文档库 最新最全的文档下载
当前位置:文档库 › 泛函中四大空间

泛函中四大空间

泛函中四大空间的认识

第一部分我们将讨论线性空间,在线性空间的基础上引入长度和距离的概念,进而建立了赋范线性空间和度量空间。

在线性空间中赋以“范数”,然后在范数的基础上导出距离,即赋范线性空间,完备的赋范线性空间称为巴拿赫空间。范数可以看出长度,赋范线性空间相当于定义了长度的空间,所有的赋范线性空间都是距离空间。

在距离空间中通过距离的概念引入了点列的极限,但是只有距离结构、没有代数结构的空间,在应用过程中受到限制。赋范线性空间和内积空间就是距离结构与代数结构相结合的产物,较距离空间有很大的优越性。

赋范线性空间是其中每个向量赋予了范数的线性空间,而且由范数诱导出的拓扑结构与代数结构具有自然的联系。完备的赋范线性空间是Banach 空间。赋范线性空间的性质类似于熟悉的n R ,但相比于距离空间,赋范线性空间在结构上更接近于n R 。

赋范线性空间就是在线性空间中,给向量赋予范数,即规定了向量的长度,而没有给出向量的夹角。

在内积空间中,向量不仅有长度,两个向量之间还有夹角。特别是定义了正交的概念,有无正交性概念是赋范线性空间与内积空间的本质区别。任何内积空间都赋范线性空间,但赋范线性空间未必是内积空间。

距离空间和赋范线性空间在不同程度上都具有类似于n R 的空间结构。事实上,n R 上还具有向量的内积,利用内积可以定义向量的模和向量的正交。但是在一般的赋范线性空间中没有定义内积,因此不能定义向量的正交。内积空间实际上是定义了内积的线性空间。在内积空间上不仅可以利用内积导出一个范数,还可以利用内积定义向量的正交,从而讨论诸如正交投影、正交系等与正交相关的性质。Hilbert 空间是完备的内积空间。与一般的Banach 空间相比较,Hilbert 空间上的理论更加丰富、更加细致。

1 线性空间

(1)定义:设X 是非空集合,K 是数域,X 称为数域上K 上的线性空间,若,x y X ?∈,都有唯一的一个元素z X ∈与之对应,称为x y 与的和,记作

z x y =+

,x X K α?∈∈,都会有唯一的一个元素u X ∈与之对应,称为x α与的积,记作

u x α=

且,,x y z X ?∈,,K αβ∈,上述的加法与数乘运算,满足下列8条运算规律:

10 x y y x +=+

20 ()()x y z x y z ++=++

30 在X 中存在零元素θ,使得x X ?∈,有x x θ+= 40 x X ?∈,存在负元素x X ?-∈,使得()x x θ+-= 50 1x x ?= 60 ()()x x αβαβ= 70 ()+x x x αβαβ+= 80 ()x y x y ααα+=+

当K R =时,称X 为实线性空间;当K C =时,称X 为复线性空间 (2)维数:

10 设X 为线性空间,

12,,,n x x x X ∈ 若不存在全为0的数12,,,n K ααα∈ ,使得

11220n n x x x ααα+++=

则称向量组12,,,n x x x 是线性相关的,否则称为线性无关。

20 设x X ?∈,若12,,,n K ααα∈ ,12,,,n x x x X ∈ 使得

1122n n x x x x ααα=+++

则称x 可由向量组12,,,n x x x 线性表示。

30 设X 为线性空间,若在X 中存在X 个线性无关的向量,使得X 中任一向量可有n 个向量线性表示,则称其为X 的一个基,称n 为X 的维数。

2 距离空间

设X 是非空集合,若存在一个映射:d X X R ?→,使得,,x y z X ?∈,下列距离公理成立:

10 非负性(,)0,(,)=0d x y d x y x y ≥?=

20 对称性(,)(,)d x y d y x =

30 三角不等式(,)(,(,)d x y d x z d z y ≤+

则称(,)d x y 为x y 与的距离,X 为以d 的距离空间,记作(,)X d 。

3 赋范线性空间

设X 称为数域上K 上的线性空间,若x X ?∈,都有一个实数x 与之对应,使得,,x y X K α?∈∈,下列范数公理成立:

10 正定性0,

00x x x ≥=?=

20 绝对齐次性x x αα= 30 三角不等式x y x y +≤+

则称x 为x 上的范数,X 为K 上的赋范空间。

已知完备的距离空间中任一Cauchy 列均收敛,而赋范线性空间作为一类特殊的距离空间,同样可以讨论它的完备性。只是这里的距离是由范数诱导的距离。在范数的语言下,点列{}n x 为Cauchy 列的定义改写为

0,,N N ε?>?∈N 使当m,n>时,有m n x x ε-<

完备的赋范线性空间称为Banach 空间。 4 内积空间

设X 称为数域上K 上的线性空间,若存在映射,:X X K ?→,使得,,x y z X ?∈,,K αβ∈,

,下列内积公理成立: 对第一变元的线性,,,x y z x z y z αβαβ<+>=<>+<> 共轭对称性,,x y y x <>=<>

正定性,0x x <>≥且,00x x x <>=?= 则称,为X 上的内积,X 为K 上的内积空间。

由于完备性的概念是建立在距离定义的基础上的,故等价的说,一个内积空

间称为Hilbert空间,若其按由内积导出的范数是完备的距离空间。

在由内积导出的范数下,内积空间X成为一个赋范空间,它具有一般赋范空间的所有性质。

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

2018届高三数学每天一练半小时:第55练 空间角与距离 含答案

一、选择题 1.如图所示,已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 上的投影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为【 ) A.34 B.54 C.74 D.34 2.已知正三棱柱ABC -A 1B 1C 1的体积为94 ,底面是边长为3的正三角形.若P 为△A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为【 ) A.π6 B.π3 C.π4 D.23 π 3.如图所示,在三棱锥S —ABC 中,△ABC 是等腰三角形,AB =BC =2a ,∠ABC =120°,SA =3a ,且SA ⊥平面ABC ,则点A 到平面SBC 的距离为【 ) A.3a 2 B.a 2

C.5a 2 D.7a 2 二、填空题 4.如图,在等腰直角三角形ABD 中,∠BAD =90°,且等腰直角三角形ABD 与等边三角形BCD 所在平面垂直,E 为BC 的中点,则AE 与平面BCD 所成角的大小为________. 5.如图所示,在三棱锥S -ABC 中,△SBC ,△ABC 都是等边三角形,且BC =1,SA =32 ,则二面角S -BC -A 的大小为________. 6.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下命题: ①异面直线C 1P 与B 1C 所成的角为定值; ②二面角P -BC 1-D 的大小为定值; ③三棱锥D -BPC 1的体积为定值; ④异面直线A 1P 与BC 1间的距离为定值. 其中真命题的个数为________. 三、解答题 7.【2016·潍坊模拟)如图所示,底面ABC 为正三角形,EA ⊥平面ABC ,DC ⊥平面ABC ,EA =AB =2DC =2a ,设F 为EB 的中点.

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离, 使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范 线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间 设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1° 的充要条件为x=y 2° 对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空 间。x 中的元素称为点。 2、常见的度量空间 (1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 (2)序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A) 中任意两点x,y ,定义 (4)可测函数空间 设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度, 若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。令 (5)C[a,b]空间 令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意 两点x,y ,定义 二、度量空间中的极限、稠密集、可分空间 1、收敛点列 设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。 收敛点列性质: (1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯 一的。 (2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。 (,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()| f t g t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-?(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x

泛函分析第3章连续线性算子与连续线性泛函

第3章连续线性算子与连续线性泛函 本章将介绍赋范线性空间上,特别是Banach空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach定理。他们是泛函分析早期最光辉的成果,有广泛的实际背景, 尤其在各种物理系统研究中应用十分广泛。 3.1连续线性算子与有界线性算子 在线性代数中,我们曾遇到过把一个”维向量空间E"映射到另一个加维向 量空间E"的运算,就是借助于川行”列的矩阵 对F中的向量起作用来达到的。同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。 [定义3?1]由赋范线性空间X中的某子集D到赋范线性空间丫中的映射T 称为算子,D称为算子了的定义域,记为D(r),为称像集{y|y = 7k,xeD(7')}为算子的值域,记作T(D)或77)。 若算子T满足: (1)T(x+y) = Tx+Ty e£)(T)) (2)T(ax) = (/rx(V

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

距离空间泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18) 1. 在1中令1(x , y ) = (x y )2,2(x , y ) = | x y |1/2,,问1, 2 是否为1上的距离 [解] 显然1, 2满足距离空间定义中的非负性和对称性. 但1不满足三角不等式:取点x = 1, y = 0, z = 1,则 1(x , z ) = 4 > 2 = 1(x , y ) + 1(y , z ),所以1不是 1 上的距离。 而x , y , z 1 , 2 (x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==2 (x , z ) + 2 (z , y ); 所以2是1上的距离. 2. 设(X , )是距离空间,令 1 (x , y ) = n y x ),(ρ,x , y X .证明(X , 1 ) 也是距离空间. [证明] 显然1满足距离空间定义中的非负性和对称性, 故只需证明1满足三角不等式即可. 实际上x , y , z X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤ ),(),(),(),(11y z z x y z z x n n ρρρρ+=+=. 3. 设(X , )是距离空间,证明 | (x , z ) (y , z ) | (x , y ),x , y , z X ; | (x , y ) (z , w ) | (x , z ) + (y , w ),x , y , z , w X . [证明] x , y , z , w X ,由三角不等式有 (x , y ) (x , z ) (y , z ) (x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式: | (x , y ) (z , w ) | | (x , y ) (y , z ) | + | (y , z ) (z , w ) | (x , z ) + (y , w ). 4. 用Cauchy 不等式证明(| 1 | + | 1 | + ... + | n | )2 n (| 1 |2 + | 1 | 2 + ... + | n |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | i |,b i = 1,i = 1, 2, ..., n 即可. 5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做. 6. 设(X , d )是距离空间,A X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集. [证明] 若A = ,则int(A ) = ,结论显然成立. 若A ,则x A ,r > 0使得S (x , r ) A . 对y S (x , r ),令s = r d (x , y ),则s > 0,并且S (y , s ) S (x , r )

泛函分析度量空间知识和不动点的应用

泛函分析度量空间知识和不动点的应用 第七章度量空间和赋范线性空间知识总结 一、度量空间的例子 定义:设X 为一个集合,一个映射d :X ×X →R 。若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x ); (Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z ) 则称d 为集合X 的一个度量(或距离)。称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。 二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法: 1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞ =0,则称点列{} n x 是(X ,d )中的收敛点列,x 是点列{}n x 的极限。 2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。即若n x M ∈,n=1、,2……, n x x →,则x M ∈。 给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间n R 是可分空间,坐标为有理数的全体是n R 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。l ∞ 是不可分空间。 三、连续映射 证明度量空间的连续映射有四种方法: 1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0 x X ∈,如果对于任意给定的正数ε,存在正数δ 0,使对X 中一切满足d (x ,0x )δ 的x ,有 (,)d Tx Tx ε ,则称T 在0x 连续。 2、对0Tx 的每个ε-领域U ,必有0x 得某个δ—邻域V 使TV ?U ,其中TV 表示V 在映射T 作用下的像。 3、定理1:设T 是度量空间(X ,d )到度量空间(Y ,d )中的映射,那么T 在0 x X ∈连

空间角与距离求法(高二)

1 空间角与点面距离求法 求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结. 1.空间角的求法 在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式 (1) b a ,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做 向量a 与向量b 的夹角,记作>≤≤=< . (3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,222222||z y x b ++= , 212121z z y y x x b a ++=? . 二、两条异面直线所成的角 (1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b ' 所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角). (2) 范围: 异面直线a 和b 所成的角为θ: 900≤<θ, 则cos 0≥θ . (3) 求法: ▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角.. 时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b 分别是异面直线a 和b 的方向向量,则 | ||||||||||||,cos |cos b a b a b a b a b a ??=??=><=θ . 说明: ① 其中=θ或- 180 ; ② 在计算b a ?时可用向量分解或坐标进行运算. 三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角) 如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

必修2空间角和空间距离(理科)

空间角和空间距离 空间角 (1)两条异面直线所成的角: 两条异面直线a、b,经过空间任意一点O作直线c∥a,d∥b,我们把直线c和d所成的锐角(或直角)叫做异面直线a与b所成的角。 注意:①两条异面直线a,b所成的角的范围是(0°,90°]. ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出. ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法: (i)在空间任取一点,这个点通常是线段的中点或端点. (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角(锐角或直角),这时我们要注意两条异面直线所成的角的范围. (2)直线与平面所成的角 1)直线与平面斜交时,直线与平面所成的角是指这条直线和它在平面上的射影所成的锐角. 2)直线与平面垂直时,直线与平面所成的角为. 3)直线与平面平行或在平面内时,直线与平面所成的角为. 显然,直线与平面所成的角的范围为. 4)求一条斜线和平面所成的角:做出这条斜线在平面内的射影,再确定斜线和射影所成角的大小即可。 斜线在平面内的射影:从斜线上除斜足外的任意一点向平面引垂线,过斜足和垂足的直线叫做斜线在这个平面内的射影,斜线上任意一点在平面内的射影一定在斜线的射影上。 (3)二面角 (1)二面角的定义 一条直线出发的二个半平面所形成的图形称为二面角,这条直线称为二面角的棱,二个半平面称为二面角的面. (2)二面角的平面角的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做二面角的平面角.注意:①二面角的平面角两边必须都与棱垂直. ②二面角的平面角的大小是由二面角的两个面的位置关系所确定的,与定义中棱上任一点的选择无关,也就是二面角的平面角不只一个,但这些平面角的大小是相等的. ③二面角的平面角的范围是,当两个半平面重合时,; 相交时;共面时.平面角是直角的二面角叫做直二面角. (3)二面角的平面角的确定与求法

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

相关文档 最新文档