文档库 最新最全的文档下载
当前位置:文档库 › 涂层WC-Ni硬质合金刀具的显微结构及性能

涂层WC-Ni硬质合金刀具的显微结构及性能

涂层WC-Ni硬质合金刀具的显微结构及性能
涂层WC-Ni硬质合金刀具的显微结构及性能

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金刀具涂层

硬质合金刀具的涂层技术 [ 摘要]切削刀具表面涂层技术是近几十年应市场需求发展起来 的材料表面改性技术。采用涂层技术可有效提高切削刀具使用寿命, 使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。主 要介绍涂层硬质合金刀具涂层材料的特点、要求,涂层制备技术,分 析化学气相沉积法(CVD)、物理气相沉积法(PVD),单、复合涂层 制备方法及优缺点。 [关键字] 硬质合金涂层刀具;化学气相沉积法;物理气相沉积法; 现状及发展 引言 现代化的金属切削加工要求刀具具有高切削速度、高进给速度、 高可靠性、长寿命、高精度和良好的切削控制性。因此, 高水平、稳 定的刀具涂层技术越来越受到机械加工企业的青睐。。涂层技术是提 高切削效率, 降低加工成本的有效途径。刀具基体与硬质薄膜表层相 结合, 由于基体保持了良好的韧性和较高的强度, 硬质薄膜表层又 具有高耐磨性和低摩擦因数, 从而使刀具的性能显著提高, 而且, 随着涂层技术设备的日趋集成化、模块化和智能化, 涂层费用已比初 期下降1/2~ 2/3, 涂层刀具在刀具总量中所占的比例将会越来越大。 表面涂层硬质合金在基体硬质合金上, 用(CVD)化学气相沉积, 或(PVD)物理气相沉积等方法, 涂覆耐磨的TiC、TiN、Al2O3等薄 层, 形成表面涂层硬质合金。涂层硬质合金刀片均为可转位形式, 刚

机夹方法装夹在刀杆或刀体上使用。具有以下优点: 1) 表面涂层材 料具有很高的硬度和耐磨性, 故与未涂层刀片相比, 涂层硬质合金 可采用较高的切削速度, 或能在同样的切削速度下大幅度地提高刀 具耐用度。2)涂层材料与被加工材料之间的摩擦系数较小, 故切削力有一定减小, 比未涂层刀片约降低 5%左右。润滑薄膜具有良好的固 相润滑性能, 可有效地改善加工质量, 也适合于干式切削加工。3) 用涂层刀片加工, 已加工表面质量较好。 4) 涂层技术作为刀具制造的最终工序, 对刀具精度几乎没有影响, 并可进行重复涂层工艺。5)由于综合性能好, 涂层刀片有较好的通用性。一种牌号的刀片经常有较宽的适用范围。涂层切削刀具所带来的益处: 可大幅度提高切削刀具寿命; 有效地提高切削加工效率; 明显提高被加工工件的表面质量; 有效地减少刀具材料的消耗,降低加工成本; 减少冷却液的使用, 降低成本, 利于环境保护。 1 涂层材料的发展现状与趋势 1.1 涂层材料的特点 涂层的特点是涂层薄膜与刀具基体相结合, 提高刀具的耐磨性 而不降低基体的韧性, 从而降低刀具与工件的摩擦因数, 延长刀具 的使用寿命。此外, 由于涂层自身的热传导系数比刀具基体和加工材料低得多, 可以有效减少摩擦所产生的热量, 形成热屏蔽, 改变热 量的散失途经, 从而降低刀具与工件、刀具与切屑之间的热冲击和力冲击, 有效地改善了刀具的使用性能。 刀具涂层所起的作用表现为: 1) 在刀具与被切削材料之间形成

刀具在加工过程中的磨损以及应对策略【干货】

刀具在加工过程中的磨损以及应对策略 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 刀具磨损是切削加工中基本的问题之一。了解刀具磨损的情况和原因,可以帮助刀具制造商以及用户延长数控刀具寿命。现在的数控刀具都会采用涂层技术(包括采用新的合金元素),这进一步有效的延长了刀具的使用寿命,同时可以显著提高生产率。 一、刀具磨损机理介绍 在金属切削加工中,产生的热量和摩擦是能量的表现形式。由很高的表面负荷以及切屑沿刀具前刀面高速滑移而产生的热量和摩擦,使刀具处于一种极具挑战性的加工环境中。 切削力的大小往往会上下波动,主要取决于不同的加工条件(如工件材料中存在硬质成份,或进行断续切削)。因此,为了在切削高温下保持其强度,要求刀具具有一些基本特性,包括极好的韧性、耐磨性和高硬度。

尽管刀具/工件界面处的切削温度是决定几乎所有刀具材料磨损率的关键要素,但要确定计算切削温度所需的参数值却十分困难。不过,切削试验的测量结果可以为一些经验性的方法奠定基础。 通常可以假定,在切削中产生的能量被转化为热量,而通常这些热量的80%都被切屑带走(这一比例的变化取决于几个要素——尤其是切削速度)。其余大约20%的热量则传入刀具之中。即使在切削硬度不太高的钢件时,刀具温度也可能会超过550℃,这是高速钢在硬度不降低的前提下能够承受的高温度。用聚晶立方氮化硼(PCBN)刀具切削淬硬钢时,刀具和切屑的温度通常将超过1000℃。 二、刀具磨损与刀具寿命 刀具磨损通常包括以下几种类型:①后刀面磨损;②刻划磨损;③月牙洼磨损;④切削刃磨钝;⑤切削刃崩刃;⑥切削刃裂纹;⑦灾难性失效。 对于刀具寿命,并没有被普遍接受的统一定义,通常取决于不同的工件和刀具材料,以及不同的切削工艺。定量分析刀具寿命终止点的一种方式是设定一个可以接受的后刀面磨损极限值(用VB或VBmax表示)。刀具寿命可用预期刀具寿命的泰勒公式表示,即VcTn=C,该公式的一种更常用的形式为VcTn×Dxfy=C式中,Vc为切削速度;T为刀具寿命;D为切削深度;f为进给率;x和y由实验确定;n和C是根据实验或已发表的技术资料确定的常数,它们表示刀具材料、工件和进给率的特性。

硬质合金车刀几何角度选择原则

●硬质合金车刀合理前角、后角的参考值 (1)前角的选择 增大前角,可减小切削变形,从而减小切削力、切削热,降低切削功率的消耗,还可以抑制积屑瘤和鳞刺的产生,提高加工质量。但增大前角,会使楔角减小、切削刃与刀头强度降低,容易造成崩刃,还会使刀头的散热面积和容热体积减小,使切削区局部温度上升,易造成刀具的磨损,刀具耐用度下降。 选择合理的前角时,在刀具强度允许的情况下,应尽可能取较大的值,具体选择原则如下: 1)加工塑性材料时,为减小切削变形,降低切削力和和切削温度,应选较大的前角,加工脆性材料时,为增加刃口强度,应取较小的前角。工件的强度低,硬度低,应选较大的前角,反之,应取较小的前角。用硬质合金刀具切削特硬材料或高强度钢时,应取负前角。 2)刀具材料的抗弯强度和冲击韧性较高时,应取较大的前角。如高速钢刀具的前角比硬质合金刀具的前角要大;陶瓷刀具的韧性差,其前角应更小。 3)粗加工、断续切削时,为提高切削刃的强度,应选用较小的前角。精加工时,为使刀具锋利,提高表面加工质量,应选用较大的前角。当机床的功率不足或工艺系统的刚度较低时,应取较大的前角。对于成形刀具和在数控机床、自动线上不宜频繁更换的刀具,为了保证工作的稳定性和刀具耐用度,应选较小的前角或零度前角。 (2)后角的选择 增大后角,可减小刀具后刀面与已加工表面间的摩擦,减小磨损,还可使切削刃钝圆半径减小,提高刃口锋利程度,改善表面加工质量。但后角过大,将削弱切削刃的强度,减小散热体积使散热条件恶化,降低刀具耐用度。实验证明,合理的后角主要取决于切削厚度。其选择原则如下: 1)工件的强度、硬度较高时,为增加切削刃的强度,应选较小后角。工件材料的塑性、韧性较大时,为减小刀具后刀面的摩擦,可取较大的后角。加工脆性材料时,切削力集中在刃口附近,应取较小的后角。 2)粗加工或断续切削时,为了强化切削刃,应选较小的后角。精加工或连续切削时,刀具的磨损主要发生在刀具后刀面,应选用较大的后角。 3)当工艺系统刚性较差,容易出现振动时,应适当减小后角。在一般条件下,为了提高刀具耐用度,可增大后角,但为了降低重磨费用,对重磨刀具可适当减小后角。 为了使制造、刃磨方便,一般副后角等于主后角。下表1给出了硬质合金车刀合理后角的参考值。 表1 硬质合金车刀合理前角、后角的参考值

刀具涂层有哪些-刀具涂层种类大全

刀具涂层有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方 法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼 等超硬材料刀片上)而制备的。涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩 散和化学反应,从而减少了基体的磨损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳 定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍 以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。 现状 涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中 使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、 成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。 类别 涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚 石或立方氮化硼)刀片上的涂层刀具。但以前两种涂层刀具使用最多。在陶瓷和超硬材料刀 片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以 上),可减少刀片的崩刃及破损,扩大应用范围。 新型涂层技术

Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。 涂层方法 生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD 相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。涂层材料 涂层材料须具有硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求。显然,单一的涂层材料很难满足上述各项要求。所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体

刀具的材料及其应具备的性能

刀具的材料及其应具备的性能 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材料,切削速度提高到每分钟几十米;30年代出现了硬质合金,切削速度提高到每分钟一百多米至几百米;当前陶瓷刀具和超硬材料刀具的出现,使切削速度提高到每分钟一千米以上;被加工材料的发展也大大地推动了刀具材料的发展。 一刀具材料应具备的性能 性能优良的刀具材料,是保证刀具高效工作的基本条件。刀具切削部分在强烈摩擦、高压、高温下工作,应具备如下的基本要求。 高硬度和高耐磨性 刀具材料的硬度必须高于被加工材料的硬度才能切下金属,这是刀具材料必备的基本要求,现有刀具材料硬度都在60HRC以上。刀具材料越硬,其耐磨性越好,但由于切削条件较复杂,材料的耐磨性还决定于它的化学成分和金相组织的稳定性。 足够的强度与冲击韧性 强度是指抵抗切削力的作用而不致于刀刃崩碎与刀杆折断所应具备的性能。一般用抗弯强度来表示。冲击韧性是指刀具材料在间断切削或有冲击的工作条件下保证不崩刃的能力,一般地,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。 高耐热性 耐热性又称红硬性,是衡量刀具材料性能的主要指标。它综合反映了刀具材料在高温下保持硬度、耐磨性、强度、抗氧化、抗粘结和抗扩散的能力。 良好的工艺性和经济性 为了便于制造,刀具材料应有良好的工艺性,如锻造、热处理及磨削加工性能。当然在制造和选用时应综合考虑经济性。当前超硬材料及涂层刀具材料费用都较贵,但其使用寿命很长,在成批大量生产中,分摊到每个零件中的费用反而有所降低。因此在选用时一定要综合考虑。 二常用刀具材料 常用刀具材料有工具钢、高速钢、硬质合金、陶瓷和超硬刀具材料,目前用得最多的为高速钢和硬质合金。 高速钢 高速钢是一种加人了较多的钨、铬、钒、相等合金元素的高合金工具钢,有良好的综合性能。其强度和韧性是现有刀具材料中最高的。高速钢的制造工艺简单,容易刃磨成锋利的切削刃;锻造、热处理变形小,目前在复杂的刀具,如麻花钻、丝锥、拉刀、齿轮刀具和成形刀具制造中,仍占有主要地位。高速钢可分为普通高速钢和高性能高速钢。 普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。 高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的1.5-3倍。 粉末冶金高速钢是70年代投入市场的一种高速钢,其强度与韧性分别提高30%-40%和80%-90%.耐用度可提高2-3倍。目前我国尚处于试验研究阶段,生产和使用尚少。

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

PVD涂层硬质合金刀具材料分类分组对照表

表4-4,五国十厂PVD 涂层硬质合金刀具材料分类分组对照表 注:上表摘自各公司样本和刊物,没有取得各公司的认可。 作 业 ISO 分类 分组代号 株洲 钻石 自贡 764 山特 维克 肯纳 公司 伊斯卡 公司 三菱 公司 东芝 公司 住友 公司 山高 公司 黛杰 公司 车 削 P P01 JC5003 P10 YBM252 KC5010 KC5510 1C507 VP10MF CP200 JC5003 P20 YBM252 GC1020 GC4125 GC1025 1C507 1C570 1C308 1C908 VP15TF VP20MF CP250 JC5015 P30 1C354 1C308 1C908 1C328 1C3028 VP15TF VP20MF GH330 AH120 CP500 JC5015 P40 GC1020 GC2145 1C328 1C3028 1C354 AH120 CP500 M M01 EH510Z M10 YBG202 GC1005 GC1025 KC5010 KC5510 1C507 1C907 VP10MF EH510Z CP200 JC5003 M20 YBG202 YBG302 YBM351 GC1020 GC1025 GC4125 1C507 1C907 1C1028 VP15TF VP20MF GH330 EH520Z CP200 CP500 JC5015 M30 YBG202 YBG302 YBM351 GC1020 GC2035 KC5025 KC5525 KC710 1C328 1C3028 1C1028 VP15TF VP20MF AH120 CP500 JC5015 M40 YBG302 YBM351 GC2145 1C328 1C3028 K K01 AH110 EH10Z JC5003 K10 KC5010 KC5510 1C507 1C907 GH110 AH110 EH10Z EH20Z CP200 JC5003 JC5015 K20 GC1020 1C308 1C908 VP15TF AH120 EH20Z CP200 CP250 JC5015 K30 GC4125 1C328 1C3028 1C1028 VP15TF CP500 S S01 VP05RT AH110 JC5003 S10 YBG102 GC1005 GC1025 KC5410 KC5010 KC5510 VP05RT VP10RT AH120 EH510Z CP200 CP250 CP500 JC5015 S20 YBG202 GC4125 KC5025 KC5525 VP10RT VP15TF EH20Z EH520Z CP250 CP500 S30 YBG202 VP15TF 铣 削 P P01 JC5003 P10 YBG202 KC792M KC715M ACZ310 JC5003 JC5030 P15 YBG202 YBG302 P20 YBG202 YBG302 GC1025 KC522M KC525M 1C950 1C908 VP15TF ACZ310 ASZ330 F25M JC5015 JC5030 JC5040 P25 YBG202 YBG302 P30 YBG302 YBG402 YBM351 KC725M 1C250 VP15TF VP30RT GH330 AH330 AH120 AH740 ACZ330 ACZ350 F25M F30M JC5015 JC5040 P40 YBG302 YBG402 YBM351 KC735M 1C328 1C928 VP30RT AH120 ACZ350 F40M T60M JC5040 P50 YBG402 YBM351

刀具涂层特点及应用

目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD和CVD的复合涂层等,从刀具制造商或涂层供应商那里可以很容易地获得这些涂层。本文将介绍一些刀具涂层共有的属性以及一些常用的PVD、CVD涂层选择方案。在确定选用何种涂层对于切削加工最为有益时,涂层的每一种特性都起着十分重要的作用。 1.涂层的特性 (1)硬度 涂层带来的高表面硬度是提高刀具寿命的最佳方式之一。一般而言,材料或表面的硬度越高,刀具的寿命越长。氮碳化钛(TiCN)涂层比氮化钛(TiN)涂层具有更高的硬度。由于增加了含碳量,使TiCN涂层的硬度提高了33%,其硬度变化范围约为Hv3000~4000(取决于制造商)。表面硬度高达Hv9000的CVD金刚石涂层在刀具上的应用已较为成熟,与PVD涂层刀具相比,CVD 金刚石涂层刀具的寿命提高了10~20倍。金刚石涂层的高硬度和切削速度可比未涂层刀具提高2~3倍的能力使其成为非铁族材料切削加工的不错选择。 (2)耐磨性 耐磨性是指涂层抵抗磨损的能力。虽然某些工件材料本身硬度可能并不太高,但在生产过程中添加的元素和采用的工艺可能会引起刀具切削刃崩裂或磨钝。 (3)表面润滑性 高摩擦系数会增加切削热,导致涂层寿命缩短甚至失效。而降低摩擦系数可以大大延长刀具寿命。细腻光滑或纹理规则的涂层表面有助于降低切削热,因为光滑的表面可使切屑迅速滑离前刀面而减少热量的产生。与未涂层刀具相比,表面润滑性更好的涂层刀具还能以更高的切削速度进行加工,从而进一步避免与工件材料发生高温熔焊。 (4)氧化温度 氧化温度是指涂层开始分解时的温度值。氧化温度值越高,对在高温条件下的切削加工越有利。虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证明它在高温加工中要比TiCN有效得多。TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVD TiAlN 涂层。 (5)抗粘结性 涂层的抗粘结性可防止或减轻刀具与被加工材料发生化学反应,避免工件材料沉积在刀具上。在加工非铁族金属(如铝、黄铜等)时,刀具上经常会产生积屑瘤(BUE),从而造成刀具崩刃或工件尺寸超差。一旦被加工材料开始粘附在刀具上,粘附就会不断扩大。例如,用成型丝锥加工铝质工件时,加工完每个孔后丝锥上粘附的铝都会增加,以至最后使得丝锥直径变得过大,造成工件尺寸超差报废。具有良好抗粘结性的涂层甚至在冷却液性能不良或浓度不足的加工场合也能起

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

硬质材料之硬质合金与硬质合金涂层

h 硬丽 硬质合金 謬第 硬质合金涂 第一! -

硬质材料包括硬质合金f并包括组成硬质合金的碳化磚粉、碳化起.碳化帆、碳化错、碳化钛这些硬质粉末”以及金刚石(C)f PcD (多晶钻),cBN (立方氮化硼)f和Si3N4 氮化硅。 PcD (多晶钻)是一种使用金刚石微粒和化学粘合剂混合之后,在高温高压环境下沉积为相干结构的人造材料。 cBN (立方氮化硼)是来自PcBN的多晶体。PcBN是一种由cBN微 粒和陶瓷或金属触媒粘合剂在高温高压下沉积而成的聚合体。 Si3 N4氮化硅是一种具有高抗碎性能的陶瓷材料。 硬质合金和碳-氮化合物一尽管高速钢对于如钻孔. 拉削这样的应用仍然非常重要■但大多数的金属切削都是通过

硬质合金工具完成的。对于那些非常难于加工的材料,硬质合金现在正逐渐由碳氮化合物、陶瓷制品和超硬材料所替代。渗碳的(或烧结的)硬质合金和碳氮化合物,被世界上大多数一致认为是硬金属, 是一系列通过粉末;台金技术制成的非常硬的.耐火. 耐磨的合金。微小的硬质合金或者氮化物颗粒在处于烧结題液体时被金属粘结剂”胶结"o个体硬金属的成分和属性与那些黄铜和高速钢是不同的。所有的硬金属都是金属陶瓷,是由陶瓷颗粒和金属粘结剂化合而成。 第一节硬质合金 ? “碳化磚”是非常硬的硬质合金颗粒,特别是碳化锯在 工能力。早期 富铁基质的出现 的硬质合金在用于工业用途时过于脆弱■但是不久发现将

碳化锯粉末与大约10%的金属,如铁、银或钻,允许压坯在大约1500°CT 烧结,在这个过程中生成的产品具有低孔隙率、非常高的硬度,而且相当大的强度。这些性质的组合使得材料理想的适合用来作为切削金属的加工刀具。 ?硬质合金的变化是由铜焊接硬质合金嵌入变成夹具嵌入,以及涂敷技术的迅速发展。 硬质合金刀具材料的制法: 一种是经过压锻和烧结至精确的形状和尺寸。 另外的一个进步是高温真空固态渗粘法(HIP)的应用。此方法实际上允许通过高压下的惰性气体将硬质合金中所有的残余孔隙度都挤出来>应用的温度大约是烧结温度。通过此方法刚度、抗裂强度和抗

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

涂层硬质合金刀具磨损机理的研究

收稿日期:2005年3月 涂层硬质合金刀具磨损机理的研究 贾庆莲 乔彦峰 中国科学院长春光学精密机械与物理研究所 摘 要:通过高速切削试验,观察了涂层刀片的磨损过程,描述了其磨损形态,分析了涂层刀片磨损率不同的原因,提出了涂层硬质合金刀具的磨损机理模型以及涂层硬质合金刀具的磨损类型。 关键词:T i N 涂层, 硬质合金刀具, 磨损机理, 高速切削 S tudy on Wearing Mechanism of C oated C emented C arbide Tool Jia Qinglian Qiao Yanfeng Abstract:Based on experiments of hi gh speed cutting,the wear process and wear appearance of the coated cemented carbide tools are studied.T he causes of different quanti ties of wear in the experiments are analyzed.T he model of wear mechanism of the coated cemented carbide tools and the wear styles of the coated cemented carbide tools such as di ffuse wear,plastic distortion wear and fatigue flake are presented. Keywords:TiN coating, cemented carbide tools, wearing mechanism, high -speed cutting 1 引言 用化学气相沉积法(CVD 法)在WC 基硬质合金表面涂覆一薄层高硬度的难熔金属化合物(如TiC 、TiN),所制备的涂层硬质合金具有高耐磨性的表层 和足够韧性的基体。在高速切削条件下,涂层硬质合金刀具的切削性能较佳,其原因之一是由于刀具表面的涂层材料向基体材料一方的/渗透0作用,使刀具上涂层材料已磨穿区的抗扩散磨损能力提高;原因之二是由于刀具刃口涂层材料被磨损的滞后性,即在继续切削过程中,刃口涂层材料起到了有效的机械支承作用,提高了涂层刀片的耐磨性。一般情况下,涂层硬质合金的低速切削性能较差,这是因为在低速切削条件下,涂层的磨损会以磨损率很高的脆性疲劳剥落磨损为主。 2 高速切削试验 试验中以TiC 涂层硬质合金刀片在无级变速车床上加工材料为38Cr Ni3Mo VA 的工件,切削用量为: f =012m m/r,a p =2mm,v =70~300m/min 。由试验可知,在较高切削速度范围内,涂层刀片的磨损过程大致可划分为三个阶段(见图1)。 (1)初磨阶段 自切削开始至刀具表面涂层材料被磨穿前的这个阶段称为初磨阶段。由于涂层刀片表面存在残余拉应力,其表面不平度约为2~4L m,在刀具)切屑(或工件)间的强烈摩擦下,表面涂层材料沿切屑流 动(或主运动)方向发生塑性滑移。其后果必导致前、后刀面的涂层材料发生塑性断裂,即塑性疲劳剥落磨损,前、后刀面的涂层在图1a 所示R 、F 处被磨穿。 图1 磨损特征 (2)正常磨损阶段 大量观察表明,在正常磨损阶段,前、后刀面涂层磨穿区均离刃口一定距离(见图1b)。也就是说,刀片刃口的涂层完整性尚好。为便于分析,将前、后刀面磨损面划分为六个区(见表1)。 表1 磨损区域划分 区域 特征 ?前刀面近主刃处未磨穿区ò前刀面已磨穿区 ó前刀面远离主刃处未磨穿区?后刀面近主刃处未磨穿区?后刀面已磨穿区 ? 后刀面远离主刃处未磨穿区 据观察,已被磨穿的ò、?区磨损面呈均匀的晶粒状,未磨穿的前刀面?、ó区,后刀面?、?区均呈/脊沟0状浅擦痕,深度为1~3L m,其方向平行于切屑流动方向(或主运动方向)。据分析,可以认为磨 损面上的脊沟是涂层材料沿切屑流动方向的塑性滑移所形成。

刀具涂层技术的现状及其发展趋势

刀具涂层技术的现状及其发展 趋势 机电商情网添加时间:2007-2-6 15:57:24 添加到我的收藏 1 引言 众所周知,刀具表面涂层技术是应市场需求而发展起来的一项优质表面改性技术,由于该项技术可使切削刀具获得优良的综合机械性能,不仅可有效地提高刀具使用寿命,而且还能大幅度地提高机械加工效率,因此该项技术已与材料、加工工艺并称为切削刀具制造的三大关键技术。为满足现代机械加工高效率、高精度、高可靠性的要求,世界各国都十分注重涂层技术的发展。目前我国刀具涂层技术的发展正处在一个十分关键的时刻,尤其是PVD 涂层技术,一方面原有的技术已不能满足切削加工日益变化的要求;另一方面国内各大工具厂涂层设

备已到了必须更新换代的时期,因此有计划、按步骤的发展PVD技术,不仅能促进我国切削刀具产品技术水平的提高,而且还可获得巨大的经济效益和社会效益。 2 国际刀具涂层技术的现状及发展趋势 刀具涂层技术目前仍可划分为两大类,即 CVD(化学气相沉积)和PVD技术(物理气相沉积)。 2.1 国际CVD技术的发展 CVD技术自上世纪六十年代出现以来,在硬质合金可转位刀具上得到了极为广泛的应用。在CVD工艺中,气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、Al2O3等单层及多元多层复合涂层,其涂层与基体结合强度高,薄膜厚度可达7~9μm,相对而言,CVD涂层具有更好的耐磨性。八十年代中后期,美国85%的硬质合金

工具采用了涂层处理,其中CVD涂层占到了99%;九十年代中期,CVD涂层硬质合金刀片在涂层硬质合金刀具中仍占到了80%以上。但CVD工艺也有其先天性的缺陷,一是工艺处理温度高,易造成刀具材料抗弯强度的下降;二是薄膜内部为拉应力状态,使用中易导致微裂纹的产生;三是CVD工艺所排放的废气、废液会造成工业污染,对环境影响较大,与目前所提倡的绿色工业相抵触,因此九十年代中期后高温CVD技术的发展受到了一定的制约。 八十年代末Krupp Widia开发的PCVD(低温化学气相沉积)技术达到了实用水平,其工艺处理温度已降至450℃~650℃,有效地抑制了η相的产生,可进行TiN、TiCN、TiC等涂层,用于螺纹刀具、铣刀、模具等,但到目前为止PCVD工艺在刀具涂层领域内的应用并不十分广泛。 真正引起CVD技术发生突变的是九十年代中期新

涂层刀具的应用现状及发展趋势

涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层可以提高切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高金属切削效率。本期话题, 主要讨论刀具涂层技术的最新进展情况和发展前景。 涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层提高了切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高了金属切削效率。今天,在切削刀具主流材料的硬质合金中,涂层硬质合金刀具占了80%,而其中CVD(化学涂层)又占了60%~ 65%,其余为PVD(物理涂层)。 在CVD涂层方面,包括TiCN、TiC、TiN、ZrCN和Al2O3等各种化合物的多层复合涂层对改善涂层的综合性能,如结合强度、韧性、耐磨性和抗磨性及耐腐蚀性具有良好的效果。现在典型的VCDTiN(外层)+ Al2O3(中层)+TiCN(内层)多层式结构正在从涂层工艺上和涂膜的厚度上得到进一步改善。MTCVD (中温化学涂层)因有较低的工艺温度和较快的沉积速率使得涂层与基体分界面上的脆性η相最小化,同时减少了在高温CVD涂层中常见的由高温导致的拉伸裂纹,因此,MTCVD TiCN涂层已成为CVD多层涂层中的一个主要构成,这种MTVCD已用于α- Al2O3涂层,如ISCAR的α-IC9150、α-IC9250、α-IC9350和α-IC4100等,提升了涂层与基体的结合强度和抗后面磨损、前面磨损和抗粘附的能力。 在PVD涂层方面,也从单一的TiN或TiCN或TiAlN涂层发展到现在的复合涂层即硬涂层+软涂层。为适应更高切削速度和干式切削的要求,涂层刀具的红硬性成为近几年PVD技术的开发热点。TiAlN的改进涂层AlTiN提高了薄膜中Al的含量(Al含量大于50%),提升了涂层的红硬性、化学稳定性和抗氧化的性能,如ISCAR的Al-IC910(加工铸铁和钢)、Al-IC900、Al-IC930(加工钢、不锈钢、硬钢、铸铁、 高温合金等)。 现代刀具涂层发展的一个重要特征就是复合化,为了提高其综合性能,涂层材料复合、涂层层复合以及CVD 与PVD复合,如ISCAR的DT7150(K05-K25)通过MTCVD Al2O3和PVD TiAlN复合涂层,提高了材质的综合性能,用于高速加工灰铸铁和球墨铸铁。而多样化是刀具涂层发展的另一个趋势,有各种氮化物、氧化物涂层材料,还有TiB、SN涂层、金刚石涂层、立方氮化硼涂层等等。多样化的深层次原因是专业化,即针对不同的需求采用不同的涂层,并能对涂层的组分、百分比、结构及厚度在更大范围内加以控制和改变,以适应不同的被加工材料和不同的切削条件,从而显著地提高刀具的切削性能。如CrAlN涂层,以Cr 元素替代Ti元素,具有3200HV硬度和1100℃的氧化温度,与TiAlN相比韧性更好,更适合断续切削和难加工材料的加工;以Si元素代替Al元素的涂层可获得用于硬切削的TiSiN,也可获得有润滑性的CrSiN,更适合用于铝、不锈钢等粘附性强的材料加工。此外,涂层材料的细微化是现代刀具涂层发展的另一个令人关注的趋势,纳米复合涂层正在越来越多的地方得到应用。在未来,刀具涂层将是一个系统的概念,即刀具涂层必须根据不断变化的现代切削应用条件来进行系统的组合,这是一种与传统观念中的“在刀具上涂覆一层薄膜”截然不同且复杂得多的系统工程方法,这需要我们进行系统思考。 刀具涂层进展概况 现代切削面临着不断发展的高速、高效、高精加工要求和愈来愈多的高强度、高韧性、难切削等高能级材

相关文档
相关文档 最新文档