,则△ABC 为锐角三角形)。 (定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3:勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导
1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2
,?那么这个三角形是直角三
角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.
5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,
那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH
S S S ?+=正方形正方形ABCD ,221
4()2
ab b a c ?+-=,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为221
422S ab c ab c =?+=+
大正方形面积为2
2
2
()2S a b a ab b =+=++ 所以2
2
2
a b c +=
方法三:1()()2S a b a b =+?+梯形,211
2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证
6:勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,
a ,
b ,
c 为正整数时,称a ,b ,c 为一组勾股数
②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等
③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);
2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 正整数)
二、经典例题精讲
题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?.
⑴已知6AC =,8BC =.求AB 的长
⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=
c
b
a
H
G F E
D
C
B
A
a b
c
c b
a
E D C
B
A c
b
a
H
G F E
D
C
B
A
b
a c
b
a
c c
a
b
c
a
b C
B
D
A

⑵228BC AB AC =-=
题型二:利用勾股定理测量长度
例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?
解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!
根据勾股定理AC 2
+BC 2
=AB 2
, 即AC 2
+92
=152
,所以AC 2
=144,所以AC=12.
例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.
解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在R t △ACD 中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。
标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2
+CD 2
=AD 2
设水深AC= x 米,
那么AD=AB=AC+CB=x+0.5
x 2
+1.52
=( x+0.5)
2
解之得x=2. 故水深为2米.
题型三:勾股定理和逆定理并用——
例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4
1
=
那么△DEF 是直

角三角形吗?为什么?
解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可
以发现规律,没有任何条件,我们也可以开创条件,由AB FB 4
1
可以设AB=4a ,那么BE=CE=2 a,AF=3 a,BF= a,那么在Rt △AFD 、Rt △B EF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾
股定理逆定理去判断△DEF 是否是直角三角形。 详细解题步骤如下:
解:设正方形ABCD 的边长为4a,则BE=CE=2 a,AF=3 a,BF= a 在Rt △CDE 中,DE 2
=CD 2
+CE 2
=(4a)2
+(2 a)2
=20 a 2
同理EF 2
=5a 2
, DF 2
=25a
2 在△DEF 中,EF 2
+ DE 2
=5a 2+ 20a 2=25a 2=DF
2
∴△DEF 是直角三角形,且∠DEF=90°.
注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度——
例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.
解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。
详细解题过程如下:
解:根据题意得Rt △ADE ≌Rt △AEF ∴∠AFE=90°, AF=10cm, EF=DE 设CE=xcm ,
则DE=EF=CD -CE=8-x 在Rt △ABF 中由勾股定理得: AB 2
+BF 2
=AF 2
,即82
+BF 2
=102
, ∴BF=6cm

∴CF=BC -BF=10-6=4(cm) 在Rt △ECF 中由勾股定理可得: EF 2
=CE 2
+CF 2
,即(8-x) 2
=x 2
+42
∴64-16x+x 2
=2+16 ∴x=3(cm),即CE=3 cm
注:本题接下来还可以折痕的长度和求重叠部分的面积。
题型五:利用勾股定理逆定理判断垂直——
例题5 如图5,王师傅想要检测桌子的表面AD 边是否垂直与AB 边和CD 边,他测得AD=80cm ,AB=60c m ,BD=100cm ,AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?
解析:由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来验证。如图4,矩形ABCD 表示桌面形状,在AB 上截取AM=12cm,在AD 上截取AN=9cm(想想为什么要设为这两个长度?),连结MN ,测量MN 的长度。
①如果MN=15,则AM 2
+AN 2
=MN 2
,所以AD 边与AB 边垂直;
②如果MN=a ≠15,则92
+122
=81+144=225, a 2
≠225,即92
+122
≠ a 2
,所以∠A 不是直角。利用勾股定理解决实际问题——
例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?
解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该是头先距离灯5米。转化为数学模型,如图6 所示,A 点表示控制灯,BM 表示人的高度,BC ∥MN,BC ⊥AN 当头(B 点)距离A 有5米时,求BC 的长度。已知AN=4.5米,所以AC=3米,由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打开。
题型六:旋转问题:
例1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。

变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中, 根据它们的数量关系,由勾股定理可知这是一个直角三角形.

变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°, 试探究2
2
2
BE CF EF 、、间的关系,并说明理由.
题型七:关于翻折问题
例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落
在CD 边上的点G 处,求BE 的长.



变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.
题型八:关于勾股定理在实际中的应用:
例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?
题型九:关于最短性问题
例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?


第十八章 平行四边形
1.四边形的内角和与外角和定理: (
1
)四边形的内角和等于360
°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.
A B
C
D 1234
A
B C
D
3.平行四边形的性质:
因为ABCD 是平行四边形??????
????.
54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(
4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行
(ABCD 54321???
?
?
?
?
??
.
5.矩形的性质:
因为ABCD 是矩形???
?
??.3;
2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(
6. 矩形的判定:
??
?
??
+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321?四边形ABCD 是矩形.
7.菱形的性质: 因为ABCD 是菱形
???
???.321角)对角线垂直且平分对()四个边都相等;
(有通性;)具有平行四边形的所(
8.菱形的判定:
??
?
??
+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形四边形ABCD 是菱形.
A
B
D
O
C
C
D
B
A
O
A
B
D
O
C
C
D
B
A
O
A D
B
C
A D
B
C
A
D
B C
O
A
D B C
O
9.正方形的性质: 因为ABCD 是正方形
???
???.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( C
D
A
B
(1)
A B
C
D O
(2)(3)
10.正方形的判定:
??
?
??
++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321?四边形ABCD 是正方形.
(3)∵ABCD 是矩形 又∵AD=AB
∴四边形ABCD 是正方形
11.等腰梯形的性质:
因为ABCD 是等腰梯形???
?
??.321)对角线相等(;
)同一底上的底角相等(两底平行,两腰相等;)(
12.等腰梯形的判定:
???
??+++对角线相等)梯形(底角相等)梯形(两腰相等
)梯形(321?四边形ABCD 是等腰梯形 (3)∵ABCD 是梯形且AD ∥BC ∵AC=BD
∴ABCD 四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
E
F
D A
B
C
E D
C
B
A
A B C D O
A
B
C D
O
C
D A
B
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,
菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =
2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴. ※5.梯形中常见的辅助线:
A
B E F
D
E
C A
B D
C A
B
D
C
A
B
D
C
中点
中点
E
F
F A B
D C
A B
D
C
A B D
C
A B
D C
中点
中点
G F
E
E
E
E
第十九章一次函数
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,
平行四边形矩形
菱形正
方
形
那么就说x 是自变量,y 是x 的函数。 2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。 2、一次函数的图像
所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征:
一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。(如下图)
4. 正比例函数的性质
一般地,正比例函数kx y =有下列性质:
(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。 5、一次函数的性质
一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。解这类问题的一般方法是待定系数法。
k 的符号 b 的符号
函数图像
图像特征
k>0 b>0
y
0 x
图像经过一、二、三象限,y随x的增大而
增大。
b<0
y
0 x
图像经过一、三、四象限,y随x的增大而
增大。
K<0 b>0
y
0 x
图像经过一、二、四象限,y随x的增
大而减小
b<0
y
0 x
图像经过二、三、四象限,y随x的增
大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
第二十章数据的分析
知识点:
数据的代表:平均数、众数、中位数、极差、方差知识点详解:
1.解统计学的几个基本概念
总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数
当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;?当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数
平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差
用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差
用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2=[(x1-)2+(x2-)2+…+(xn-)2];
方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、选择题
1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()
A.6
B.7
C. 7.5
D. 15
2.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()
A.92 B.93 C.96 D.92.7
3.关于一组数据的平均数、中位数、众数,下列说法中正确的是()
A.平均数一定是这组数中的某个数
B. 中位数一定是这组数中的某个数
C.众数一定是这组数中的某个数
D.以上说法都不对
4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()
A.85 B.86 C.92 D.87.9
5.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()
A.4 km/h
B. 3.75 km/h
C. 3.5 km/h
D.4.5 km/h
6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()
A.平均数
B.中位数
C.众数
D.以上都可以
二、填空题:(每小题6分,共42分)
7.将9个数据从小到大排列后,第个数是这组数据的中位数
8.如果一组数据4,6,x,7的平均数是5,则x = .
9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一
组数据12,16,11,17,13,x的中位数是14,则x = .
11.某射击选手在10次射击时的成绩如下表:
环数7 8 9 10
次数 2 4 1 3
则这组数据的平均数是,中位数是,众数是.
12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为.
13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.
第二十章数据的分析
知识点:
选用恰当的数据分析数据
知识点详解:
一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:
平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数
中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
极差:是指一组数据中最大数据与最小数据的差。巧计方法,极差=最大值-最小值。
方差:各个数据与平均数之差的平方的平均数,记作s2 .巧计方法:方差是偏差的平方的平均数。
标准差:方差的算术平方根,记作s 。
二教学时对五个基本统计量的分析:
1 算术平均数不难理解易掌握。加权平均数,关键在于理解“权”的含义,权重是一组非负数,权重之和为1,当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。
学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。
采取的措施:弄清权的含义和算术平均数与加权平均数的关系。并且提醒学生再求平均数时注意单位。
2 平均数、与中位数、众数的区别于联系。联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数的应用最为广泛。区别:A 平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动。B 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。C 众数主要研究个数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数。其中众数的学习是重点。
学生出现的问题:求中位数时忘记排序。对三种数据的意义不能正确理解。
采取的措施:加强概念的分析,多做对比练习。
3 极差,方差和标准差。方差是重难点,它是描述一组数据的离散程度即稳定性的非常重要的量,离散程度小就越稳定,离散程度大就不稳定,也可称为起伏大。极差、方差、标准差虽然都能反映数据的离散特征,但是,对两组数据来说,极差大的那一组方差不一定大;反过来,方差大的,极差也不一定大。
学生出现的问题:由于方差,标准差的公式较麻烦,在应用时常由于粗心或公式不熟导致错误。
采取的措施:注意方差是“偏差的平方的平均数”这一重要特征。或使用计算器计算。
这些数据经常用来解决一些“选拔”、“决策”类问题。中考中常常综合在一起考察。
14.为了培养学生的环保意识,某校组织课外小组对该市进行空气含尘调查,下面是一天中每2小时测得的数据(单位:g/m3 ):
0.04 0.03 0.02 0.03 0.04 0.01
0.03 0.04 0.03 0.05 0.01 0.03
(1)求出这组数据的众数和中位数;
(2)如果对大气飘尘的要求为平均值不超过0.025 g/m3,问这天该城市的空气是否符合要求?为什么?
15.A、B两班在一次百科知识对抗赛中的成绩统计如下:
分数50 60 70 80 90 100
人数(A
班)
3 5 15 3 13 11
人数(B
班)
1 6 1
2 11 15 5
根据表中数据完成下列各题:
(1)A班众数为分,B班众数为分,从众数看成绩较好的是班;
(2)A班中位数为分,B班中位数为分,A班中成绩在中位数以上的(包括中位数)学生所占的百分比是%,B班中成绩在中位数以上的(包括中位数)学生所占的百分比是%,从中位数看成绩较好的是班;
(3)若成绩在85分以上为优秀,则A班优秀率为%,B班优秀率为%,从优秀率看成绩较好的是班.
(4)A班平均数为分,B班平均数为分,从平均数看成绩较好的是班;
16.某酒店共有6名员工,所有员工的工资如下表所示:
人员经
理
会
计
厨
师
服务
员1
服
务员2
勤
杂工
月工资(元)
40
00
60
9
00
500 500 40
(1)酒店所有员工的平均月工资是多少元?
(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.