驱动器均为速度模式)相比,该种模式不会因为前后轮的速度不协调从而使整个车体承受非常大的内力,俗称“别劲”。(3)与全电流控制模式(前、后驱动器均为电流模式)相比,消耗的能量更少,可持续工作的时间更长。经过多次实验验证,在前轮速度为90r/m,后轮电流为1.5A时的行进效果最好。在该种状态下,移动机器人行进平稳、高效,不存在前轮意外翻转与履带打滑的现象,同时整个移动机器人消耗的能量更少。

3.2越障控制模式

文中提到的障碍物是指台阶之类的简单障碍物,只讨论了上台阶的情况。

3.2.1后轮电流模式的越障模式

在机器人翻越障碍的过程中,若仍然采用前轮速度模式、后轮电流模式,那么会发现前轮可以顺利地翻上障碍物,同时后轮继续前进直至与障碍物完全接触。在之后的过程中,前轮被车体支起并在速度模式下保持速度闭环,即“空转”现象,

如图4所示。

图4前轮“空转”现象

Fig.4Front wheels idling

在后轮与障碍物接触之后,通过增大后轮电机电流的方式依然不能使后轮翻转。电流增至2.8A时,后轮有向前翻转的趋势:但是当电流增大到3.0A 时,整个车体发生了突然的向后翻转,这对于车体的破坏是非常大的。这是因为:使后轮翻转的力矩远大于使整个车体向后翻转的力矩,当后轮电机力矩增大至车体翻转力矩时车体便发生了突然的翻转。图5给出了前轮电机60r/m,后轮电机1.5A时前轮电机的电流曲线。

从图5可以看出,在采集阶段前侧带轮与障碍物的上表面发生了两次接触,第一次发生在A点,第二次发生在B点。位于A点时右侧电机的电流达到了峰值,为2.834A,而左侧电机的电流却突然有了下降的趋势,为1.5084Ao造成左侧电机电流不升反降的原因是,在前轮越到障碍物开始翻转时,左右两轮并没有同步翻转,而是右侧带轮先行翻转并率先与障碍物接触,因此右侧电机出现峰值电流A 时,左侧电机电流反而下降。由于右侧带轮与障碍物接触时将车体支起,导致在第一次与障碍物接触之后左侧带轮先于右侧带轮越过障碍,因此在第二次与障碍物接触时(B点)产生了左侧电机电流出现峰值而右侧电机电流下降的现象。

从以上的分析看出,采用前轮速度模式、后轮电流模式的越障控制模式不可行。

3.0

2.5

< 2.0

道 1.5

螺 1.0

0.5

(a)

(b)

图7几何关系示意图

Fig.7

Geometrical relationship

diagram

3.2.2后轮位置模式的越障模式

在前轮攀上障碍物后,前轮以O r/m的速度保持速度闭环。首先将后轮变换为位置模式,并且根据前轮抬起的高度计算出障碍物的高度、后轮需要翻转的角度。然后,前轮按照速度模式前进直至后轮攀上障碍物。最后,按照前轮速度、后轮电流的模式运动。图6给出了在整个越障过程中前轮电机的电流值。

I阶段表示的是后轮电机以位置模式向后翻转一定角度,并在原地保持位置闭环时的前轮电机电流曲线。Ⅱ阶段表示的是前轮电机以速度模式向前运动时的电流值。该阶段两条电流曲线相差很大依然是因为在前轮翻上障碍物时左右侧带轮不同步造成的。采用该种越障模式发现机器人顺利的越过障碍物。

3.3障碍物高度计算

在机器人翻越障碍的过程中需要检测障碍物的高度,根据障碍物的高度上位机可以准确地控制机器人后轮需要翻转的角度,以此保证越障的高效性、稳定性。本实验选用的SOL-WHI 10/64E01智能数字式伺服驱动器为用户提供了读取电机主反馈位置参数的指令,用户在需要的时候调用PX命令便可以实时得到当前电机的主反馈位置参数。在机器人平地行驶阶段遇到障碍物前轮向上翻转的过程中必然会导致后轮电机主反馈位置参数的变化,只需读取后轮电机主反馈位置的差值便可以计算出障碍物的高度值。如图7中(a)所示的车体几何示意图。与电机输出轴相连的谐波减速器的减速比为1:100,电机轴每转一周与其相连的编码器计数2000,所以履带轴每转一周,驱动器的主反馈位置计数器计数k=2xl05次。越障前通过软件将后轮驱动器的主反馈位置计数器置为O,在前轮攀上障

自动化与仪表2013(9)

碍物后读取驱动器的主反馈位置^y,则车体抬起的角度:

这样便可求得障碍物的高度:

式中,£为车体的长度,后轮若是想攀上障碍物,则后轮抬起的高度必须大于障碍物的高度日,即:

式中:D为后轮履带的旋转直径。这样就可以得到电

机轴的主位置数据data:

整理数据后求得:

将daia发送到驱动器主反馈位置计数器便可以控制后轮电机运动到正确的位置以达到攀上障碍的目的。

后轮抬起角度的几何关系如图7(b)所示。

4

结语

欠驱动移动机器人控制方式灵活多样,能够满

足多种用途。本文对一类欠驱动移动机器人控制方式进行了实验,对于发挥欠驱动移动机器人的优势,扩大其应用领域都有重要意义。

参考文献:

[1]陈炜,余跃庆,张绪平,欠驱动机器人研究综述[J].机械设计与研究,2005,21(4):22-26.

[2]栾楠,明爱国,赵锡芳,等.欠驱动机器人的最优轨道生成与实现明.上海交通大学学报,2002,36(10):1422-1425.

[3]王洪波,田行斌,张海明,等,差动机构在全方位移动机器人上的应用[J].机械设计与研究,2008,24(2):25-26,29.

[4]叶浩峰.CANopen总线的原理以及实现[D].广州:华南理工大学,2005.

[5]李旭东,陈俊杰.基于VB中MSComm控件的通信软件开发与实现J].电脑开发与应用,2004,17(7):25-27.

puma250机器人运动学分析

焊接机器人运动分析 摘要:针对puma250焊接机器人,分析了它的正运动学、逆运动学的问题。采用D-H坐标系对机器人puma250 建立6个关节的坐标系并获取D-H 参数,并对其运动建立数学模型用MATLAB编程,同时仿真正运动学、逆运动学求解和轨迹规划利用pro-e对puma250建模三维模型。 关键词:puma250焊接机器人;正逆解;pro-e;Matlab;仿真 一、建立机器手三维图 Puma250机器人,具有6各自由度,即6个关节,其构成示意图如图1。各连杆包括腰部、两个臀部、腕部和手抓。设腰部为1连杆,两个臀部分别为2、3连杆,腰部为4连杆,手抓为5、6连杆,基座不包含在连杆范围之内,但看作0连杆,其中关节2、3、4使机械手工作空间可达空间成为灵活空间。1关节连接1连杆与基座0,2关节连接2连杆与1连杆,3关节连接3连杆与2连按,4关节连接4连杆与3连杆,5关节连接5连杆与4连杆。各连杆坐标系如图 2 所示。

图1 puma250 机器人二、建立连杆直角坐标系。

三、根据坐标系确定D-H表。 四、利用MATLAB 编程求机械手仿真图。>>L1=Link([pi/2 0 0 0 0],'standard'); L2=Link([0 0 0 -pi/2 0],'standard'); L3=Link([0 -4 8 0 0],'standard'); L4=Link([-pi/2 0 8 0 0],'standard'); L5=Link([-pi/2 0 0 -pi/2 0],'standard'); L6=Link([0 2 0 -pi/2 0],'standard'); bot=SerialLink([L1 L2 L3 L4 L5 L6],'name','ROBOT'); ([0 0 0 0 0 0])

带拖车的轮式移动机器人系统的建模与仿真

系统仿真学报 JOURNAL OF SYSTEM SIMULATION 2000 Vol.12 No.1 P.43-46 带拖车的轮式移动机器人系统的建模与仿真 杨凯 黄亚楼 徐国华 摘 要: 带拖车的轮式移动机器人系统是一种典型的非完整、欠驱动系统。本文建立了带多个拖车的移动机器人系统的运动学模型,对系统的运动特性进行了分析,并在此基础上对系统的运动进行了数值仿真和图形仿真,验证了理论分析的正确性。 关键词: 移动机器人系统; 运动学模型; 龙格-库塔法; 计算机仿真 中图分类号: TP242.3 文献标识码:A 文章编号:1004-731X (2000) 01-0043-4 Modeling and Simulation of Tractor-trailor Robot Systems' Kinematics YANG Kai, HUANG Ya-lou (Department of Computer and System Science, Nankai University, Tianjin 300071) XU Guo-hua (Institute of Automation, Chinese Academy of Sciences, Beijing 100080,China) Abstract: A mobile robot with multi-trailers is a typical nonholonomic, underactuated system. This paper establishes a kinematic model for such system. Based on the kinematic model, the motion of the system is analytically studied, and the simulation of the motion for this system is conducted with the means of Runge-Kutta method and computer graphics. It proves that the theoretical analysis is right. Keywords: mobile robot; underactuated system; Runge-Kutta; computer simulation 1 引言 移动机器人是机器人学中的一个重要分支,本文所讨论的是一种特殊类型的移动机器人系统——带拖车的轮式移动机器人(Tractor-trailer robot),它由一系列相互铰链在一起的多个二轮式刚体小车组成,运行在一个平面上。带拖车的轮式移动机器人系统的一种情形是由一个卡车型的牵引车拖动着一个或多个被动的拖车组成,牵引车可以执行类似于汽车那样的运动:驱动轮向前或向后运动,转向轮向左或向右转向,拖车跟踪牵引车的运动路径。 作为典型的欠驱动、非完整系统,带拖车的移动机器人系统的运动学、规划、控制等方面的研究明显不同于其它机器人系统,由于系统运动规律、控制特性上的理论结果亟待验证,因此,带拖车的移动机器人系统的仿真是极有价值的。 本文针对一般结构形式的带拖车的移动机器人系统建立系统的运动学模型,研究模型的递推形式以解决拖车节数变化带来的模型重构问题,同时就一些问题开展理论分析与仿真验证。 2 系统的运动学模型 2.1 基本假设与变量说明 为了使所建立的数学模型对各种车体链接形式均成立,这里以非标准型带拖车的轮式移动机器人系统为研究对象,所谓非标准型就是相邻两车体的链接点不在前一车体的轮轴上而是在链接轴的某点上(如图1所示),且假设:整个系统是在平面上运动;车轮是无滑动的;车体关于其纵向轴线对称;车轮与地面是点接触,且是纯滚动运动;车体是刚体; 用于车体连接的关节之间是无摩擦

焊接机器人逆运动学位姿分析

1.1连杆的坐标系 应用D-H 法来建立机器人杆件的坐标系。在这种坐标系中,可以把机械手的任一连杆i (i=1,2,3···,n )看作是一个刚体,与它相邻的两个关节i 、i-1的轴线i 和i-1 之间的关系也由它确定,如图1,可以用以下四个参数描 式中,cθi =cosθi ,sθi =sinθi ,i=1,2,3,···,n 图1连杆坐标系{i}到{i-1}的变换 i αi-1/(rad )a i-1/(cm )d i /(cm 12340 90°090°042.5410014.520011.895.3表1机器人连杆参数表

定义了连杆坐标系和相应得连杆参数,就能建立运动学方程,焊接机器人末端关节的坐标系{n}相对于基础坐标系{0}中的齐次变换公式为: 对于6自由度的焊接机器人公式可以写为 (2 变换矩阵0 n T是关于n个关节变量的函数,这些变量 可以通过放置在关节上的传感器测得,则机器人末端连杆再基坐标系中的位置和姿态就能描述出来。 E n表示焊接机器人末端关节的姿态, 器人在世界坐标系中的位置。[3] 2机器人的逆运动学分析 逆运动学求解是已知机器人末端的位置和姿态即 求解机器人对应于该位置和姿态的关节角 只要0 n T表示的末端连杆坐标系的位置和姿态位于机 械手的可达空间内,则运动学方程至少有一个解, 达空间内,机械手具有任意姿态,导致运动学方程可能出现重解。 机器人的运动学方程是一组非线性方程式, 求解过程中,我们逐次在公式(4)的两端同时左乘一 即为 在上式两边的矩阵中寻找简单的表达式或常数, 对应相等,计算过程如下: ( ( ( ( ( (3求取各关节的解集 依靠D-H法求解关节角的过程是和焊接机器人本身的结构相关的,换句话说,也就是特定配置的机器人需要特定的解决方案。通过公式(6)-(16)可以看出每个关节角的结果是不唯一的,如果采用已有的求解方法,显而易见该过程是缓慢的,复杂的。本文提出了一种计算最终执行器位置的所有精确值的算法。该算法是在MATLAB 程实现的。通过该算法得到各节点的解是更快速、有效的。 用变换矩阵 6T定义一条具有两个端点A和B 轨迹,如公式(17)和(19)。从而θ能够被求出,如公式20)

水下机器人智能控制技术

水下机器人智能控制技术 机械工程学院张杰189020008 智能水下机器人作为一个复杂的系统集成了人工智能水下目标的探测和识别、数据融蛤智能控制以及导航和通信各子系统是一个可以在复杂海洋环境中执行各种军用和民用任务的智能化无人平台。目前主要采用的智能控制方法有:模糊控制、神经网络控制、专家控制、自适应控制、PID调节器、滑模控制等。本文比较全面地查阅了水下机器人运动控制理论相关的文献,阐述了几种主要控制方法的基本原理,给出了控制器结构的设计方法,对水下机 器人运行控制方法的选取、控制器的设计具有较好的参考意义。 水下机器人的运动控制是其完成特定任务的前提和保障,是水下机器人关键技术之一。 随着水下机器人应用范围的扩大,对其自主性,运动控制的精度和稳定性的要求都随之增 加,如何提高其运动控制性能就成了研究的一个重要课题。导致AUV难于控制的主要因素包括:①水下机器人高度的非线性和时变的水动力学性能;②负载的变化引起重心和浮心的改变;③附加质量较大,运动惯性较大,不能产生急剧的运动变化;④难于获得精确的水动力系数;⑤海流的干扰。这些因素使得AUV的动力学模型难以准确,而且具有强耦合和非线性的特点。目前已被采用的控制方法有:模糊控制、神经网络控制、专家控制、PID控制、自适应控制、S面控制等。 智能控制是一个由人工智能自动控制和运筹学的交叉构成的交叉学科近年来,智能控制技术成为水下机器人发展的一个重要技术水下机器人难于控制的原因有几个方面,水下机器人在运行中收到海流等外界极不稳定环境因素的干扰,使其控制变得更加困难;水下机器人各项参数的高度的非线性的特点;水下机器人的水动力性能在不同的海洋环境下会改变较明显;海底水下机器人水动力系数难以测量,不能获得一个较为准确的数据;水下机器人体积大质量大,因此所受惯性大,运动变化难以在较短的时间内实现;水下机器人在运动过程中重心和浮心易改变会引起控制较为困难等智能控制如果能用在水下机器人,可以更好的使其适应复杂的海洋环境。 智能控制系统的类型

水下机器人ROV大坝安全检测

水下机器人ROV:大坝安全隐患检测 随着科技的进步,水下机器人ROV越来越接近我们的工作和生活,水下机器人要具备工业机器人的所有特点外,还要有良好的密封和抗腐蚀性能,随着水下机器人ROV的应用,人类可以进行更多的水下资源开发,如海洋能源、陆地河流、湖泊资源等,并且水下机器人ROV可以装备各种机械手,水下工具等进行水下作业。它已广泛应用与海洋工程、海洋军事和水下工程的各个领域,本文着重讲述水下机器人在大坝安全检测中的应用。 目前,水下机器人ROV配备有先进的导航、定位、推进和控制等设备,因而可以准确的到达预定的位置,最重要的,它可以到达潜水员无法到达的深度,替代潜水员,水下的危险环境不会危及人的生命安全,操作人员只要在水面进行操作就可以了。 通过水下机器人ROV遥控操作,可实现水下全方位扫描检测,重点部位可以“驻足”观测,不仅可以快速检测到大坝的整体情况,而且可以仔细检查局部病变的细节。ROV上搭载的的水下摄像机进行大坝表面状态如破损、裂缝等检测,并用激光尺度仪对破损尺度进行评估;用高分辨率图像声呐对堤坝表面进行三维测量;用剖面声呐对大坝内部进行三维检测;ROV载体携带上述探测仪器进行思维运动,实现对大坝的全覆盖扫描检测。 设备配置 一个框架式、模块化水下遥控式机器人(ROV)作为载体; 导航仪包括:罗经、测深仪、测高测距声呐、多普勒测速仪和推进器等。 探测仪包括:水下摄像机、高分辨率图像声呐、剖面声呐、多波束声呐等,还可以 搭载磁探仪、阴极保护测量装置等。 水面控制计算机通过脐带缆对ROV实施操作控制。 主要技术指标 最大巡检速度1米/s 最大下潜工作深度150米 运动模式:四自由度(前后、上下、左右和旋转) 长基线水声定位系统可对ROV水下位置定位,定位精度优于20cm。 高分辨率图像声呐高频图像声呐用于浑水环境下表面破损的成像探测与测量。 高分辨率剖面声呐剖面声呐的作用是发射可透射到坝体内部的声波,并接受由坝体中反向散射的声信号,据此对内部的缺陷进行测量、分析和定位。 水下摄像机在清水环境下,可以很高的分辨率观测堤坝及其他水下结构物表面的破损、缺陷、裂缝和腐蚀等状况。 大力金刚机器人ROV配备的摄像机是水下专用的数字CCD彩色摄像机,光学照度0.1lux,水下工作深度一般为300米,性能稳定,操作方便,大坝检测得心应手,如有更高需求可订制。

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

一种欠驱动移动机器人运动模式分析

天津比利科技发展有限公司 李艳杰 ’马岩1,钟华2,吴镇炜2 ' 隋春平2 (1.沈阳理工大学机械工程学院,沈阳110168;2.中国科学院沈阳自动化研究所,沈阳110016) 摘要:介绍了一种欠驱动移动机器人的机械结构。分析了该欠驱动移动机器人在平地行进 模式的特点,提出一种越障控制模式。在该越障控制模式中加入了障碍物高度计算算法, 使得移动机器人在越障过程中的智能控制更加高效。利用VB编写控制程序人机界面,在移 动机器人实物平台上进行了实验,实验结果证明了控制方法的有效性。 关键词:AVR单片机;欠驱动移动机器人;越障模式 中图分类号:TP242文献标志码:A Analysis of a Underactuated Mobile Robot Moving Mode LI Yan-jie',MA Yan',ZHONG Hua2,WU2hen-wej2,SUI Chun-ping2 (l.School of Mechanical Engineering,Shenyang Ligong University,Shenyang110168,China;2.Robotics Lab,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang110016,China) Abstract:The mechanical structure of a kind of underactuated mobile robot was described in this paper.The charac- teristics of the underactuated mobile robot in the plains traveling mode was analyzed and a kind of obstacle-negotia- tion control mode was proposed.Due to calculate algorithm of obstacle's height was added to the the obstacle-nego- tiation control mode,the intelligent control of obstacle-negotiation becomes more efficient.The control procedure HMI was programmed by VB and the experiment was performed on the mobile robot platform.Experiment results show the control method was effective. Key words:AVR SCM;underactuated mobile robot;obstacle-negotiation mode 欠驱动机械系统是一类特殊的非线性系统,该容错控制的作用。因此,欠驱动机器人被广泛应用系统的独立控制变量个数小于系统的自由度个数【l】o于空间机器人、水下机器人、移动机器人、并联机器 欠驱动系统结构简单,便于进行整体的动力学分析人、伺服机器人和柔性机器人等行业。 和试验。有时在设计时有意减少驱动装置以此来增本文以四驱动、八自由度的欠驱动移动机器人加整个系统的灵活性。同时,由于控制变量受限等为实验对象,通过切换驱动器的工作模式来克服系原因,欠驱动系统又足够复杂,便于研究和验证各统不完全可控造成反馈控制失效【2】的缺点。以工控 种算法的有效性。当驱动器故障时,可能使完全驱机作为上位机,通过工控机的RS232串口与AVR 葫系统成为欠驱动系统,欠驱动控制算法可以起到单片机进行无线通讯。通过对驱动器反馈数据的分 收稿日期:2013-01-22:修订日期:2013-02-19 基金项目:国家科技支撑计划项目(2013BAK03801,2013BAK03802) 作者筒介:李艳杰(1969-),女,博士,教授,研究方向为智能机器人控制及机器人学;马岩(1988-),男,硕士研究生,研究方向为嵌入式控制;钟华(1977-),男,博士,副研究员,研究方向为机器人控制及系统集成。 Automation&Instrumentation2013(9) 一种欠驱动移动机器人运动模式分析

水下机器人研究现状与探索

《大学计算机基础》 课程报告 论文名称:水下机器人研究现状与探索二零一七年一月 目录 摘要 (2) 关键词 (2) 1 引言( Introduction) (3) 2水下机器人分类( The categories of underwater robot ) (4) 2.1遥控式水下机器人(remotely operated vehicles, ROV) (4) 2.2自主水下机器人(Autonomous underwater vehicles, AUV) (5) 2.3新概念水下机器人 (6) 3水下仿生机器人(bionic underwater robot) (7) 3.1水下仿生机器人主要研究和发展趋势( The (7) main research and development trends of (7) bionic underwater robot) (7) 3.2 水下仿生机器人的问题(The Problems of bionic underwater robot) (8) 3.3 驱动以及推进方式 (9) 4 仿生创新思路 (11) 4.1以乌贼为代表的海洋动物结构及运动方式 (11) 4.2 复合式水下仿生机器人 (12) 4.3 群体水下仿生机器人 (13) 5 结论 (13) 参考文献: (14)

水下机器人研究现状与探索 朱钰璇 摘要:本文总结了水下机器人的研究历史,现状与目前的发展趋势,具体分析了现代水下机器人应用的技术,指出他们的优缺点,并且针对未来的深海探索机器人的材料,结构,移动方式,动力来源,仿造乌贼等海洋软体动物提出设想,实际应用前景广阔。随着科学技术的发展, 水下仿生机器人在智能材料制成的驱动装置、游动机理方面会不断地完善, 在个体的智能化和群体的协作方面也会有很大的发展。 关键词:水下机器人;深海探索;仿生; PRESENT STATE AND FUTURE DEVELOPMENT OF UNMANNED UNDERWATER VEHICLE TECHNOLOGY RESEARCH ZHU Yuxuan Abstract: In this paper, the history, present situation and future of Unmanned underwater vehicle technology are summarized. We also further describe the mobile robot technologies concerning Unmanned underwater vehicle . In addition, point out

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

跳跃机器人研究现状和趋势

跳跃机器人研究现状和趋势 测控一班3012202006胡凌皓 摘要:跳跃运动其着地点的离散性和发力的突发性和爆发性使跳跃运动模式的仿生机器人具备很强的越障和环境适应能力。本文结合国内外跳跃机器人的研究现状和成果,将跳跃机器人研究分为伸缩式、关节腿式、轮滚式和弹性变形式4 类,并分析各类机器人特征.结合本课题组对跳跃机器人的研究,总结了跳跃机器人研究的关键技术,最后展望了未来跳跃机器人研究发展趋势。 关键词:跳跃运动;跳跃机器人;仿生机器人 Research Status and Development Trend of Hopping Robots Abstract: Hopping locomotion has characteristics of isolated footholds, and powerful and explosive hopping force, which makes bio-inspired robots with hopping locomotion have the ability of jumping over obstacles and the environmental adaptability. IN this paper, hopping robots are divided into four categories on the basis of research results in China and overseas: telescopic robots, articulated robots, wheeled & rolling robots and flexible robots. Combining with the current research about hopping robots, the characteristics of each categories are analyzed. The related key technologies are proposed. Finally, the development trends of hopping robots in future are predicted. Keywords: hopping locomotion; hopping robot; bio-inspired robot. 1 引言 目前,移动机器人采用的主要运动模式是轮式驱动。轮式驱动是人类改造自然界、路面出现后的产物,不能适应复杂地形,越障能力差。随着机器人应用范围的日益广泛,机器人将逐步应用于人类所无法深入到的条件恶劣、地形复杂的未知非结构环境中探索和改造自然界,为人类服务.未知非结构环境要求机器人必须具有较强的地形适应能力、高效的运动模式和自主运动能力。 由于跳跃运动其着地点的离散性和发力的突发性和爆发性,自然界中的许多动物将跳跃运动作为克服大自然环境、逃避敌害和高效捕食的一种运动模式。跳跃机器人的应用需求及动物跳跃仿生灵感,给近年跳跃机器人的研究注入新的活力,无论是仿生跳跃理论研究方面还是跳跃机器人实际应用方面都取得大量的成果。 本文从仿生跳跃理论研究方面和跳跃机器人实际应用方面分析国内外有关跳跃机器人的研究成果,并从实现方式的角度进行分类和综述;在此基础上,结合本课题组对跳跃机器人的研究,分析跳跃机器人的关键技术,并对未来跳跃机

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

基于MATLAB的仿人焊接机械手运动学分析和仿真_王求

作者简介:王求(1978-),男,在读硕士研究生;研究方向为焊接机器人运动学,材料焊接及其数值模拟。 合肥工业大学材料科学与工程学院 王求 胡小建 李雷阵 摘 要:关键词:针对在狭小空间或密闭容器内以及危险作业环境中焊接的特殊要求,以UG软件为基础设计了一种仿人焊接 机械手。采用D-H方法建立了焊接机械手的运动学方程,并讨论了该机械手的运动学问题。然后运用MATLAB软件对机械手的运动学进行了仿真,通过仿真观察到机械手各个关节的运动,并得到所需的数据,说明了所设计参数的合理性和运动算法的正确性,为焊接机械手的动力学、控制及轨迹规划的研究提供了可靠的依据。焊接机械手;运动学;仿真;Matlab 基于MATLAB的仿人焊接机械手运动学分析和仿真 机器人技术作为信息技术和先进制造技术的典型代表和主要技术手段,已成为世界各发达国家竞相发展的高技术,其发展水平已经成为衡量一个国家技术发展水平的重要标志之一。焊接是制造业中最重要的工艺技术之一,它在机械制造、核工业、航空航天、能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。从21世纪先进制造技术的发展要求来看,焊接自动化生产已是必然趋势,而焊接机器人是焊接自动化的革命性进步 。但是现阶段的焊接机器人都是具 有固定底座的机械手(臂),只能在固定位置完成一定范围内的操作,适应性较低。进行复杂苛刻条件(如小直径的容器内径中焊接)和危险环境(如有辐射等作业环境)中焊接作业时,要求可以代替人类从事焊接作业的机器人,而焊接机械手是实现焊接机器人的关键技术,因此设计出一种小型焊接机械手,可以作为仿人焊接机器人的执行末端,也可以直接作为 [1] [2] 焊接的执行末端,能代替焊工实现在狭小空间或者密闭容器内以及危险作业环境中的焊接。本文根据预定要求对焊接机械手进行机械结构设计,以UG软件进行造型,然后运用D-H坐标系理论为基础建模,讨论了机械手的运动学问题,并运用Matlab中的Ro-boticsToolbox完成了机械手的运动学仿真和轨迹规划。 机械手主要用于点焊或弧焊,其 末端载荷要求不高,能够承受焊枪质量即可,以抓持力1kg为依据进行设计。考虑机械手的工作条件,机械手本体质量小于10kg。机械手本体由基座、肩部、大臂、小臂、手腕、末端执行器所组成,共6个自由度,其中前3个自由度用于控制焊枪端部的空间位置,后3个自由度用于控制焊枪的空间姿态。机械手共6个关节,6个关节全部为转动关节,每个关节实现1个自由度,6个关节实现的运动分别是:1-肩部回转;2-大臂俯仰;3-小臂俯仰;4-小臂回转;5-手腕俯仰;6-手腕 [3] [4] 1焊接机械手结构设计 回转,如图1所示。根据机械手的设计要求,对机械手进行整体设计,使用UG软件进行机械手的三维建模,三维造型如图2所示。 机械手的运动学主要研究机械手 相对于固定参考系的运动,特别是研究机械手末端执行器位置和姿态与关节空间变量的关系。机械手运动学要 2运动学分析 [5]Analysis and simulation of kinesiology of simulated welding mechanical hand based on MATLAB

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.wendangku.net/doc/c37392884.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

相关文档
相关文档 最新文档