文档库 最新最全的文档下载
当前位置:文档库 › 螺纹连接强度计算

螺纹连接强度计算

螺纹连接强度计算
螺纹连接强度计算

新产品最新动态技术文章企业目录资料下载视频/样本反馈/论坛

技术应用|基础知识|外刊文摘|业内专家|文章点评投稿发表科技文章

螺纹联接设计:单个螺栓联接的强度计算

newmaker

螺纹联接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效

多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓

的疲劳断裂;对于受横向载荷的铰制孔用螺栓联接,其失效形式主要为螺栓杆剪断,栓杆或被联接件孔接触表面挤压破坏;如果螺纹精度低或联接时常装拆,很可能发生滑扣现象。

螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。采用标准件时,这些部分都不需要进行强

度计算。所以,螺栓联接的计算主要是确定螺纹小径di,然后按照标准选定螺纹公称直径(大径)d,以及螺母和垫圈等联接零件的尺寸。

1. 受拉松螺栓联接强度计算

新产品最新动态技术文章企业目录资料下载视频/样本反馈/论坛

图15.3

松螺栓联接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。)外,联接并不受力。图1所示吊钩尾部的联接是其应用实例。当螺栓承受轴向工作载荷(N)时,其强度条件为

式中:

d1--螺纹小径,mm ;

cl松联接螺栓的许用拉应力,Mpa。

2. 受拉紧螺栓联接的强度计算

根据所受拉力不同,紧螺栓联接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三类。

①只受预紧力的紧螺栓联接

图为靠摩擦传递横向力F的受拉螺栓联接,拧紧螺母后,这时螺栓杆除受预紧力F'引起的拉应力c =4F'/ nd外,还受到螺纹力矩T1引起的扭转剪应力:

对于M10?M68的普通螺纹,取d i、d2和入的平均值,并取p=arctan0.15,得T~ 0.5由于螺栓材料是塑性材料,按照第四强度理论,当量应力c e为

叭■* +% * ■ Jb* +3(口时 I .3<7

式中[c 为静载紧联接螺栓的许用拉应力,其值由表 1查得。

②受预紧力和工作载荷的紧螺栓联接。

图 15.5

图15.5所示压力容器的螺栓联接是受预紧力和轴向工作载荷的典型实例。

这种联接拧紧后螺栓受预紧力 F',工作时还受 到工作载荷F 。一般情况下,螺栓的总拉力 F0并不等于F 与F'之和。现分析如下:

螺栓和被联接件受载前后的情况见图 15.6。图a 为螺母刚好拧到与被联接件接触,此时螺栓与被联接件均未受力,因而

也不产生变形。图为螺母已拧紧,但尚未承受工作拉力的情况,这时,螺栓受预紧力

F'的作用。以C 1和C 2分别表示螺 栓和被联接件的刚度,在预紧力 F'的作用下,螺栓产生伸长变形 S 仁F'/C 1,被联接件产生压缩变形 S 2=F'/Q 。图为螺栓 受工作拉力F 后的情况。这时,螺栓拉力增大到 F0,拉力增量为F o -F',伸长增量为△ S1;而被联接件随之部分放松, 其受压力减小到F"(称之为剩余预紧力),压缩减量为△ S 2。根据螺栓的静力平衡条件得

F o =F"+F

(1) -------------------- D2 -----------------------

-------------- D1 -----------------------------

即螺栓所受的总拉力 F0应等于剩余预紧力 F"与工作拉力F 之和。如图15.7所示,图a 为螺栓和被联接的受力和变形关 系图,将两关系图合并得图 b 。图为螺栓受工作载荷时的情况,根据螺栓与被联接件变形协调条件有△

S 1 =△ S 2,以

「热一戸 r+r-r ' 如 * 和S 2=(F'-F")/c2代入得

F"=F'-Fc 2/C 1+C 2) (15-12)

F'=F"+Fc 2/(C 1+C 2) (15-13)

F o =F'+Fc 1/(C 1+C 2) (15-14)

式中C 1/(C 1+C 2)称为螺栓的相对刚度系数。螺栓的相对刚度系数的大小与螺栓及被联接件的材料、尺寸和结构有关,其

值在0?1之间变化,一般可按表选取。 垫片类别

金属垫片或无垫片 皮辛茎片 訓皮石棉垫片 梯胶躍片

0.2^0 3

0.7 0.3 0.5

勺+巾

表螺栓的相对刚度系数

紧螺栓联接应能保证被联接件的接合面不出现缝隙

(图2d 为螺栓工作载荷过大, 联接出现缝隙的情况, 这是不容许的。), 因此剩余预紧力 F"应大于零。当工作载荷 F 没有变化时,可取 F"= (0.2~0.6 ) F ,当F 有变化时,F" =( 0.6?1.0 ) F ;

对于有紧密性要求的联接(如压力容器的螺栓联接),

F" =( 1.5?1.8) F 。设计时,通常在求出 F 后,即可根据联接的 工作要求选择F",然后由式(15-11 )求F 0以计算螺栓的强度。

图 15.7

联接应该是在受工作载荷前拧紧的,螺纹力矩为F'tan(入+ p')d2;但考虑到出现特殊情况时可能在工作载荷下补充拧紧,

则螺纹力矩为F o ta n(入+p 2)2,相应的螺栓切应力T和拉应力分别为

d =4F0/ n d i

因此,为安全起见,参照式(15-9 )的推导,得螺纹部分的强度条件为

5.2F o/ nd i W [ d] (15-15)

式(15-15 )用于静载荷计算。静载时的许用应力见表15.6。如图15.8可知,当工作载荷在0与F之间变化时,螺栓的拉力在F'与F0之间变化,螺栓的拉力变幅为:

1勺F

由于变载零件的疲劳强度应力幅是主要因素,故应满足强度条件

式中da--螺栓变载时的应力幅;

[d a-螺栓变载时的许用应力幅,见表15.6 。

图15.8

3. 受剪螺栓联接

图15.9所示为铰制孔用螺栓联接,工作时螺杆在联接接合面处受剪切,并与被联接件孔壁互相挤压。联接损坏的可能形式有:螺栓被剪断,栓杆或孔壁被压溃等。在计算时,这种联接的预紧力和摩擦力可忽略不计。

设螺栓所受的剪力为Fs,则栓杆的抗剪切强度条件为

4F s/ ndmc [ T]( 15-17 )

栓杆与被联接件孔壁的抗挤压强度条件为

F s < dh[ d p] (15-18 )

式中d--螺栓抗剪面直径;

m--螺栓抗剪面数目;

h --栓杆与孔壁挤压面最小高度;

[T-]螺栓的许用切应力,见表15.7 ;

[d p-栓杆或孔壁材料中强度较弱者的许用挤压应力,见表15.7。

螺纹连接强度的计算

螺纹的连接强度设计规范 已知条件: d1= 旋合长度: L=23 旋合圈数: Z= 原始三角形高度:H=2P= 实际牙高:H1== 牙根宽:b== 间隙:B== 螺纹材料: 45 屈服强度360MPa 抗拉强度 600Mpa n=5(交变载荷) 系统压力P= 活塞杆d=28 缸套D=65 推力F=PA=47270N 请校核螺纹的连接强度: 1:螺纹的抗剪强度校验:[]τ 故抗剪强度足够。 2:抗弯强度校核:(σw) (σw):许用弯曲应力为: *360(屈服极限)=144MPa 故其抗弯强度不足: 3: 螺纹面抗挤压校验(σp) []MPa p 1803605.05.0=??屈服强度为为σ MPa H d Kz F p 73.113)33.1581.0026.1914.356.0/(47270Z 12=????=????= πσ 故其抗挤压强度足够。 []()[]Mpa 960.18.0=-=στMPa Z b d Kz F s 4.84)33.1513.1376.1814.356.0/(472701=????=????=πτMPa Z b b d Kz FH 224)33.1513.113.1376.1814.356.0/(472703113w =??????=?????=πσ

4: 螺纹抗拉强度效验 (σ) [][]20Mpa 1=σb/5=σσ钢来说为许用抗拉强度,对于 dc 螺 纹 计 算 直 径: dc=( d+d1-H/6)/2=(20+ MPa dc F 325.165)08.1908.1914.3/(472704π42 =???== σ故其抗拉强度不足。 例1-1 钢制液压油缸如图10-21所示,油缸壁厚为10mm ,油压p =,D=160mm ,试计算上盖 的螺栓联接和螺栓分布圆直径。 解 (1) 决定螺栓工作载荷

螺纹强度计算

这个与螺丝的材料、性能等级、热处理是有关的。 如果按粗牙、碳钢: M4 2900- 4500 N M5 4600- 7300 N M8 12000-19000 N M10 19000-30000 N M12 27000-43000 N M14 38000-59000 N M16 51000-81000 N 这是常见螺丝的抗拉强度。 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺 栓材料的公称抗拉强度值和屈强比值。例如: 性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级 性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9GPa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的,X*100=此螺栓的抗拉强度,X*100*(Y/10)=此螺栓的屈服强度(因为按标识规定:屈服强度/抗拉强度=Y/10) 如4.8级

联接螺栓强度计算方法

联接螺栓的强度计算方法

一.连接螺栓的选用及预紧力: 1、已知条件: 螺栓的s=730MPa 螺栓的拧紧力矩T= 2、拧紧力矩: 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩 擦力矩T2。装配时可用力矩扳手法控制力矩。 公式:T=T1+T2=K* F* d 拧紧扳手力矩T= 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 其中K为拧紧力矩系数, F为预紧力N d为螺纹公称直径mm 摩擦表面状态K值 有润滑无润滑 精加工表面 一般工表面 表面氧化 镀锌 粗加工表面- 取K=,则预紧力 F=T/*10*10-3=17500N 3、承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As(mm)=58mm2 外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm

计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm 紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。 螺栓的最大拉伸应力σ1(MPa)。 1s F A σ= =17500N/58*10-6m 2=302MPa 剪切应力: =1σ=151 MPa 根据第四强度理论,螺栓在预紧状态下的计算应力: =*302= MPa 强度条件: =≤*=584 预紧力的确定原则: 拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。 4、 倾覆力矩 倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓已拧紧并承受预紧力F 0。作用在底板两侧的合力矩与倾覆力矩M 平衡。 已知条件:电机及支架总重W1=190Kg ,叶轮组总重W2=36Kg ,假定机壳固定, () 2031 tan 2 16 v T d F T W d ?ρτπ += = 1.31ca σσ≈[] 02 11.34F ca d σσ π =≤

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

螺纹强度校核公式

计算公式计算值注释1.5设计给出517.5设计给出235260设计给出38设计给出4.23设计给出50设计给出11.8203309693h = 0.541p 2.28843 3227.60672.8899376194 345计算结果合格剪切强度计算公式计算值备注235260设计给出35.5设计给出41.78设计给出11.8203309693设计给出1.5设计给出4.23设计给出B = 0.75p 3.1725 517.5设计给出34556.280613618 207安全系数n材料屈服强度(MPA)轴向力F(n)螺距D2(mm)螺纹工作长度L(mm)连接螺纹齿Z螺纹工作高度h(mm)挤压面积a(mm2)挤压应力(MPA)的计算允许将挤压小直径D1(mm)用于外螺纹时使用的挤压直径(MPA)轴向力F(n),使用大直径D(mm)连接的螺纹数Z安全系数s间距P(mm)螺纹底宽b(mm)屈服强度(MPA)螺钉的允许拉伸应力(MPA),计算剪切应力(MPA)表示螺母,如果合格,则计算螺母(MPA)允许剪应力(MPA)的剪应力(MPA);否则,不合格。弯曲强度计算项目计算公式计算值的计算结果备注28.58 28.52 24.22 26.82 0.85 71.8724621016 B = 0.75p 2.38125 138112 3.175 H = 0.541p 1.717675 9.26 1.5517.5345 178.2251152336 151.0361193477计算结果自锁性能检查计算螺母大直径D(mm )当使

用大直径D(mm)螺丝外螺纹时,小直径D1(mm)外螺纹螺距直径D2(mm)弯曲臂L(mm)单圈外螺纹截面弯曲模数w(mm)螺纹底宽b (mm)轴向力F(n)螺距P(mm)螺纹工作高度h(mm)连接螺纹数Z安全系数s屈服强度(MPA)允许的拉应力(MPA)对于螺钉,请计算以下值的弯曲应力(MPA)螺母,计算弯曲应力(MPA),允许弯曲应力(MPA),如果螺钉和螺母合格,则为不合格。备注:设计给出s = NP 30齿廓角150.15,螺丝对的当量摩擦系数为-0.19744950019,螺旋上升角为1.5617735831,当量摩擦角为-0.1949419593计算结果不合格的自锁性能检查计算项目计算公式计算值备注2.59807621141.5669872981 1.3333333333节距P(mm)导程s(mm)节距直径D2(mm)螺钉对滑动摩擦系数f 0.13-0.17轴向力F(n)外螺纹小直径D1(mm)节距P (mm)原始三角形高度h(mm)用于外螺纹DC(mm)普通螺纹螺栓断裂部分的安全系数s 屈服强度(MPA)允许拉应力(MPA)= 33 = 60梯形螺纹:矩形螺纹:锯齿螺纹:普通螺纹:NP = atan,如果<,则为合格,否则为不合格。计算得出的拉应力为0.5187993114,计算结果合格。如果<,则为合格,否则为不合格

螺纹连接受力分析

螺纹连接受力分析 一、 螺纹强度校核 把螺母的一圈螺纹沿大径展开,螺杆的一圈螺纹沿小径展开,视为悬臂梁,如图。 相关参数: 轴向力F ,旋合螺纹圈数z (因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10); 螺纹牙底宽度b ,螺纹工作高度h ,每圈螺纹牙的平均受力为F z ,作用在中径上。 螺母——内螺纹,大径、中径、小径分别为D 、2D 、1D 。 螺杆——外螺纹,大径、中径、小径分别为d 、2d 、1d 。 1. 挤压强度 螺母一圈挤压面面积为2D h π,螺杆一圈挤压面积为2d h π。 螺母挤压强度2[]p p F F z A D h πσ= =≤σ 螺杆挤压强度2[]p p F F z A d h σσπ= =≤ p σ为挤压应力, []p σ 为许用挤压应力。 2. 剪切强度 螺母剪切面面积为Db π,螺杆剪切面面积1d b π。 螺母,剪切强度[]F F z A Db ττπ= =≤ 螺母的一圈沿大径展开 螺杆的一圈沿小径展开

螺杆,剪切强度1[]F F z A d b ττπ= =≤ []0.6[]τσ=,[]s n σσ= 为材料许用拉应力,s σ为材料屈服应力。 安全系数,一般取3~5。 3. 弯曲强度 危险截面螺纹牙根部,A -A 。 螺母,弯曲强度23[]b b M Fh W Db z σσπ= =≤ 螺杆,弯曲强度213[]b b M Fh W d b z σσπ= =≤ 其中,L :弯曲力臂,螺母22D D L -= ,螺杆2 2 d d L -= M :弯矩,螺母22D D F M F L z -=?= ?,螺杆2 2 d d F M F L z -=?=? W :抗弯模量,螺母2 6 Db W π= ,螺杆2 16 d b W π= []b σ:螺纹牙的许用弯曲应力,对钢材,[]1~1.2[]b σσ= 4. 自锁性能 自锁条件v ψψ≤, 其中,螺旋升角22 arctan arctan S np d d ψππ==,螺距、导程、线数之间关系:S =np ; 当量摩擦角arctan arctan cos v v f f ψβ ==, 当量摩擦系数cos v f f β= f 为螺旋副的滑动摩擦系数,无量纲,定期润滑条件下,可取0.13~0.17; β为牙侧角,为牙型角α的一半,2βα= 5. 螺杆强度 1、 实心

关于螺纹联接的螺纹牙强度校核之根据-ver1.1

关于螺纹联接的螺纹牙强度校核之根据 一、引用教材 (1) 二、适用范围 (1) 三、校核 (2) 1. 螺纹副抗挤压计算 (3) 2. 抗剪切强度校核 (4) 3. 抗弯曲强度校核 (4) 4. 自锁性能校核 (7) 5. 螺杆强度校核 (7)

一、引用教材 1.《机械设计》第四版,高等教育出版社,邱宣怀主编,1997年7月第4版,1997年7 月第1次印刷,印数0001—17094,定价23.60元,该书是戊子庚上学时的教材。摘自P120。 2.《机械设计手册》第四版,第3卷,成大先主编,化学工业出版社,2005年1月北京 第25次印刷。摘自12-3~12-9。 二、适用范围 螺纹联接可以使用普通螺纹、梯形、矩形、锯齿形等四种,且多用普通螺纹。 下图1给出了螺旋副的可能螺纹种类、特点和应用。

图1 螺旋副的螺纹种类、特点和应用 三、校核 该文件仅讨论五个方面的校核:抗挤压、抗剪切、抗弯曲、自锁性、螺杆强度。 根据实践,由于螺母的材质软,螺纹副的破坏多发生在螺母;但当螺母和螺杆材料 相同时,螺杆首先破坏,此时应校核螺杆。该文件中的各物理量及其含义和公式均可查

阅文件(双击打开) 螺纹联接的参数解 释 ; 该五项校核已编成excel 计算表格以提高效率,使用时仅仅需要填写绿色表格,其 余表格计算机自行计算得出结果,见文件(双击打开)螺纹联接计算表格 。 1. 螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F ,相旋合螺纹圈数为z ,则验算计算式为: p p []F = A σσ≤ 且 2F F A d hz π= 若取p [][]σσ=,则有2[]F d hz σπ≤ 式中 ● p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ; ● F :轴向力,单位N ; ● 2d :外螺纹中径,单位mm ; ● h :螺纹工作高度,单位mm ,p 为螺距,单位mm ,h 与p 的关系为:

螺纹强度计算.

M24螺纹轻度 计算 P=70Mpa Pmax=105Mpa 材料 60K [σs]≥414 [σb]≥586 螺栓受力分析: 设环境:当进行轻度试验时 液体进入阀体中,闸板密封作用。 关闭时阀杆中作用 在开启状态下,阀板关闭时的受力分析: 在开启状态时,介质通过进口端阀座受压端面作用在阀板的作用力为F1,通过出口端阀座受压端面作用在阀板的作用力为F2,由于进出口端阀座结构及尺度完全一致,而此时两阀座所受的液体压力衡定,即进出口端阀座所受的轴向压力相等,则:F1=F2。当要关闭闸阀,阀板下行时,必须克服阀板两密封面所产生的摩擦力,阀板才能运动。此时阀杆受压。 从以上两种受力分析可以看出,关闭闸阀时,阀板所承受的作用力比开启闸阀所承受的作用力小。所以在进行阀杆校核时,用关闭状态时,打开阀板产生的力作用在阀板的作用力为F1 F1=7004 )2.72.8(14.34) (2222?-=?-P d D πkg/cm2 =8462kg 机械设计手册 介质直接对阀板的作用力为F2 F2= kg cm kg P d 4.36948/70042.814.34222 =??=?π 表 5-88 序号2 《阀门设计手册》第2版 出口端阀座承受的作用力为F1+F2:F1+F2=8426+36948.4=45374kg 当要开启闸阀使阀板上行时,必须克服阀板两面的摩擦力F 。 F=[F1+(F1+F2)]f 表 3-26 密封面摩擦因素 《阀门设计手册》第2版 式中f 为阀板与阀座的摩擦系数取 f=0.06 F=[F1+(F1+F2)]f=[8426+45374] ×0.06=3228.34kg 阀杆与密封填料间的摩擦力Qr (N ) Qr=πdF1hR μP

螺纹连接强度计算

新产品最新动态技术文章企业目录资料下载视频/样本反馈/论坛技术使用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评投稿发表科技文章 螺纹联接设计:单个螺栓联接的强度计算 newmaker 螺纹联接根据载荷性质不同,其失效形式也不 同:受静载荷螺栓的失效多为螺纹部分的塑性 变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓联接,其失效形式主要为螺栓杆剪断,栓杆或被联接件孔接触表面挤压破坏;如果螺纹精度低或联接时常装拆,很可能发生滑扣现象。 螺栓和螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。采用标准件时,这些部分都不需要进行强度计算。所以,螺栓联接的计算主要是确定螺纹小径d1,然后按照标准选定螺纹公称直径(大径)d,以及螺母和垫圈等联接零件的尺寸。 1. 受拉松螺栓联接强度计算

图15.3 松螺栓联接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。)外,联接并不受力。图1所示吊钩尾部的联接是其使用实例。当螺栓承受轴向工作载荷(N)时,其强度条件为 或 式中:d1--螺纹小径,mm; σ1--松联接螺栓的许用拉应力,Mpa。 2. 受拉紧螺栓联接的强度计算 根据所受拉力不同,紧螺栓联接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三类。 ①只受预紧力的紧螺栓联接

图为靠摩擦传递横向力F的受拉螺栓联接,拧紧螺母后,这时螺栓杆除受预紧力F`引起的拉应力σ=4F`/πd12外,还受到螺纹力矩T1引起的扭转剪应力: 对于M10~M68的普通螺纹,取d1、d2和λ的平均值,并取ρ`=arctan0.15,得τ≈0.5σ。由于螺栓材料是塑性材料,按照第四强度理论,当量应力σe为 故螺栓螺纹部分的强度条件为: 或 式中[σ]为静载紧联接螺栓的许用拉应力,其值由表1查得。 ②受预紧力和工作载荷的紧螺栓联接。

螺栓强度计算

第三章 螺纹联接(含螺旋传动) 3-1 基础知识 一、螺纹的主要参数 现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有: 1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。 2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。 3)中径2d ——通过螺纹轴向界面牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈ 11 ()2 d d +。中径是确定螺纹几何参数和配合性质的直径。 4)线数n ——螺纹的螺旋线数目。常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。为了便于制造,一般用线数n ≤4。 5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。 6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。单线螺纹S =P ,多线螺纹S =nP 。 7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。在螺纹的不同直径处,螺纹升角各不相同。通常按螺纹中径2d 处计算,即 22 arctan arctan S nP d d λππ== (3-1) 8)牙型角α——螺纹轴向截面,螺纹牙型两侧边的夹角。螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。 9)螺纹接触高度h ——外螺纹旋合后的接触面的径向高度。 二、螺纹联接的类型 螺纹联接的主要类型有: 图3-1

1、螺栓联接 常见的普通螺栓联接如图3-2a所示。这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。图3-2b是铰制孔用螺栓联接。这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。 图3-2 2、双头螺柱联接 如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。 图3-3 3、螺钉联接 这种联接的特点是螺栓(或螺钉)直接拧入被联接件的螺纹孔中,不用螺母,在结构上

螺纹副抗挤压计算

1. 螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F ,相旋合螺纹圈数为z ,则验算计算式为: p p []F = A σσ≤ 且2F F A d hz π= 若取p [][]σσ=,则有 2[]F d hz σπ≤ 式中 ● p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ; ● F :轴向力,单位N ; ● 2d :外螺纹中径,单位mm ; ● h ,h 与p 的关系为: ● z z 不宜大于10);

2. 抗剪切强度校核 对螺杆,应满足 1[]F d bz ττπ=≤ ; 对螺母,应满足[]F Dbz ττπ=≤ 式中 ● F :轴向力,单位N ; ● 1d :计算公扣时使用螺纹小径,单位mm ; ● D :计算母扣时使用螺纹大径,单位mm ; ● b ● z z 不宜大于10); ● ][τ:许用剪应力,单位MPa ,对于材质为钢,一般可以取][6.0][στ=,][σ为 材料的许用拉应力,S []S σσ=,单位MPa ,其中S σ为屈服应力,单位MPa , S 为安全系数,一般取3~5。 3. 抗弯曲强度校核 对螺杆,应满足213[]b Fh σπd b z ≤; 对螺母,应满足23[]b Fh σπDb z ≤。 其推导过程如下: 一般来讲,螺母材料强度低于螺杆,所以螺纹牙抗弯和抗剪强度校核以螺母为对象,即校核母扣;但当螺母和螺杆材料相同时,则螺杆的强度要低于螺母,所以此时

应校核螺杆强度,即校核公扣。 若将螺母、螺杆的一圈螺纹沿螺纹大径处展开,即可视为一悬壁梁,危险截面为A-A,如下图2、图3所示。 图2 螺母的一圈螺纹展开 若将螺杆的一圈螺纹沿螺纹小径处展开,即可视为一悬壁梁,如图3所示。 图3 螺杆的一圈螺纹展开 以校核螺杆为例,每圈螺纹承受的平均作用力F/z作用在中径d2的圆周上,则螺纹牙根部危险剖面A-A的变曲强度条件为:

螺纹连接的拧紧力矩计算

螺纹联接的拧紧力矩计算 M t =K ×P 0×d ×10-3 N.m K:拧紧力系数 d :螺纹公称直径 P 0:预紧力 P 0=σ0×A s A s 也可由下面表查出 A s =π×d s 2/4 d s :螺纹部分危险剖面的计算直径 d s =(d 2+d 3)/2 d 3= d 1-H/6 H :螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs ――――螺栓材料的屈服极限N/mm 2 (与强度等级相 关,材质决定) K 值查表:(K 值计算公式略) σs 查表:

As查表: 通过计算得到螺栓联接拧紧力矩如下表所示: 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。 螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级 性能等级10.9级高强度螺栓,其材料经过热处理后,能达到 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可

表面被氧化(无润滑)的螺纹联接的拧紧力矩值(单位:N.m)

螺栓强度计算.doc

15.2.1 单个螺栓连接的强度计算 螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。 螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。采用标准件时,这些部 ,然后按照标准选定螺纹公称直分都不需要进行强度计算。所以,螺栓连接的计算主要是确定螺纹小径d 1 径(大径)d,以及螺母和垫圈等连接零件的尺寸。 1. 受拉松螺栓连接强度计算 松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。)外,连接并不受力。图15.3所示吊钩尾部的连接是其应用实例。当螺栓承受轴向工作载荷 F (N)时,其强度条件为 (15-6) (15-7) 或 ——螺纹小径,mm; 式中: d 1 [σ]——松连接螺栓的许用拉应力,Mpa。见表 15.6。 图15.3 2. 受 拉 紧 螺 栓 连 接 的 强 度 计 算 根

所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三

。 ①只受预紧力的紧螺栓连接 右图为靠摩擦传递横向力F 的受拉螺栓连接,拧紧螺母后,这时

栓杆除受预紧力F`引起的拉应力σ=4 F` /π 2 d 1外,还受到螺纹力矩T1引起的扭转切应力:

对于螺栓 故螺栓 或 式 ② 受 预 紧 力 和 工 作 载 荷 的 紧 螺 栓 连 接 。 图 15 .5 所 示 压 力 容 器

螺纹校核计算

螺纹校核计算 一、引用教材 1.《机械设计》第四版,高等教育出版社,邱宣怀主编,1997年7月第4版,1997年7 月第1次印刷。摘自P120。 2.《机械设计手册》第四版,第3卷,成大先主编,化学工业出版社,2005年1月北京 第25次印刷。摘自12-3~12-9。 二、适用范围 螺纹联接可以使用普通螺纹、梯形、矩形、锯齿形等四种,且多用普通螺纹。 下图1给出了螺旋副的可能螺纹种类、特点和应用。 图1 螺旋副的螺纹种类、特点和应用

三、校核 该文件仅讨论五个方面的校核:抗挤压、抗剪切、抗弯曲、自锁性、螺杆强度。 根据实践,由于螺母的材质软,螺纹副的破坏多发生在螺母;但当螺母和螺杆材料相同时,螺杆首先破坏,此时应校核螺杆。该文件中的各物理量及其含义和公式均可查 阅文件(双击打开)螺纹联接的参数解释; 该五项校核已编成excel 计算表格以提高效率,使用时仅仅需要填写绿色表格,其 余表格计算机自行计算得出结果,见文件(双击打开)螺纹联接计算表格 。 1、螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F ,旋合螺纹圈数为z ,则验算计算式为: []P p A F σσ≤= hz d A 2π= ,取p [][]σσ= 式中 ● p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ; ● ][σ:材料许用拉应力,S []S σσ=,单位MPa ,其中S σ为屈服应力,单位MPa ,S 为安全系数,一般取3~5。 ● F :轴向力,单位N ; ● 2d :外螺纹中径,单位mm ; ● h h 与p 的关系为: ● z 不均,因而z 不宜大于10);

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.

螺纹强度校核公式

螺纹强度校核公式 国际上航空航天、消防救助和民用等诸多工业领域使用的储气瓶,正朝着工作压力高,储气量大并且更加安全可靠的方向发展。缠绕气瓶作为 国内外储气瓶的先进科学技术,较好地满足气瓶发展的需要。铝合金内胆作为缠绕气瓶的内衬,同普通的钢质内胆相比减轻了气瓶的重量,此外,铝 合金固有的氧化膜使该内胆具有较强的耐蚀性,延长了气瓶的使用寿命。 目前对该产品还没有相应的国家标准和行业标准,只有各企业制定的企业标准,企标中未能对内胆端部螺纹的强度提出明确计算方法。为了保 证安全,端部螺纹的强度需要进行校核计算。本文针对铝合金内胆端部螺纹的强度校核给出了3种计算方法。 1 计算方法简介 1.1 方法1 铝合金内胆端部内螺纹和螺塞外螺纹的旋合情况见图1,计算取值见图2。根据螺纹联接章节中螺纹牙强度校核的计算公式,内、外螺纹计算 公式分别如下: (1)

其中,[τps] =0.5Rps (3) [τp] =0.5Rp (4) 式中:τ内、τ外为螺纹承受的内、外切应力,MPa; [τps]为瓶阀螺塞螺纹许用切应力,MPa; [τp]为内胆端部螺纹许用切应力,MPa; Rps为瓶阀螺塞材料的抗拉强度,MPa; Rp为内胆材料的抗拉强度,MPa; F为最大轴向载荷,N; kz为载荷不均系数; z为旋合螺纹牙数; d1为外螺纹小直径,mm; D为内螺纹大直径,mm; d为螺纹公称直径,mm; b为螺纹牙根部宽度,mm; h为螺纹牙工作高度,mm; 普通螺纹的螺纹牙根部宽度b=0.87P(P为螺距)mm。 将式(1)~式(2)变化后得出内、外螺纹计算公式: πDbz[τp]≥F(5) πd1bz[τps]≥F(6) 当内胆端部开口处的内螺纹为直螺纹时, 直螺纹不少于6个螺距,并且在缠绕气瓶试验压力下,剪切安全系数不低于10,螺纹必须贯通

螺纹受力计算公式

一、矩形螺纹(牙型角α=0) 螺纹副中,螺母所受到的轴向载荷Q 是沿螺纹各圈分布的,为便于分析,用集中载荷Q 代替,并设Q 作用于中径d 2圆周的一点上。这样,当螺母相对于螺杆等速旋转时,可看作为一滑块(螺母)沿着以螺纹中径d 2展开,斜度为螺纹升角l 的斜面上等速滑动。 匀速拧紧螺母时,相当于以水平力推力F 推动滑块沿斜面等速向上滑动。设法向反力为N ,则摩擦力为f N ,f 为摩擦系数,ρ 为摩擦角,ρ = arctan f 。由于滑块沿斜面上升时,摩擦力向下,故总反力R 与Q 的的夹角为λ+ρ 。由力的平衡条件可知,R 、F 和Q 三力组成力封闭三角形,由图可得: Q ψ d F 使滑块等速运动所需要的水平力 等速上升: Ft=Qtan(ф+ρ) 等速上升所需力矩: T= Ftd 2/2= Qtan(ф+ρ)d 2/2 等速下降: Ft=Qtan(ф—ρ) 等速下降所需力矩: T= Ftd 2/2= Qtan(ф—ρ)d 2/2 二、非矩形螺纹 螺纹的牙型角α≠0时的螺纹为非矩形螺纹。非矩形螺纹的螺杆和螺母相对转动时,可看成楔形滑块沿楔形斜面移动; 平面时法向反力N=Q; 平面时摩擦力F f =fN =fQ; 楔形面时法向反力N /=Q/cosβ;楔形面摩擦力F f ! =f N / =fQ/ cosβ; 令f / =f/ cosβ称当量摩擦系数。F f ! =f /Q;楔形面和矩形螺纹的摩擦力相比,与当量摩擦系数对应的摩擦角称为当量摩擦角,用ρV 表示。拧紧螺母时所需的水平推力及转矩:由于矩形螺纹与非矩形螺纹的运动关系相同,将ρV 代替ρ后可得: 使滑块等速运动所需要的水平力

螺纹校核计算

螺纹校核计算

————————————————————————————————作者:————————————————————————————————日期:

螺纹校核计算 一、引用教材 1.《机械设计》第四版,高等教育出版社,邱宣怀主编,1997年7月第4版,199 7年7月第1次印刷。摘自P120。 2.《机械设计手册》第四版,第3卷,成大先主编,化学工业出版社,2005年1月北京第25次印刷。摘自12-3~12-9。 二、适用范围 螺纹联接可以使用普通螺纹、梯形、矩形、锯齿形等四种,且多用普通螺纹。 下图1给出了螺旋副的可能螺纹种类、特点和应用。 图错误!未定义书签。螺旋副的螺纹种类、特点和应用

三、校核 该文件仅讨论五个方面的校核:抗挤压、抗剪切、抗弯曲、自锁性、螺杆强度。 根据实践,由于螺母的材质软,螺纹副的破坏多发生在螺母;但当螺母和螺杆材料相同时,螺杆首先破坏,此时应校核螺杆。该文件中的各物理量及其含义和公式均 可查阅文件(双击打开)螺纹联接的参数解释; 该五项校核已编成exce l计算表格以提高效率,使用时仅仅需要填写绿色表格, 其余表格计算机自行计算得出结果,见文件(双击打开)螺纹联接计算表格 。 1、螺纹副抗挤压计算 把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。设轴向力为F,旋合螺纹圈数为z ,则验算计算式为: []P p A F σσ≤= hz d A 2π= ,取p [][]σσ= 式中 ● p σ:挤压应力,单位MPa; ● p []σ:许用挤压应力,单位MPa ; ● ][σ:材料许用拉应力,S []S σσ=,单位M Pa,其中S σ为屈服应力,单位MP a,S 为安全系数,一般取3~5。 ● F:轴向力,单位N; ● 2d :外螺纹中径,单位mm; ● h :螺纹工作高度,单位m m,p 为螺距,单位mm,h 与p的关系为: 梯形螺纹:h =0.5p 矩形螺纹:h =0.5p 锯齿螺纹:h=0.75p 普通螺纹:53h =p =0.541p 16 ● z :结合圈数,无量纲,一般不要超过10(因为旋合的各圈螺纹牙受力不均, 因而z不宜大于10);

螺母螺纹牙的强度计算

螺母螺纹牙的强度计算 螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。 如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为 中径D 2 【5-50】 螺纹牙危险截面a-a的弯曲强度条件为 【5-51】 式中: b——螺纹牙根部的厚度, mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距; )/2; l——弯曲力臂;mm参看图 , l=(D-D 2 [τ]——螺母材料的许用切应力,MPa,见表; ——螺母材料的许用弯曲应力,MPa,见表。 [σ] b 当螺杆和螺母的材料相同时,由于螺杆的小径d 小于螺母螺纹的大径D,故应校 l 。 核杆螺纹牙的强度。此时,上式中的D应改为d 1

螺母外径与凸缘的强度计算。 在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。 设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。则螺母悬置部分危险截面b-b内的最大拉伸应力为 式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ] b ,[σ] b 为螺母材料的许用 弯曲应力,见表5-15。 螺母凸缘的强度计算包括: 凸缘与底座接触表面的挤压强度计算 式中[σ] p 为螺母材料的许用挤压应力,可取[σ] p =(1.5 1.7)[σ] b 凸缘根部的弯曲强度计算 式中各尺寸符号的意义见下图。

螺栓强度计算

第三章 螺纹联接(含螺旋传动) 3-1 基础知识 一、螺纹的主要参数 现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有: 1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。 2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。 3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈ 11 ()2 d d +。 中径是确定螺纹几何参数和配合性质的直径。 4)线数n ——螺纹的螺旋线数目。常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。为了便于制造,一般用线数n ≤4。 5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。 6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。单线螺纹S =P ,多线螺纹S =nP 。 7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。在螺纹的不同直径处,螺纹升角各不相同。通常按螺纹中径2d 处计算,即 22 arctan arctan S nP d d λππ== (3-1) 8)牙型角α——螺纹轴向截面内,螺纹牙型两侧边的夹角。螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。 9)螺纹接触高度h ——内外螺纹旋合后的接触面的径向高度。 二、螺纹联接的类型 螺纹联接的主要类型有: 图3-1

1、螺栓联接 常见的普通螺栓联接如图3-2a所示。这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。图3-2b是铰制孔用螺栓联接。这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。 图3-2 2、双头螺柱联接 如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。 图3-3 3、螺钉联接 这种联接的特点是螺栓(或螺钉)直接拧入被联接件的螺纹孔中,不用螺母,在结构上比

相关文档