文档库 最新最全的文档下载
当前位置:文档库 › 《声速的测定》实验预习及报告

《声速的测定》实验预习及报告

《声速的测定》实验预习及报告
《声速的测定》实验预习及报告

物理实验报告

姓名:专业:班级:学号:

实验日期:实验教室:指导教师:

一、【实验名称】超声波声速的测量

二、【实验目的】1、了解声速的测量原理

2、学习示波器的原理与使用

3、学习用逐差法处理数据

三、【仪器用具】1、SV-DH-3型声速测定仪段(资产编号)

2、双踪示波器(资产编号)

3、SVX-3型声速测定信号源(资产编号)

四、【仪器用具】

1.超声波与压电陶瓷换能器

频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。

图1 纵向换能器的结构简图

压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的

结构简图。

2.共振干涉法(驻波法)测量声速

假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。

在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ

2=A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加,

合成波束ξ

3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ)

=A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ)

由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在

相位上,具有随(2πx /λ)呈周期变化的特性。

图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。

图2 换能器间距与合成幅度

实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2

。发射换能器与接收换能器之间的距离

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

范德堡测试方法与变温霍尔效应

范德堡测试方法与变温霍尔效应 摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。 关键词:霍尔效应、范德堡测试法、霍尔系数、电导率 引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。 一、原理部分: (一)、半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。 1、本征激发 在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。 这种可以自由移动的空位被称为空穴。半导体不 仅靠自由电子导电,而且也靠这种空穴导电。半 导体有两种载流子,即电子和空穴。 从能带来看,构成共价键的电子也就是填充 价带的电子,电子摆脱共价键而形成一对电子和 空穴的过程,就是一个电子从价带到导带的量子 跃迁过程,如图1 所示。 纯净的半导体中费米能级位置和载流子浓 度只是由材料本身的本征性质决定的,这种半导 体称本征半导体。本征半导体中,在电子—空穴 对的产生过程中,每产生一个电子,同时也产生 一个空穴,所以,电子和空穴浓度保持相等, n表示,称为本征载流图1 本征激发示意图 这个共同的浓度用 i 子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a)所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b)所示。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

变温霍尔效应

学号:PB07203143 姓名:王一飞院(系):物理系 变温霍尔效应 【实验目的】 1、通过该实验,学习利用变温霍尔效应测量半导体薄膜的多种电学性质的方法。 2、掌握霍尔系数、霍尔迁移率和电导率的测量方法,了解它们随温度的变化规律。 3、测定样品的导电类型和载流子浓度,并计算出禁带宽度和杂质电离能等。 【实验原理】 1、半导体的能带结构和载流子浓度 本征半导体中本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流 子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 若所掺杂质的价态大于基质的价态,即施主杂质,称为 n 型半导体;若所掺杂质的价态小 于基质的价态,即受主杂质,称为 p 型半导体。 当导带中的电子和价带中的空穴相遇后,电子重新填充原子中的空位,导致相应的电子 和空穴消失,这过程叫做电子和空穴的复合。在这一过程中,电子从高能态的导带回到低能态的价带,多余的能量以热辐射的形式(无辐射复合)或光辐射的形式(辐射复合)放出。 当温度在几十K左右时,只有很少受主电离,空穴浓度P远小于受主浓度,曲线基本上为 直线,由斜率可得到受主电离能Ei。 当温度升高到杂质全电离饱和区,载流子浓度与温度无关 当在本征激发的高温区,由曲线的斜率可求出禁带宽度Eg 2、电导率和迁移率 半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为: [p型半导体] 设p s 为杂质全部电离产生的空穴饱和浓度,p = p s + n 则 3、霍尔效应及其测量 如右图,霍尔系数 在考虑霍尔效用时,由于载流子沿y方向发生偏转,

造成在x方向定向运动的速度出现统计分布。 考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH 稳态时,y 方向的电场力与罗伦兹力相抵消,故有 对p型半导体,当温度处在较低的杂质电离区时 在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。 温度进一步升高,更多的电子从价带激发到导带,使,故有。随后R H 将会 达到其极值R HM 。 3、范得堡法测量电阻率和霍耳效应 原理图如右图,在样品侧边制作四个电极,依次在一对相邻 的电极用来通入电流,另一对电极之间测量电位差。 电阻率 由于两霍尔电极位置不对称引起的,叫失排电压。 设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的, 即电压改变量就是霍尔电压V H 。 4、霍尔效应测量中的副效应及其消除方法 在测量霍耳系数时,由于存在一系列电磁和热磁副效应,使得数字电压表测出的电位差V AB 并不 等于样品的霍耳电位差V H ,而是包括了由各种副效应引起的附加电位差与V H 之和。这些副效应主要 有以下几种。 ①由于电极A与B不能真正制作在同一等位面上,所以即使在没有加磁场B的情况下,A、B间也有一个电位差,其正负与电流I的方向有关。 ②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压V E 。这就叫艾廷豪 森效应。不难看出,VE的极性总是与V H 一致,与B和I方向有关。 ③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。 ④上述热扩散速度也有个分布,从艾廷豪森效应的分析不难看出,热扩散的载流子在横向磁场作 用下向y方向积累的结果使霍尔电极间有温差电压VR。这叫里纪—勒杜克效应。V R 的极性只随磁场方向改变。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??< 3.3获得真空的意义 获得真空不仅在科研、教学、工业以及人类生活中应用起到很大的作用,而且给人类的 整个社会文明的进步、财富创造以及科技创新都具有重大的意义。 3.4真空技术的应用 随着真空获得技术的发展,真空科学的应用领域很广,目前已经渗透到车辆、土木工程 呢、机械、包装、环境保护、医药及医疗机械、石油、化工、食品、光学、电气、电子、原

低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温 下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲 线,了解霍尔系数和电导率与温度的关系。 4.了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得 n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T) 式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

变温霍尔效应.

变温霍尔效应 如果在电流的垂直方向加以磁场,则在同电流和磁场都垂直的方向上,将建立起一个电场,这种现象称为霍耳效应。霍尔效应是1879年霍耳在研究导体在磁场中受力的性质时发现的,对分析和研究半导体材料的电输运性质具有十分重要的意义。目前,霍耳效应不仅用来确定半导体材料的性质,利用霍耳效应制备的霍耳器件在科学研究、工业生产上都有着广泛的应用。 通过变温霍尔效应测量可以确定材料的导电类型、载流子浓度与温度的关系、霍耳迁移率和电导迁移率与温度的关系、材料的禁带宽度、施主或受主杂质以及复合中心的电离能等。 一 实验目的 1.了解和学习低温实验中的低温温度控制和温度测量的基本原理与方法; 2.掌握利用霍尔效应测量材料的电输运性质的原理和实验方法; 3.验证P型导电到N 型导电的转变。 二 实验原理 1. 半导体的能带结构和载流子浓度 没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。在这一周期势场的作用下,电子的能级展宽成准连续的能带。束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。当绝对温度为0 k时,电子全被束缚在原子上,导带能级上没有电子,而价带中的能级全被电子填满(所以价带也称为满带);随着温度升高,部分电子由于热运动脱离原子束缚,成为具有导带能量的电子,它在半导体中可以自由运动,产生导电性能,这就是电子导电;而电子脱离原子束缚后,在原来所在的原子上留下一个带正电荷的电子的缺位,通常称为空穴,它所占据的能级就是原来电子在价带中所占据的能级。因为邻近原子上的电子随时可以来填补这个缺位,使这个缺位转移到相邻原子上去,形成空穴的自由运动,产生空穴导电。半导体的导电性质就是由导带中带负电荷的电子和价带中带正电荷的空穴的运动所形成的。这两种粒子统称载流子。本征半导体中的载流子称为本征载流子,它主要是由于从外界吸收热量后,将电子从价带激发到导带,其结果是导带中增加了一个电子而在价带出现了一个空穴,这一过程成为本征激发。所以,本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 为了改变半导体的性质,常常进行人工掺杂。不同的掺杂将会改变半导体中电子或空穴的浓度。若所掺杂质的价态大于基质的价态,在和基质原子键合时就会多余出电子,这种电子很容易在外界能量(热、电、光能等)的作用下脱离原子的束缚成为自由运动的电子(导带电子),所以它的能级处在禁带中靠近导带底的位置(施主能级),这种杂质称为施主杂质。施主杂质中的电子进入导带的过程称为电离过程,离化后的施主杂质形成正电中心,它所放出的电子进入导带,使导带中的电子浓度远大于价带中空穴的浓度,因此,掺施主杂质的半导体呈现电子导电的性质,称为n型半导体。施主电离过程是施主能级上的电子跃迁到导带并在导带中形成电子的过程,跃迁所需的能量就是施主电离能;反之,若所掺杂质的价态小于基质的价态,这种杂质是受主杂质,它的能级处在禁带中靠近价带顶的位置(受主能级),受主杂质很容易被离化,离化时从价带中吸引电子,变为负电中心,使价带中出现空穴,呈空穴导电性质,这样的半导体为p型半导体。受主电离时所需的能量就是受主电离能。

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??< 2.1.2真空技术的发展及应用 十九世纪初,利用低真空产生压力差的原理发明了真空提升、真空输送、吸尘、过滤、成形等技术。1879年爱迪生发明白炽灯,抽出灯泡中化学成份活泼的气体(氧、水蒸汽等),防止灯丝在高温下氧化.同年,克鲁克斯发明阴极射线管,第一次利用真空下气体分子平均自由程增大的物理特性.后来,在电子管、电视管、加速器、电子显微镜、镀膜、蒸馏等方面也都应用了这一特性.1893年发明杜瓦瓶,这是真空绝热的首次应用. 真空技术在二十世纪得到迅速发展,并有广泛的应用。二十世纪初,在真空获得和测量的设备方面取得进展,如旋转式机械泵,皮氏真空计,扩散泵,热阴极电离真空计的发明,为工业上应用高真空技术创造了条件.接着,油扩散泵,冷阴极电离真空计的出现使高真空

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

霍尔效应实验报告

霍尔效应实验报告 以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。 霍尔效应实验报告1 实验内容: 1. 保持不变,使Im从0.50到4.50变化测量VH. 可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即 +B,+I VH=V1 —B,+ VH=-V2 —B,—I VH=V3

+B,-I VH=-V4 VH = (V1+V2+V3+V4)/4 0.50 1.60 1.00 3.20 1.50 4.79 2.00 6.90 2.50 7.98 3.00 9.55 3.50

11.17 4.00 12.73 4.50 14.34 画出线形拟合直线图: Parameter Value Error ------------------------------------------------------------ A 0.11556 0.13364 B 3.16533 0.0475 ------------------------------------------------------------ R SD N P ------------------------------------------------------------ 0.99921 0.18395 9 0.0001 2.保持IS=4.5mA ,测量Im—Vh关系 VH = (V1+V2+V3+V4)/4

1.60 0.100 3.20 0.150 4.79 0.200 6.90 0.250 7.98 0.300 9.55 0.350 11.06 0.400 1 2.69

相关文档
相关文档 最新文档