文档库 最新最全的文档下载
当前位置:文档库 › CG_13颜色模型

CG_13颜色模型

(整理)matlab图像类型与彩色模型的转换.

第六讲图像类型与 彩色模型的转换 【目录】 一、图像类型的转换 (1) 1、真彩图像→索引图像 (3) 2、索引图像→真彩图像 (3) 3、真彩图像→灰度图像 (4) 4、真彩图像→二值图像 (4) 5、索引图像→灰度图像 (5) 6、灰度图像→索引图像 (6) 7、灰度图像→二值图像 (7) 8、索引图像→二值图像 (8) 9、数据矩阵→灰度图像 (9) 二、彩色模型的转换 (9) 1、图像的彩色模型 (10) 2、彩色转换函数 (10) 三、纹理映射 (13) 【正文】 一、图像类型的转换

1、真彩图像→索引图像 【格式】X =d i t h e r (R G B ,m a p ) 【说明】按指定的颜色表m a p 通过颜色抖动实现转换 【输入】R G B 可以是d o u b l e 或u i n t 8类型 【输出】X 超过256色则为d o u b l e 类型,否则输出为u i n t 8型 【例】 C L F ,R G B =i m r e a d ('f l o w e r s .t i f '); 100 200 300 400 500 50100150200250300350 100 200 300 400 500 50100150200250300350 【输出】R G B 为d o u b l e 类型 【例】 C L F ,l o a d t r e e s ; R G B =i n d 2r g b (X ,m a p ); s u b p l o t (1,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (1,2,2);s u b i m a g e (R G B );t i t l e ('真彩图')

【CN110020633A】姿态识别模型的训练方法、图像识别方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294734.8 (22)申请日 2019.04.12 (71)申请人 腾讯科技(深圳)有限公司 地址 518000 广东省深圳市南山区高新区 科技中一路腾讯大厦35层 (72)发明人 罗镜民 朱晓龙 王一同 季兴  (74)专利代理机构 北京派特恩知识产权代理有 限公司 11270 代理人 李梅香 张颖玲 (51)Int.Cl. G06K 9/00(2006.01) G06K 9/62(2006.01) G06N 3/08(2006.01) (54)发明名称 姿态识别模型的训练方法、图像识别方法及 装置 (57)摘要 本发明提供了一种姿态识别模型的训练方 法、图像识别方法及装置;姿态识别模型的训练 方法包括:将标注有人体关键点的样本图像,输 入所述姿态识别模型包括的特征图模型,输出对 应所述样本图像的特征图;将所述特征图输入所 述姿态识别模型包括的二维模型,输出用于表征 二维人体姿态的二维关键点参数;将从所述特征 图中剪裁出的目标人体特征图及所述二维关键 点信息,输入所述姿态识别模型包括的三维模 型,输出用于表征三维人体姿态的三维姿态参 数;结合所述二维关键点参数及所述三维姿态参 数,构建目标损失函数;基于所述目标损失函数, 更新所述姿态识别模型的模型参数。权利要求书3页 说明书16页 附图11页CN 110020633 A 2019.07.16 C N 110020633 A

权 利 要 求 书1/3页CN 110020633 A 1.一种姿态识别模型的训练方法,其特征在于,所述方法包括: 通过姿态识别模型包括的特征图模型,对标注有人体关键点的样本图像进行处理,获得对应所述样本图像的特征图; 通过所述姿态识别模型包括的二维模型,对所述特征图进行处理,获得用于表征二维人体姿态的二维关键点参数; 通过所述姿态识别模型包括的三维模型,对从所述特征图中剪裁出的目标人体特征图及所述二维关键点参数进行处理,获得用于表征三维人体姿态的三维姿态参数; 结合所述二维关键点参数及所述三维姿态参数,构建目标损失函数; 基于所述目标损失函数,更新所述姿态识别模型的模型参数。 2.如权利要求1所述的方法,其特征在于,所述方法还包括: 根据当前配置场景的类型获取相应类型的关键点集,并确定所述关键点集中的人体关键点; 基于所确定的人体关键点,参照所述关键点集对所述样本图像进行标注。 3.如权利要求2所述的方法,其特征在于,所述关键点集包括: 用于定位人体部位的基准关键点、与所述基准关键点协同表征所属部位的多种三维姿态的扩展关键点。 4.如权利要求1所述的方法,其特征在于,所述目标损失函数包括对应所述三维模型的第一损失函数;所述结合所述二维关键点参数及所述三维姿态参数,构建损失函数,包括:基于所述三维姿态参数,确定相应的二维关键点信息; 结合所述二维模型输出的二维关键点参数、以及基于所述三维姿态参数确定的二维关键点信息,构造对应所述三维模型的第一损失函数。 5.如权利要求4所述的方法,其特征在于,所述目标损失函数还包括对应所述二维模型的损失函数及对应所述三维模型的第二损失函数; 所述二维关键点参数包括:人体关键点的部分亲和字段参数及人体关键点的热力图,所述三维姿态参数包括:人体的形状参数及形态参数; 所述结合所述二维关键点参数及所述三维姿态参数,构建损失函数,包括: 结合所述二维模型输出的部分亲和字段参数与相应人体关键点在样本图像中的部分亲和字段参数的差异、所述二维模型输出的热力图与相应人体关键点在样本图像中的热力图的差异,构建对应所述二维模型的损失函数; 结合所述三维模型输出的形状参数与相应人体在样本图像中的形状参数的差异、所述三维模型输出的形态参数与相应人体在样本图像中的形态参数的差异,构建对应所述三维模型的第二损失函数。 6.如权利要求1所述的方法,其特征在于,所述方法还包括: 基于所述二维模型输出的所述二维关键点参数,确定所述特征图中的目标人体; 根据确定的目标人体对所述特征图进行剪裁,得到所述目标人体的特征图。 7.如权利要求1所述的方法,其特征在于,所述基于所述目标损失函数,更新所述姿态识别模型的模型参数,包括: 基于所述二维模型输出的所述二维关键点参数及所述三维模型输出的所述三维姿态参数,确定所述目标损失函数的值; 2

图像处理和识别中的纹理特征和模型

纹理特征和模型 1,基于纹理谱的纹理特征 图像纹理分析中,最重要的问题是提取能够描述纹理的特征信息;这些特征可被用来分类和描述不同的纹理图像。在实际中常用到的方法有结构法和统计法;本文提出一种新的统计方法,每个纹理单元表征该位置及其领域象素的特征,整幅图像的纹理特征用纹理谱来表征,用这种方法进行分析较为简单。 定义纹理谱:纹理单元的频率分布。 基于纹理频谱的纹理特征: 3×3领域:权重: original reference calculate by myself (1)、黑白对称性 ()(3281) 1*100 () s i S i BWS S i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ 反映频谱的对称性,不随纹理单元中起始计数位置的不同而不同。 (2)、几何对称性 ()4() 1 1*100 4 2*() Sj i Sj i GS Sj i ?? -+ ?? ?? =- ?? ?? ?? ∑ ∑ ∑ 反映图像旋转180度后,纹理谱的相似性; (3)、方向度

()()11*10062*()Sm i Sn i DD Sm i ?? -?? ??=-?????? ∑∑ ∑ 反映线性结构的角度。大的DD 说明纹理谱对图像的方向模式较为敏感;即图 像中有线性机构纹理单元存在。 以上三个特征都是图像的几何特征,可描述原始图像的宏观纹理;下面介绍几个描述图像微观纹理的特征。 (4)、方向特征 微观水平结构特征: ()*()MHS S i HM i =∑ ()(,,)*(,,)HM i P a b c P f g h = 同样,我们可以得到其它方向的方向纹理特征MVS ,MDS1,MDS2 (5)中心对称性 2()*[()]CS S i K i =∑ 2.常用统计特征: 把图像看成是一个二维随机过程的一次实现,可得到图像的直方图、均值、方差、偏度、峰度、能量、墒、自相关、协方差、惯性矩、绝对值、反差分等特征量。常用来描述纹理的统计特征的技术有子相关函数、功率谱、正交变换、灰度级同时事件、灰度级行程长、灰度级差分、滤波模板、相对极值密度、离散马尔可夫随机场模型、自回归模型、同时自回归模型等。 原图: 1、2、3、4阶矩

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

灰度图像处理及颜色模型转换

灰度图像处理程序代码代码 1.二值图像 function erzhi_Callback(hObject, eventdata, handles) % hObject handle to erzhi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能转换为二值图像','转换失败'); else j=im2bw(x); imshow(j); end 2.图像腐蚀 function fushi_Callback(hObject, eventdata, handles) % hObject handle to fushi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能进行图像腐蚀','失败'); else j=im2bw(x); se=eye(5); bw=bwmorph(j,'erode'); imshow(bw); 3.创建索引图像 function chuanjian_Callback(hObject, eventdata, handles) % hObject handle to chuanjian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能创建索引图像','创建失败'); else y=grayslice(x,16); axes(handles.axes2); imshow(y,jet(16)); end 4.轮廓图

RGB与YUV、YIQ、YCbCr、HSI、CMY的模型互化(基于matlab)

2013-2014学年第二学期图像通信课程设计报告设计题目:图像的各种颜色空间转换

摘要 所谓三基色原理,是指自然界常见的各种颜色光都可由红、绿、蓝三种色光按照不同比例相配而成。同样,绝大多数颜色也可以分解成红、绿、蓝三种色光。这就是色度学中的最基本的原理。 彩色模型的用途是在某些标准下用通常课接受的方式简化彩色规范。常常涉及到用几种不同的彩色空间表示图形和图像的颜色,以应对不同的场合和应用。因此,在数字图像的生成、存储、处理及显示时,对应不同的彩色空间,需要作不同的处理和转换。现在主要的彩色模型有RGB模型、CMY模型、YUV模型、YIQ 模型、YcbCr模型、HSI模型等。本设计主要使用MATLAB编程的方法,实现RGB与其余四种模型之间的互化。即使用不同的色彩模型表示同一图形或图像。通过转换实现色彩模型的变换之后,可以让同一幅图像以各种模式在全球范围内流通,所以本设计具有一定的实际意义。一般的图像原始都为RGB—加色混合色彩模型,它与剩下的几个色彩模型之间存在着函数对应关系,通过矩阵运算改变模型的参数就可以实现不同色彩模型之间的相互转换。例如CMY—减色混合色彩模型,就是利用青色、深红色、黄色这三种彩色按照一定比例来产生想要的 彩色,CMY是RGB三基色的补色,它与RGB存在如下关系:C M Y = 1 1 1 - R G B , 使用MATLAB编程时,读入三个通道的数值,按照对应关系进行矩阵变换就可以转换成CMY色彩模型。其他色彩模型转换原理与此相似。 关键词:MATLAB,RGB、YUV、YIQ、YCbCr、HSI、色彩模型

一、设计任务、目的和要求 任务:实现RGB模型、CMY模型、YUV模型、YIQ模型、YcbCr模型、HSI 模型这几种不同色彩模型之间的相互转换 要求:最终结果用图像显示 二、总体方案设计 系统运行环境:WINDOWS 7操作系统 编程软件平台:MATLAB2012b 编码算法原理:将原图的三基色数值读入,根据不同色彩模型之间的相互关系,通过矩阵运算改变不同的亮度和色度等信息来实现色彩模型的转换,然后将变换后的图像导出 流程图: 三、设计实现

基于.人工智能算法的图像识别及生成

基于人工智能算法的图像识别与生成 摘要:本次报告的工作是利用PCA,SVM以及人工神经网络(ANN)实现对人脸的特征提取、分类和预测。然后利用GAN(生成对抗网络)实现对手写数字的生成,并用SVM 做预测,验证生成效果。 本次报告采用的数据源自剑桥大学的ORL 人脸数据库,其中包含40个人共400张人脸图像。 关键词:人工智能;图像识别;数据 中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2018)13-0173-02 1 PCA降维 PCA(principal components analysis)即主成分分析,又称主分量分析。旨在利用降维的思想,把多指标转化为少数几个综合指标。 首先我们给出了数据库的平均脸的图像,并利用PCA对人脸降维,通过改变降低到的维度研究了保留维度的多少带来的影响。最后给出了每一个维度的特征脸图像,讨论了每一个维度所能够代表的人脸信息。 1.1 平均脸 首先,我们将数据库中400张人脸按行存储到一个矩阵

中,即每一行为一张人脸(10304像素),每张人脸共10304维特征。我们对每一个维度去平均,构成一个新的行向量,这就是平均脸。 平均脸反映了数据库中400张人脸的平均特征,可以看清人脸的轮廓,但无法识别人脸的局部细节。 1.2 降低至不同维度时还原脸的情况 从左到右从上到下依次是同一张脸降低至10,30,50,100,200,250,300,350,400的图像。可以看到,随着保留维数的增多,图像越清晰,与原图的差异越小。 1.3 提取单一维度的特征做还原 为了研究不同维度所代表的人脸的信息,我们把PCA之后的每一个特征向量单独提取出来对人脸做还原,还原的时候不加入平均脸并且做直方图均衡化。 结果如下: 每一张图像下方的数字代表了PCA之后按特征值从大到小排序的顺序,比如第一张图代表PCA之后最大特征值所对应的特征向量还原出的人脸。 特征累积图的纵坐标代表了所保留的特征占总特征的 比例。它是这样计算出来的,假设保留k维信息,则纵坐标值为这k个特征值的和除以总的400(400*10304的矩阵,最多有400个非零特征值)个特征值的和。 从图4可以看出,当保留维数为100维时,即能保留人

各种颜色模型分析

色彩空间介绍 颜色模型是指某个三维颜色空间中的一个可见光子集,它包含某个颜色域的所有颜色。如我们所熟知的三原色光模式.三原色光模式(RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光(如图1所示)。 图1 在大多数的彩色图形显示设备一般都是使用红、绿、蓝三原色,我们的真实感图形学中的主要的颜色模型也是RGB模型,但是红、绿、蓝颜色模型用起来不太方便,它与直观的颜色概念如色调、饱和度和亮度等没有直接的联系。为了更便于颜色的直观表示,一些学者提出了其它的颜色模型,如HSV、HSI、CHL、LAB、CMY等。 RGB颜色模型 RGB(Red,Green,Blue)颜色模型通常使用于彩色阴极射线管等彩色光栅图形显示设备中,彩色光栅图形的显示器都使用R、G、B数值来驱动R、G、B电子枪发射电子,并分别激发荧光屏上的R、G、B三种颜色的荧光粉发出不同亮度的光线,并通过相加混合产生各种颜色。RGB颜色模型称为与设备相关的颜色模型,RGB颜色模型所覆盖的颜色域取决于显示设备荧光点的颜色特性,是与硬件相关的。它是我们使用最多,最熟悉的颜色模型。它采用三维直角坐标系。红、绿、蓝原色是加性原色,各个原色混合在一起可以产生复合色。RGB颜色模型通常采用如图2所示的单位立方体来表示。在正方体的主对角线上,各原色的强度相等,产生由暗到明的白色,也就是不同的灰度值。目前在计算机硬件中采取每一象素用24比特表示的方法,(0,0,0)为黑色,(255,255,255)为白色。正方体的其他六个角点分别为红、黄、绿、青、蓝和品红。

Lab颜色模型

Lab颜色模型 Lab颜色模型是有国际照明委员会(CIE)于1976年公布的一种颜色模型,Lab 颜色模型弥补了RGB和CMYK两种色彩模式的不足。Lab颜色模型由三个要素组成,一个要素是亮度(L),a 和b是两个颜色通道。a包括的颜色是从深绿色(低亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);b是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种颜色混合后将产生具有明亮效果的色彩。 4. Lab色彩模式 Lab色彩模式由光度分量(L)和两个色度分量组成,这两个分量即a分量(从绿到红)和b分量(从蓝到黄),如图8所示。Lab色彩模式与设备无关,不管使用什么设备(如显示器、打印机或扫描仪)创建或输出图像,这种色彩模式产生的颜色都保持一致。 A.光度=100(白)B.绿到红分量 C.蓝到黄分量D.光度=0(黑) 图2-11 Lab色彩模式通常用于处理Photo CD(照片光盘)图像、单独编辑图像中的亮度和颜色值、在不同系统间转移图像以及打印到PostScript(R)Level 2和Level 3打印机。色彩模式 在进行图形图像处理时,色彩模式以建立好的描述和重现色彩的模型为基础,每一种模式都有它自己的特点和适用范围,用户可以按照制作要求来确定色彩模式,并且可以根据需要在不同的色彩模式之间转换。下面,介绍一些常用的色彩模式的概念。 1. RGB色彩模式 自然界中绝大部分的可见光谱可以用红、绿和蓝三色光按不同比例和强度的混合来表示。RGB分别代表着3种颜色:R代表红色,G代表绿色、B代表蓝色。RGB模型也称为加色模型,如图5所示。RGB模型通常用于光照、视频和屏幕图像编辑。 图5 RGB色彩模式使用RGB模型为图像中每一个像素的RGB分量分配一个0~255范围内 的强度值。例如:纯红色R值为255,G值为0,B值为0;灰色的R、G、B三个值相等(除了0和255);白色的R、G、B都为255;黑色的R、G、B都为0。RGB图像只使用三种颜色,就可以使它们按照不同的比例混合,在屏幕上重现16581375种颜色。 2. CMYK色彩模式 CMYK色彩模式以打印油墨在纸张上的光线吸收特性为基础,图像中每个像素都是由靛青(C)、品红(M)、黄(Y)和黑(K)色按照不同的比例合成。每个像素的每种印刷油墨会被分配一个百分比值,最亮(高光)的颜色分配较低的印刷油墨颜色百分比值,较暗(暗调)的颜色分配较高的百分比值。例如,明亮的红色

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

三种常用的色彩模式

学习重点是三种常用的色彩模式:HSB、RGB、CMYK。 每一种色彩模式对应一种媒介: HSB:对应眼睛视觉细胞对颜色的感受,即我们平常看到的颜色。颜色的三个属性: H:色相——色彩的相貌(名称),色相环是一个环形(360度),以度来表示颜色;S:饱和度——色彩鲜艳程度(纯度); B:明度——色彩明暗的变化。饱和度和明度都按百分比来划分。 纯黑色、白色均无色相属性。 RGB:对应发光媒体(如显示器)。光色的三原色:R——红;G——绿;B——蓝。 每种颜色亮度分为256个级别:0—255,最亮为255,最暗为0(比如灯光,值越大越亮,不开灯则最暗:0)。故显示器可以显示256X256X256种颜色。 举例一些数值配色: R:200 40 255 0 128 G:15 偏红222 偏绿255 白0 黑128 灰(三个数相等,值大点为浅灰,反之深灰)B:30 15 255 0 128 三种光色最大值相加得到白色,称之为加色模式。 CMYK:对应印刷,油墨的浓淡程度用0%—100%来区分。印刷三原色:C:青、M:品(红)、Y黄。 为什么多了个K呢:因为印刷配色工艺上不能得到真正意义上的纯黑,所以印刷用4色,多了一种黑色(blacK)。 举例: C:80% 0% 100% M:2% 偏青 0% 白(相当于一点墨都没印)100% 黑(理论上) Y:15% 0% 100% CMY最大值相加得到黑色,称为减色模式。 实际上印刷黑色时CMY值都为0%,只要K的值为100%即可。 三种模式的应用:HSB,在拾取颜色时就是直观拾取我们眼睛看到的颜色。RGB,比如一个图片要显示在网页上,那应该用RGB。CMYK,如果一幅图最终要印刷出来,工作时仍选用RGB,只需在最后一步存为CMYK即可。 Lab色彩模式 RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。而Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。 Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)

基于MATLAB的BP神经网络的数字图像识别

基于MATLAB BP神经网络的数字图像识别

基于MATLAB BP神经网络的数字图像识别 【摘要】随着现代社会的发展,信息的形式和数量正在迅猛增长。其中很大一部分是图像,图像可以把事物生动的呈现在我们面前,让我们更直观地接受信息。同时,计算机已经作为一种人们普遍使用的工具为人们的生产生活服务。如今我们也可以把这些技术应用在交通领域。作为智能交通系统(InteUigent Traffic System,简称ITS)中的一个重要组成部分的车牌识别技术,当然就是其中的重点研究对象。车辆牌照识别(License P1ate Recognition,简称LPR),是一种关于计算机的包括图像处理、数学技术、数据库、信息技术以及智能技术于一体的综合技术。用MATLAB做车牌识别比用其他工具有许多优势,因为MATLAB在图像的灰度化、二值化、滤波等方面都有很大优势,所以,本次实验我们利用MA TLAB的这些优点来对车牌进行识别。 【关键词】BP神经网络;图像识别;字符识别;特征提取;车牌;Matlab 一课题研究背景 (一)图像识别的提出及应用 随着信息化时代的不断发展,人们越来越多地使用信息化的手段来解决各种问题——办公自动化、先进制造业、电子商务等利用计算机技术而产生的新兴行业正不断靠近我们的生活。在信息社会中,我们每天都接触大量的数据——工作数据、个人数据、无意间获得的数据等——在这些数据中,有些数据需要我们人工处理,而有些则可以利用计算机快速准确的完成——字符识别就是其中的一个范畴。 字符识别是一种图像识别技术,他的输入是一张带有某种字符的图片,而输出则是计算机中对于图片中字符的反应结果。所以,可以广泛的应用于各种领域:如,车牌检测、手写识别、自动阅读器、机器视觉……在生活生产的各个方面都起到了非常重要的作用。(二)图像识别技术的发展趋势 虽然图像识别技术还不是非常成熟,但现其已经有了很多可喜的成果,比如图像模式识别,图像文字识别。并且其还在飞速的发展着,图像识别的应用正朝着不同的领域渗透着,像计算机图像生成,图像传输与图像通信,高清晰度电视,机器人视觉及图像测量,办公室自动化,像跟踪及光学制导,医用图像处理与材料分析中的图像分析系统,遥感图像处理和空间探测,图像变形技术等等。从所列举的图像技术的多方面应用及其理论基础可以看出,它们无一不涉及高科技的前沿课题,充分说明了图像技术是前沿性与基础性的有机统一。 可以预计21世纪,图像技术将经历一个飞跃发展的成熟阶段,为深入人民生活创造新的文化环境,成为提高生产的自动化、智能化水平的基础科学之一。图像技术的基础性研究,特别是结合人工智能与视觉处理的新算法,从更高水平提取图像信息的丰富内涵,成为人类运算量最大、直观性最强,与现实世界直接联系的视觉和“形象思维”这一智能的模拟和复现,是一个很难而重要的任务。“图像技术”这一上世纪后期诞生的高科技之花,其前途是不可限量的。 随着21世纪经济全球化和信息时代的发展,作为信息来源的自动检测、图像识别技术越来越受到人们的重视。近年来计算机的飞速发展和数字图像处理技术的日趋成熟,为传统的交通管理带来了巨大转变。图像处理技术发展相当快,而其中对汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。汽车牌照自动识

最新基于OpenCV与深度学习框架的物体图像识别

基于OpenCV与深度学习框架Caffe的物体图像识别 摘要:本文主要介绍深度神经网络中的卷积神经的相关理论与技术。研究采用OpenCV深度学习模块DNN与深度学习框架Caffe进行物体识别。采用OpenCV 中的DNN模块加载深度学习框架Caffe模型文件,对物体图像进行识别。实验结果表明,卷积神经网络在物体的识别方面具有较高的准确率。 一.概述 1.1 OpenCV简介 OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV 是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列C 函数和少量C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。其最新版本是3.2,于2016年12月23日发布。OpenCV致力于真实世界的实时应用,通过优化的C代码的编写对其执行速度带来了可观的提升,并且可以通过购买Intel的IPP高性能多媒体函数库(Integrated Performance Primitives)得到更快的处理速度。在其最新版3.2版本中,已经添加了深度神经网络模块,并支持深度学习框架Caffe模型(Caffe framework models)。 1.2 深度学习框架Caffe简介 Caffe(Convolutional Architecture for Fast Feature Embedding)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,曾在Google 工作,现任Facebook研究科学家。Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换。Caffe的优势

基于YOLO模型图像识别研究综述

龙源期刊网 https://www.wendangku.net/doc/cc7517400.html, 基于YOLO模型图像识别研究综述 作者:韩素月戴奇林张律 来源:《大经贸·创业圈》2019年第07期 【摘要】近年来,随着计算机技术的发展,图像识别技术在各个领域都有了广泛的应用。同时,图像识别技术也在不断地优化,其在人们的日常生活中发挥着越来越重要的作用。本文主要综述了YOLO模型在图像识别技术上的研究现状。 【关键词】图像识别 YOLO模型 1 引言 随着互联网技术的不断向前发展,人们可以更加便捷地通过个人终端接入互联网,通过移动终端带有的摄像头,随时随地对物体进行拍照,利用互联网进行共享。由于图像本身的特点,图像比传统文字更加生动形象地传达了信息,使人们更容易理解,被人们广泛使用。图像数据的数据量十分巨大,不仅包含着对人们有用的有效信息,还包含着无用的无效信息。作为机器视觉的一个重要领域,图像识别不断满足人们日益增长的美好生活需要,如何快速和高效地处理图像信息有力地推动了图像识别技术的不断发展。近年来,人工智能和机器学习变得越来越熟悉起来,进入了普通大众的视野,极大地促进了图像识别技术的发展。机器识别中的机器视觉是通过模拟人类大脑[1],运用机器来获取图像,然后对图像进行一系列处理,经过抽象、传递和反复迭代,最终达到识别相关物体的目的,最终让机器能够像人一样识别和处理图像信息。YOLO算法大幅提高了图像识别的识别速度和识别准确率,具有良好的经济效益,有很高的研究价值。 2.国内外研究现状 图像识别技术发展至今,一共经历了三个阶段。①文字识别阶段;②图像处理与识别阶段;③物体识别阶段。目前,图像识别领域的重点研究方向是物体识别中的分类识别,目前已经广泛应用于安防领域、交通领域以及互联网领域,物体分类识别主要以特征学习为主。 2016年,Redmon J等[2]提出了YOLO算法。利用YOLO算法对图像中的目标进行特征提取分类识别,可以实现图像特征提取和分类识别的自动化,摒弃了传统图像识别过程中依靠手工标注图像特征的方法,其网络结构是在GoogleNet模型之上建立的。YOLO检测框架把目标检测问题当成一个回归问题,通过划分网格来进行回归目标的位置和类别。YOLO将图片进行7×7的划分,然后通过卷积神经网络也产生这样的7×7的输出,7×7中的每一个输出都去预测中心点落在这个网格上的目标,预测的目标参数包括目标的类别和目标框的位置。YOLO算法主要通过三步实现,首先,将输入图像软寸归一化;其次,卷积网络特征提取,预测边界框置信度;最后,通过非极大值抑制算法过滤边界框,得到最优结果。与Faster R-CNN算法相比,采用这种统一模型,实现了端对端的训练和預测,其检测速度更快,背景误判率低,泛化能力

CRT显示器的颜色转换模型

大连工业大学学报 Journal of Dalian Polytechnic University DOI: CRT 显示器的颜色转换模型 梁 静1,2, 邓晶绿1, 姜婷婷1, 宋 杨1 (1.大连工业大学纺织轻工学院,辽宁大连 116034;2.北京理工大学光电学院,北京 100081) 摘要:在分析CRT 显示器色彩呈现原理的基础上,用P rofileMaker 5.0色彩管理软件和Eye 2One P ro 分光光度仪对显示器进行屏幕的校准和特性化;采用多项式回归算法建立了CIERGB 到CIEXYZ 颜色转换模型,并对转换模型所得到的X 、Y 、Z 计算值与实际测量值进行了比较。在所抽取的12个色块中,9个色块的色差值都在3.0以内,只有2个检测样点的色差在5.0以上。转换模型具有较高的转换精度。 关键词:CRT 显示器;颜色空间转换;多项式回归中图分类号:TP 334.8 文献标志码:A Color transformation model of CRT display L IA NG Jing 1,2 , DEN G Jing 2lv 1 , JI AN G Ting 2ting 1 , SONG Yang 1 (1.School of Te xtile Engine ering &L ight Industry,D a lia n Polyte chnic U niversity,Dalia n 116034,China ; 2.School of Optoe lectronics,Beijing Institute of Technology,Be ijing 100081,China ) Abstr act:ProfileMaker 5.0and Eye 2One Pro were used to calibrate and characterize the screen of display following recording the test data.On this basis the CIERGB to CIEXYZ color transformation model was established via polynomial regression algorithm.T he color values of 9samples are less than 3.0and only 2samples ar e mor e than 5.0in 12compar ing samples.T he result indicates that the model shows high transformation accuracy. Key words:CRT display;color space transformation;multinomial matching 收稿日期:2010204226. 基金项目:国家自然科学基金资助项目(61078048).作者简介:梁静(19762),女,讲师.网络出版时间:网络出版地址: 0 引 言 显示器是人与计算机对话的窗口,是目前图像处理最重要的预打样工具,是色彩控制中最为重要的一项关键技术,其准确性直接影响到是否可以实现色彩管理系统所见即所得的性能[1]。与其他传统的显示设备相比,计算机控制的阴极射线管(cathode r ay tube,CRT)彩色显示器具有色域范围大、观测角度宽、控制方便灵活等特点[223],在颜色视觉研究领域得到了广泛的应用。同时CRT 显示器的色彩管理也是彩色图像复制的关键技术之一;但在实际应用中,有的使用者并不十分注重CRT 显示器色彩管理的重要性及其图像显示的精度。基于以上原因,本研究对显示器进 行了屏幕的校准和特性化,采用多项式回归算法建立CIERGB 到CIEXYZ 颜色转换模型,并分析 比较了转换模型所得到的X 、Y 、Z 计算值与实际测量值。 1 显示器屏幕校准和特性化 1.1 实验器材及实验条件 实验器材:型号为长城N700DF 的CRT 显示器;美国X 2Rite 公司Eye 2One Pro 分光光度仪。 软件:Pr ofileMaker Pr o 5.0,MATLAB 7.0。 实验环境:墙壁是标准灰的黑房间。显示器设置[4]:白点色温6500K,伽玛值2.2,亮度100%。 CNKI:21-1560/TS_20101028.1935.000 2010-10-28 19:35https://www.wendangku.net/doc/cc7517400.html,/kcms/detail/21-1560_ts.20101028.1935.000.html

颜色模式转换基本常识

颜色模式转换基本常识 为了在不同的场合正确输出图像,有时需要把图像从一种模式转换为另一种模式。Photoshop通过执行“Image/Mode(图像/模式)”子菜单中的命令,来转换需要的颜色模式。这种颜色模式的转换有时会永久性地改变图像中的颜色值。例如,将RGB模式图像转换为CMYK模式图像时,CMYK色域之外的RGB颜色值被调整到CMYK色域之外,从而缩小了颜色范围。 由于有些颜色在转换后会损失部分颜色信息,因此在转换前最好为其保存一个备份文件,以便在必要时恢复图像。 1、将彩色图像转换为灰度模式 将彩色图像转换为灰度模式时,Photoshop会扔掉原图中所有的颜色信息,而只保留像素的灰度级。 灰度模式可作为位图模式和彩色模式间相互转换的中介模式。 2、将RGB模式的图像转换成CMYK模式 如果将RGB模式的图像转换成CMYK模式,图像中的颜色就会产生分色,颜色的色域就会受到限制。因此,如果图像是RGB模式的,最好选在RGB模式下编辑,然后再转换成CMYK图像。 3、将其他模式的图像转换为位图模式 将图像转换为位图模式会使图像颜色减少到两种,这样就大大简化了图像中的颜色信息,并减小了文件大小。要将图像转换为位图模式,必须首先将其转换为灰度模式。这会去掉像素的色相和饱和度信息,而只保留亮度值。但是,由于只有很少的编辑选项能用于位图模式图像,所以最好是在灰度模式中编辑图像,然后再转换它。 在灰度模式中编辑的位图模式图像转换回位图模式后,看起来可能不一样。例如,在位图模式中为黑色的像素,在灰度模式中经过编辑后可能会灰色。如果像素足够亮,当转换回位图模式时,它将成为白色。 4、将其他模式转换为索引模式 在将色彩图像转换为索引颜色时,会删除图像中的很多颜色,而仅保留其中的256种颜色,即许多多媒体动画应用程序和网页所支持的标准颜色数。只有灰度模式和RGB模式的图像可以转换为索引颜色模式。由于灰度模式本身就是由256级灰度构成,因此转换为索引

图像的色彩模式

图像的色彩模式:即表达图像色彩信息的方式。 在photoshop 中常用的色彩模式有一下几种: (1)位图(黑白)模式:图像由纯黑与纯白两种颜色构成,没有浓淡的变化,通常称为黑白图像。 只有灰度模式与多通道模式的图像才能直接转换为位图模式。 A分辨率:设定图像的分辨率。输入选项显示的是原图像的分辨率,输出文本框中输入的是转换后图像的分辨率。如果输入的值大于原图像的分辨率,图像就会缩小,反之则会变大。 B 方法:用来设定转换为位图模式时,处理中间灰度色的方式。常见的方法有以下几种: ①50﹪阈值:以50﹪为界限,将图像中大于50﹪的所有像素变成黑色,小于50﹪的所有像素变成白色。 ②图案仿色:使用一些随机的黑白点来抖动图像。 ③扩散仿色:转化图像时产生颗粒状的效果。 ④半调网屏:产生一种半色调的网版印刷的效果。 ⑤自定义图案:可以选择图案列表中的图案作为转换后的纹理效果。 (2)灰度模式:图像由256种灰度色阶构成,因为有256种灰色调,所以能够变现出浓淡变化。位图模式和?色彩模式的图像都可以转换为灰度模式。 (3)RGB模式:图像中所有的色彩是由红色(Red)、绿色(Green)、蓝色(Blue)三种基本颜色(通常称为三原色)依据不同的强度比例混合而成。当三种基本色以最大 强度(256)混合时,就形成白色;反之,当三种基本色以最小强度(0)混合时, 就形成黑色;当三中颜色的数值相等时,就产生灰色。 提示:在Photoshop中处理图像时,一般都设置为RGB模式。只有在这种模式下所有的模式命令才能使用。通常又被称为屏幕模式。 (4)CMYK模式:图像中所有的色彩是由不同的青色(cyan)、洋红(Magneta)、黄(Y ellow)、黑(Black)四种颜色依据不同强度比例印刷与纸张上混合而成。因此,CMYK模式 主要用于印刷,也成为印刷色,是目前常用的四色印刷色。在实际应用中,青色、 洋红色、和黄色这三种颜色很难形成真正的黑色,因此又引入了黑色,用于强化暗 部的色彩。需要打印的图像通常在输出时才转换为CMYK颜色模式。 (5)索引色模式:索引色模式是网上和动画中常用的图像模式,当色彩图像转换为索引色模式的图像后变成近256种颜色。索引色图像包括一个颜色表,如果图像中的颜 色不能用256色表现,那么Photoshop会从可使用的颜色中选出最相近的颜色来模拟这些颜色,这样可以减小图像文件的大小。颜色表用来存放图像中的颜色并为这 些颜色建立颜色索引。 (6)在这种模式下只能建立有限的编辑,应临时转换为RGB模式。 2. 图像色彩模式的转换:为了在不同的场合正确输出图像,有时需要把图像从一种模式转换为另一种模式。通过【图像/模式】中的子菜单中的命令可以实现颜色模式的转换。要注意的是:要将图像转换为黑白(位图)模式时,必须先将其转换为灰度模式;同理,要将黑白图像转变换为彩色图像,也必须先将其转换为灰度模式,然后再转换为色彩模式。

相关文档
相关文档 最新文档