文档库 最新最全的文档下载
当前位置:文档库 › 抽象代数习题(附答案)

抽象代数习题(附答案)

抽象代数习题(附答案)
抽象代数习题(附答案)

《抽象代数基础》习题解答

《抽象代数基础》习 题 答 解 于延栋编 盐城师范学院数学科学学院二零零九年五月

第一章 群 论 §1 代数运算 1.设},,,{c b a e A =,A 上的乘法”“?的乘法表如下: 证明: ”“?适合结合律. 证明 设z y x ,,为A 中任意三个元素.为了证明”“?适合结合律,只需证明 )()(z y x z y x ??=??. 下面分两种情形来阐明上式成立. I.z y x ,,中至少有一个等于e . 当e x =时,)()(z y x z y z y x ??=?=??; 当e y =时,)()(z y x z x z y x ??=?=??; 当e z =时,)()(z y x y x z y x ??=?=??. II .z y x ,,都不等于e . (I)z y x ==.这时,)()(z y x e x x z z e z y x ??=?===?=??. (II)z y x ,,两两不等.这时,)()(z y x x x e z z z y x ??=?==?=??. (III)z y x ,,中有且仅有两个相等. 当y x =时,x 和z 是},,{c b a 中的两个不同元素,令u 表示},,{c b a 中其余的那个元素.于是,z z e z y x =?=??)(,z u x z y x =?=??)(,从而,)()(z y x z y x ??=??.同理可知,当z y =或x z =时,都有)()(z y x z y x ??=??. 2.设”“?是集合A 上一个适合结合律的代数运算.对于A 中元素,归纳定义∏=n i i a 1为: 111a a i i =∏=,111 1+=+=????? ??=∏∏r r i i r i i a a a . 证明: ∏∏∏+==+==???? ??????? ??m n k k m j j n n i i a a a 1 11.

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 个 n n a aa a ...=, 个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

最新抽象代数练习题

抽象代数练习题 一.设A 是一个非空集合,S 是由A 的所有子集构成的集合.则集合的并 ”“ 是S 上的一个代数运算.证明:),( S 是一个半群.(10分) 二.令?? ????????∈???? ??=Z ,,,d c b a d c b a S .证明S 关于矩阵的乘法构成一个半群.(10分)- 三.设G 是一个群,证明:111)(---=a b ab ,G b a ∈?,.(10分) 四.设G 是一个群,证明:G 是交换群的充要条件是 222)(b a ab =,G b a ∈?,.(10分) 五.求证:循环群的商群也是循环群. (10分) 六.设G 是群,H 和K 是G 的子群, (1)证明:HK 是G 的子群KH HK =?. (2)假设H 是G 的正规子群,证明:HK 是G 的子群. (3)假设H 和K 都是G 的正规子群,证明:HK 是G 的正规子群.(20分) 七.设H 是群G 的子群,1-aHa 是H 的共轭子群,证明:1-aHa 与H 同构.(10分) 八.设f 是群G 到群'G 的满同态,'H 是'G 的正规子群,证明:'/')'(/1H G H f G ?-.(20分)

参考答案: 一.证明 众所周知,对于任意的S Z Y X ∈,,,总有 )()(Z Y X Z Y X =. 这就是说,S 上的代数运算”“ 适合结合律,所以),( S 是一个半群. 二.证明 众所周知,对于任意的S C B A ∈,,,总有 S AB ∈,)()(BC A C AB =. 这就是说,矩阵的乘法是S 上的一个代数运算,并且适合结合律,所以S 关于矩阵的乘法构成一个半群. 三.证明 对于任意的G b a ∈,,我们有 e aa aea a bb a a b ab ====------111111)())((, e b b eb b b a a b ab a b ====------111111)())((. 所以 111)(---=a b ab ,G b a ∈?,. 四.证明 必要性是显然的.现在假设G 满足该条件.于是,对于任意的G b a ∈,,我们有222)(b a ab =,即aabb abab =.运用消去律(第5题)立即可得ba ab =.所以G 是交换群. 五.证明 设??=a G 是循环群,H 是G 的子群.于是,我们有 ??=∈=∈=aH n aH n H a H G n n }Z |){(}Z |{/. 这就表明,H G /是循环群. 六.证明 (1)假设HK 是G 的子群.于是,对于任意的G a ∈,我们有 HK a ∈HK a ∈?-1 ?存在H h ∈和K k ∈,使得hk a =-1 ?存在H h ∈和K k ∈,11--=h k a KH a ∈?. 所以KH HK =. 假设KH HK =.为了证明HK 是G 的子群,任意给定HK b a ∈,.于是,存在H h h ∈21,和K k k ∈21,,使得11k h a =,22k h b =.因此 1 21211122111))(())((----==h k k h k h k h ab . 由于KH HK k k h =∈-)(1211,因此存在H h ∈3和K k ∈3,使得331211)(h k k k h =-,从而, HK KH h h k h h k h k k h ab =∈===-=---)()())((1 23312331212111.

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

自考《数学教育》专业-近世代数习题指导

自考《数学教育》专业-近世代数习题指导

自考《近世代数》练习1及答案 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。 ( ) 2、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且( ) 3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 4、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ和D 都是非空集合,而f 是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同; ②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),

抽象代数复习题及答案.docx

《抽象代数》试题及答案 本科 一、单项选择题 ( 在每小题的四个备选答案中,选出一个正确答案, 并将正确答案的序号填在题干的括号内。每小题 3 分) 1. 设 Q 是有理数集,规定 f(x)= x +2; g(x)= x 2 +1, 则( fg ) (x) 等于( B ) A. x 2 2 x 1 B. x 2 3 C. x 2 4x 5 D. x 2 x 3 2. 设 f 是 A 到 B 的单射, g 是 B 到 C 的单射,则 gf 是 A 到 C 的 ( A ) A. 单射 B. 满射 C. 双射 D. 可逆映射 3. 设 S = {( 1),(1 2),( 1 3),( 2 3),( 1 2 3),( 1 3 2)} ,则 S 中与元素 ( 1 32)不能交换的元的个数是 ( C )。 3 3 A. 1 B. 2 C. 3 D. 4 4. 在整数环 Z 中,可逆元的个数是 ( B ) 。 A. 1 个 B. 2 个 C. 4 个 D. 无限个 5. 剩余类环 Z 的子环有 ( B ) 。 10 A. 3 个 B. 4 个 C. 5 个 D. 6 个 6. 设 G 是有限群, a G, 且 a 的阶 |a|=12, 则 G 中元素 a 8 的阶为 ( B ) A . 2 B. 3 C. 6 D. 9 7.设 G 是有限群,对任意 a,b G ,以下结论正确的是 ( A ) A. (ab) 1 b 1a 1 B. b 的阶不一定整除 G 的阶 C. G 的单位元不唯一 D. G 中消去律不成立 8. 设 G 是循环群,则以下结论不正确 的是 ( A ) ... A. G C. G 的商群不是循环群 是交换群 D. G B. G 的任何子群都是正规子群 的任何子群都是循环群 9. 设集合 A={a,b,c}, 以下 A A 的子集为等价关系的是 ( C ) A. R 1 = {(a,a),(a,b),(a,c),(b,b)} B. R 2 = {(a,a),(a,b),(b,b),(c,b),(c,c)} C. R 3 = {(a,a),(b,b),(c,c),(b,c),(c,b)} D. R 4 = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)} 10. 设 f 是 A 到 B 的满射, g 是 B 到 C 的满射,则 gf 是 A 到 C 的 ( B ) A. 单射 B. 满射 C. 双射 D. 可逆映射 11. 设 S 3 = {(1),( 1 2),( 1 3),( 2 3),( 1 2 3),( 1 3 2)} ,则 S 3 中与元素( 1 2)能交换的元的个数是 ( B )。 A. 1 B. 2 C. 3 D. 4 12. 在剩余类环 Z 8 中,其可逆元的个数是 ( D ) 。 A. 1 个 B. 2 个 C. 3 个 D. 4 个 13. 设( , +,·)是环 ,则下面结论不正确的有 ( C ) 。 R A. R 的零元惟一 B. 若 x a 0 ,则 x a C. 对 a R , a 的负元不惟一 D. 若 a b a c ,则 b c 14. 设 G 是群, a G, 且 a 的阶 |a|=12, 则 G 中元素 a 32 的阶为 ( B )

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

Assignment-I 北京师范大学研究生抽象代数习题一

Assignment I(Abstract Algebra,Sep.21,2012) 1.1.Let G be a group and H be a nonempty?nite subset of G.Prove that H is a subgroup if and only if H is closed under the product of G. 1.2.Prove that each cyclic group is either isomorphic to Z or isomorphic to Z n for some n≥1. 1.3.Let G be the subgroup of GL2(C)generated by A= 01?10 and B= 0i i0 . Prove that G~=Q8,where Q8denotes the quaternion group. 1.4.If G/C(G)is cyclic,then G is abelian,i.e.,C(G)=G. 1.5.Let G be an abelian group of order pq with(p,q)=1.Assume there exist a,b∈G such that|a|=p and|b|=q.Show that G is cyclic. 1.6.A group that has only a?nite number of subgroups must be?nite. 1.7.(Euler–Fermat)Let a be an integer and p a prime such that p?a.Then a p?1≡1(mod p).It follows that a p≡a(mod p)for any integer a. 1.8.If a group contains an element a having exactly two conjugates,then G is not simple. 1.9.Let C×denote the multiplicative group of nonzero complex numbers.Prove that for each n≥1, C×/C n~=C×, where C n={z∈C|z n=1}. 1

近世代数练习题题库

近世代数练习题题库 LELE was finally revised on the morning of December 16, 2020

§1 第一章 基础知识 1 判断题: 1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。( ) 1.2 A ×B = B ×A ( ) 1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。( ) 1.4 如果?是A 到A 的一一映射,则?[?(a)]=a 。( ) 1.5 集合A 到B 的可逆映射一定是A 到B 的双射。( ) 1.6 设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。( ) 1.8 整数的整除关系是Z 的一个等价关系。( ) 2 填空题: 2.1 若A={0,1} , 则A ?A= __________________________________。 2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。 2.3 设={1,2,3} B={a,b},则A ?B=_______。 2.4 设A={1,2}, 则A ?A=_____________________。 2.5 设集合{}1,0,1-=A ;{ }2,1=B ,则有=?A B 。 2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则 ()[]=-a f f 1 。 2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。

近世代数10套试题

《近世代数》试卷1(时间120分钟) 二、判断题(对打“√”,错打“×”,每小题2分,共20分) 1. ()循环群的子群是循环子群。 2. ()满足左、右消去律的有单位元的半群是群。 3. ()存在一个4阶的非交换群。 4. ()素数阶的有限群G的任一子群都是G的不变子群。 5. ()无零因子环的特征不可能是2001。 6. ()无零因子环的同态象无零因子。 7. ()模97的剩余类环Z97是域。 8. ()在一个环中,若左消去律成立,则消去律成立。 9. ()域是唯一分解整环。 10. ()整除关系是整环R的元素间的一个等价关系。 一、填空题(共20分,第1、4、6小题各4分,其余每空2分) 1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中 有个单射,有个满射,有个双射。 2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。 3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。 4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。 5. 环Z6的全部零因子是。 6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本质不同的分 三、解答题(共30分) 1.设S3是3次对称群,a=(123)∈S3. (1)写出H=< a>的所有元素. (2)计算H的所有左陪集和所有右陪集. (3)判断H是否是S3的不变子群,并说明理由.

2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。 3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。 四、证明题(共30分) 1.设G是一个阶为偶数的有限群,证明 (1)G中阶大于2的元素的个数一定为偶数; (2)G中阶等于2的元素的个数一定为奇数。 2. 设φ是环(R,+,·,0,1)到环(R,+,·,0/,1/)的同态满射。N=Kerφ={x|x∈R且φ(x)=0/}, 证明:φ是同构映射当且仅当N={0}。 3. 证明:非零整环R只有有限个理想当且仅当R是域。

近世代数习题解答张禾瑞三章

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

抽象代数复习题及答案

《抽象代数》试题及答案 本科 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案, 并将正确答案的序号填在题干的括号内。每小题3分) 1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2 x +1,则(fg )(x)等于( B ) A. 2 21x x ++ B. 2 3x + C. 2 45x x ++ D. 2 3x x ++ 2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的 ( A ) A. 单射 B. 满射 C. 双射 D. 可逆映射 3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。 A. 1 B. 2 C. 3 D. 4 4. 在整数环Z 中,可逆元的个数是( B )。 \ A. 1个 B. 2个 C. 4个 D. 无限个 5. 剩余类环Z 10的子环有( B )。 A. 3个 B. 4个 C. 5个 D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8 a 的阶为( B ) A . 2 B. 3 C. 6 D. 9 7.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A ) A. 111 ) (---=a b ab B. b 的阶不一定整除G 的阶 C. G 的单位元不唯一 D. G 中消去律不成立 8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何子群都是正规子群 [ C. G 是交换群 D. G 的任何子群都是循环群 9. 设集合 A={a,b,c}, 以下A ?A 的子集为等价关系的是( C ) A. 1R = {(a,a),(a,b),(a,c),(b,b)} B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)} C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)} D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)} 10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的 ( B ) A. 单射 B. 满射 C. 双射 D. 可逆映射 11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。 A. 1 B. 2 C. 3 D. 4 … 12. 在剩余类环8Z 中,其可逆元的个数是( D )。 A. 1个 B. 2个 C. 3个 D. 4个 13. 设(R ,+,·)是环 ,则下面结论不正确的有( C )。 A. R 的零元惟一 B. 若0x a +=,则x a =-

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数习题解析

近世代数复习思考题 一、基本概念与基本常识的记忆 (一)填空题 1.剩余类加群Z 12有_________个生成元. 2、设群G 的元a 的阶是n ,则a k 的阶是________. 3. 6阶循环群有_________个子群. 4、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为———。 5. 模8的剩余类环Z 8的子环有_________个. 6.整数环Z 的理想有_________个. 7、n 次对称群Sn 的阶是——————。 8、9-置换??? ? ??728169345987654321分解为互不相交的循环之积是————。 9.剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元是____________. 10. 24Z 中的所有可逆元是:__________________________. 11、凯莱定理的内容是:任一个子群都同一个________同构。 12. 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n ,则G 同构于____________。 13. 在整数环Z 中,23+=__________________; 14、n 次对称群S n 的阶是_____. 15. 设12,A A 为群G 的子群,则21A A 是群G 的子群的充分必要条件为___________。 16、除环的理想共有____________个。 17. 剩余类环Z 5的零因子个数等于__________. 18、在整数环Z 中,由{2,3}生成的理想是_________. 19. 剩余类环Z 7的可逆元有__________个. 20、设Z 11是整数模11的剩余类环,则Z 11的特征是_________. 21. 整环I={所有复数a+bi(a,b 是整数)},则I 的单位是__________. 22. 剩余类环Z n 是域?n 是_________. 23、设Z 7 ={0,1,2,3,4,5,6}是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________. 24. 设G 为群,a G ∈,若12a =,则8 a =_______________。 25、设群G={e ,a 1,a 2,…,a n-1},运算为乘法,e 为G 的单位元,则a 1n =___. 26. 设A={a,b,c},则A 到A 的一一映射共有__________个. 27、整数环Z 的商域是________.

相关文档