文档库 最新最全的文档下载
当前位置:文档库 › 6P3P单端A类电子管功放的制作

6P3P单端A类电子管功放的制作

6P3P单端A类电子管功放的制作
6P3P单端A类电子管功放的制作

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

#用EL34制作的合并式电子管功放调整

用EL34制作的合并式电子管功放(上) 作者:徐松森文章来源:《无线电和电视》点击数:18122 更新时间:2005-5-16 15:10:53 电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。本机通用性强,制作简便,成功率高,升级换代方便。 电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。 本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压和部分元件参数即可。 常用功率管作A类和AB类推挽功放使用参考数据表: 一、合并式功放电路简析

图1 电子管合并式功放电原理图 图l为电子管合并式功放电原理图。输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流和跨导值大,屏极线性范围宽,输入动态范围大。输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。 倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。本电路由双三极电子管6N1l或6N6来担任。上管为激励管;下管为倒相管。两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两管阴极的互耦作用,使屏极和阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。 值得注意的是:前级输入放大管和倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极和灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝和阴极间的击穿。故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。 此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V以上,不允许有丝毫的漏电,否则将会影。向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。

电子管功放

认真看完这个帖子,相信你就可以做成电子管功放了. 1,图纸可同时用于6P3P(6L6GC)家族和6550家族,这两种管子现在各厂都在生产。其中6P3P,6N8P库存较多,不容易被炒作涨价。 2,采用6P3P输出功率为20W,采用6550输出功率为60W。 3,额定功率失真小于0.4%,功率管已配对。 4,R2参考中心值15K,调节R2使帘栅极供电电压为285V。如有条件,帘栅极请采用稳压供电。 5,采用6P3P时,R1参考中心值75K,调节R1使6P3P屏流为32mA;采用6550时,R1参考中心值51K,调节R1使6550屏流为41mA。

直到今日,我评测一个胆机的最重要指标仍然是失真,尽管在很多主观流派中认为失真并不重要,甚至失真低=没韵味。然而多年的实际测试和听音经验告诉我,越是低失真的胆机,给我带来的主观听感越好,韵味更丰富。 如果你一个无视指标的爱好者,看到这里也可以结束了,本帖并不适合你。 下面开始介绍推挽胆机的一些设计理念和tips,我希望对于自己设计的爱好者能起到帮助作用。 在传统的推挽电路结构中,常见结构为以下几种: 1,电压放大+长尾倒相+功率级。优点是增益高,用管少,开环频响较好;缺点是长尾倒相级对称性一般,需仔细调试。 2,差分放大+(驱动)+功率级。优点是倒相对称性优秀,开环频宽较好;缺点是需要多一组负电源,不增加驱动级开环增益较低。 3,自平衡倒相+(驱动)功率级。优点是用管少,增益适中;缺点是倒相级对称性一般,频响较窄。 4,电压放大+屏阴分割+(驱动)+功率级。优点是用管少,倒相级无需调试;缺点是不加设驱动级增益低,频宽较窄。 由于架构1在用管,增益和稳定性方面都适中,比较适合初学者制作,本帖讨论将以一个电压放大+长尾倒相的推挽胆机架构作为分析对象。 A,输入级:架构1的输入级主要作用是提高电路的开环增益,为长尾倒相级提供合适的直流偏置。 由于长尾倒相级自身有一定增益,并不需要太大的输入电压,输入级可由多种方式组成:共阴,SRPP,叠串,u跟随 为了比较这些放大方式,我做了一次实验来测试比较它们的失真度,见表1

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

电子管功放布局工艺.

用电子管制作的功放,被发烧友称作胆机。电子管自1904年英国工程师菲利明(Fleming)发明,1914年美国通用电器公司开始生产,已经历经一个世纪。到了信息时代的今天,电子管在电子世界的大部分领域已销声匿迹,被体积小、寿命长、重量轻、耗电省的晶体管取而代之。但在一些中短波广播电台、电视台的发射机等特殊领域中,电子管还拥有无法代替的地位,特别是在音响发烧器材的庞大队伍中,电子管还有着晶体管无法体现的引人入胜的独特魅力,用电子管制作的高保真音频功率放大器、激光唱机、Hi-Fi前置放大器和均衡器等音响器材,以其独有的特色、醇厚优美的音质,被一批喜欢胆机的音响发烧友和怀旧的老音乐谜所推崇。 随着电子信息技术的飞速发展,电子管本身及电子管电路的设计和制造也在不断地改进和完善,同时也随着发烧友们自身综合素质的不断提高,计算机CAD技术的引进,为发烧友们自己动手安装高保真的胆机,打下了良好基础。当发烧友们陶醉在自己安装的胆机推动音箱所产生的这种在Hi-Fi历史上崭新的柔美醇厚“原汁原味”音响效果时,一定为这全新的玩法而心旷神怡。 有过装机实践的发烧友一定明白,制作一台胆机,即使使用统一器材,用统一电路,倘若整机的结构装配工艺水平不同,质量性能就可能有很大差异。由于工艺结构不妥,可能人为地千万噪声和其他干扰,甚至引起自激啸叫;整机放大器级数愈多,增益越高,结构工艺的要求就愈严格。高增益和稳定性是一对矛盾,增益越高不稳定的可能性越大,矛盾的解决,除电路上采取各种稳定措施加以控制外,还有赖于整机的结构工艺来实现,何况在胆机的噪声电平中,电路设计原因造成的只占30%,而70%取决于整机工艺结构设计和安装。为此笔者根据自己在装实践过程中经验和体会,对胆机的整机布局结构及装配工艺谈几点意见。 一、元器件的排列布局 1、电子管功放的主要元件是电子管、输出变压器、电源变压器、电位器和电阻、电容等元件。它们都座落在金属底板上,因为金属底板是导体,对隔离电磁场是有效的,但应尽量避免使用磁性金属材料做底板,因为磁性金属材料是顺磁性的,它会使各种变压器的漏磁在底板上传播造成干扰源,一般采用金属铁底板较好。为了防止放大器前后级之间电场和磁场的影响,排线电路布局要合理,电路布局的不合理,易造成高寄生振荡,一般都按电路的前后顺序作一字型排列,不能随意胡乱安排,切不可前后级排成U型。元件的分布要考虑信号传输路径最短,干扰最小,立体声胆机的整体布局要对称,分布均衡,以保证多声道电路的对称性和平衡性。 2、电源变压器与输出变压器都必须是磁感应器件,由于制作工艺、采用材料等原因,难免会产生较大的泄漏磁场,它们之间的摆位应尽量相距远些,并注意它们磁通的方向,使相应位置昼避免电磁感应交连,一般采取远离或垂直放置。周围元件的引线不要距离变压器输入端引线太

电子管功放的安装步骤

第二节电子管功放的安装步骤 现代电子管功放除了声道分立的高档机型外,大都为合并式的立体声功放。下面即以立体声功放为例,介绍其安装程序。 按照事先设计好的地位,先将各种小零部件装上。如电子管管座、开关、电位器、输入与输出接线端子、插口、接线支架、接地焊片等逐一装好。 电子管灯座在安装时必须认清图示的方向,这样可保持走线距离最近。管脚识别,可将电子管管脚朝向自己方。功放管用瓷八脚灯座时,从中心对正缺口开始,按顺时针方向,分别为1→8号接脚;前级放大与推动管为九脚灯座时,从开档较大处开始,按顺时针方向,分别为1→9号接脚。特殊管座的管脚识别 大都是在特定标志下按上述方法识别。 左、右声道输出变压器、电源变压器、阻流圈等因较为笨重,在安装焊接各种零件时,底板要四面翻动,容易损伤外表漆皮,应当在全部阻容元件和接线焊接完毕后,最后再装上。安装电源变压器与输出变压器时,必须在螺丝上加装弹簧垫片,使之不易松动,以防止变压器通电后与底板之间产生振动,从而引起 涡流损耗与交流声。 1 合理的接地方式 电子管功放中的接地走线,对功故机的信噪比与电性能的优劣有重要影响。特别是在增益较高的多级放大器中,其接地走线的布局方式尤为重要。因为功放机中的接地线具有双重作用,既是直流电压与电流供给回路,又是音频信号的通路,其间通过的直流电压电流大小及交流信号的强弱亦不相同。 虽然用万用电表测量功放机内的所有接地回路,其阻值均为0Ω,但对交流信号而言,各接地通路之间仍存在着电位差。如果采用高频微伏表测量时,其

间的电位差可达数微伏以上。在高增益的多级功放机中,如接地走线布局不当,在高增益的输入端如混入数微伏的交流杂波信号,经过多级放大器逐级放大后, 将给功放机的信噪比带来极大的影响。 目前比较流行的接地方式有两种:母线接地方式与单点接地方式。 功放机的母线接地方式是采用直径为左右的粗裸铜丝或镀银铜丝作为接地母线,在功放机的底板上按照放大器的电子管位置就近顺序排列。一般由输入端子至第一级、再至倒相级、推动放大级、功率放大级,最后至电源变压器的接地端。接地走线的次序切不可前级与后级颠倒。立体声功放的接地走线必须左右声道严格分开,并各自按照顺序排列。同时必须注意输出端的大电流接地线切不可与输入端小电流接地线直接相通。图8-10为母线接地方式示意图。 单点接地方式一般使用在高增益放大器的输入级,或者当功放机中部分采用电路板时,其接地走线的原则也必须按照功放级的前后级顺序排列,切不可前 级与后级颠倒。 单点接地方式所强调的是,每一级的通地必须接在同一接地点上(就是我们常说的“一点接地”),其中该级的栅极电阻、阴极栅负压电阻及旁路电容的通地尤为重要,两者之间不允许再有导线存在。因为导线难免存在电阻,它可能存在的电位差,对高灵敏的放大器来说,等于在放大管阴极与栅极之间串接了一个交流电源,经过逐级放大后,即会产生严重的交流声。

电子管OTL 功放的制作

电子管OTL 功放的制作 2 2008-03-12 11:12 电路分析(以一个声道为例,另一声道电路相同) 1.输入前置放大级 采用SRPP放大电路: 本前级应选用中放大系数的双三极管为宜,因为这样的三极管内阻较小,屏流和跨导值较大,对降低输出阻抗有利,且屏极特性曲线的线性范围较宽,故输入级的动态范围较大。 本机该前置放大级可采用6N1l、6DJ8、6922、ECC88等双三极电子管。音频信号由下管栅极输入,工作于共阴极方式;上管则工作于共栅极方式,被放大后的音频信号由上管阴极输出。 SRPP前级放大器的特点是输入阻抗高,为200kΩ以上;输出阻抗低,为数百欧姆。因此对前级输入的小信号具有传输损耗小,动态范围大,抗干扰性能好,有利于输入与输出级的阻抗匹配。同时,本电路的频率响应特性极佳,高频瞬态响应也很好。 此外,由于本电路上管阴极电位很高,约为100V左右,所以在选管时其阴极与灯丝问的耐压均应不超过极限值,如果超过极限电压将会导致灯丝与阴极间击穿。 2.倒相兼推动放大器 本机电压放大级为共阴级长尾式放大器。 该电路是一种性能卓越的差分放大电路。在此电路中,为获得尽可能大的共阴极电阻,能使放大管的栅极与前置放大级的屏极直接耦合,以得到较高的栅极电压与阴极电压。电路中的1MΩ电阻为栅漏电阻,0.22uF为旁路电容,以确保放大管栅极电位恒定。因电子管栅极回路的内阻较高,故要求旁路电容的绝缘性能很高,不可有轻微的漏电。 本电路由双三极电子管6N6担任。上管为激励管,下管为倒相管,两管共用阴极电阻(18kΩ),并且有深度的电流负反馈作用,故稳定性好。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两电子管阴极的互耦作用,其屏极与阴极电流均随之变化。由于两管的负载电阻阻值相同,均为36kΩ,两管输出电压幅值相等,方向相反,从而完成倒相兼推动工作。 由于倒相兼推动电子管的阴极电位较高,所以在选管时必须重视。如采用普通双三极管代用时,为了防止电子管的灯丝与阴极间的击穿,可以对该管灯丝采用不接地的独立供电方式。 3.功放级 该OTL功放级的每声道由4只6N5P低内阻中功率双三极电子管担任,采用正负双电源供电。该功放管的栅极负压规定值为-30V,其工作点必须配置在屏流——栅压特性曲线的直线部分,故栅极负压应配在规定值的1/3左右为佳,以使栅极上输入的推动电压在正半周的最大值时,不超过栅极负压的规定值;而在负半周时也不致接近屏流曲线的弯曲部分而引起失真。该电路每声道输出的不失真功率可达20w。 由于大回环的深度负反馈会给功率放大器的瞬态响应带来危害,故本电路从功放输出端至输入级的整机负反馈取得较低(反馈电阻15kΩ),反馈点设置在前置放大管的阴极,对比端仅取1/10阻值,这样既提高了整机的各项电性能指标,又不影响瞬态响应的特性。

自制胆机实践经验谈

自制胆机实践经验谈 本人通过多次实践经验对比强调指出了胆机制作的误区及制作的关键问题,供大家参考和商榷。 兴趣的由来及初步认识: 作为一个电子设备制造维修者我对电子管设备的感觉首先是笨重和高能耗。但随着大家对胆机的热衷我也不由自主的想试试看看到底胆机如何。 首先说音响是用来欣赏音乐的,这跟不同人的听觉感受用很大关系,所以只能说我自己的感受如何。再就是音响是系统并非一个电子管功放就解决了全部问题,音源音宿同样重要,当然功放是很重要的一部分。因此打造一个适合自己的音响最重要。 制作过程及部分经验: 历时两年半共制作了三台功放,第一台:6N11+6P3P(甲乙类推挽),在此期间对许多管子及电路都进行了对比试听(请了许多有音乐细胞的朋友来听,并提出了很多宝贵意见),第二6N4+6P1(甲类)送仓库助理做小书架音响的功放,第三台:自己用的6N11+6P3P+807(甲乙类推挽)。下边谈一下自己制作经验供大家参考。 1、选择电路:在能完成功能的情况下电路应尽量简单,以减少干扰及制作不必要的麻烦。最初定以下实验电路,实验以后根据情况作了调整。 2、材料准备:V1准备用6N11或6N4,从旧电子管设备上拆得6N11数只6N4数只(电子管扫频仪及电子管低频示波器上均有),6P3P仓库找的J

级品,用电子管参数测试仪逐个选拔配对,输出变压器是旧低频信号产生器上拆的两只,粗略估算功率小了点,而且阻抗也不匹配,改变阻抗匹配先凑合实验一下在说,(后谈输出变压器的绕制),电源变压器是示波器上的功率、电流足够,电压有多种输出,实验选择的余地很大,供实验用的各种规格型号电阻、电容、电子管均是从数以千计的旧电子管设备上拆或仓库沉睡数年的库存部分器材选的(唉真说不清是浪费还是废物利用呀)。音箱是惠威扬声器制作的书架音箱。测试仪表有低频信号产生器、毫伏表、电子管测试仪、示波器、低频扫频仪、电阻测试仪、电感、电容测试仪等。 3、自己制作的体会: 1)、噪声产生的原因及抑制: 电子管设备最讨厌的就是静态时的噪声,其产生原因一是电源,二是灯丝,三是输入电路及焊接布线。首先得认识到噪声只能拟制(耳听感觉不到)不可能完全消除,尤其是热噪声。 抑制噪声方法:①各级电压分别供电,以减少功率放大级电压的波动对前级电压放大的影响;②试验结果是电感Π型滤波比电阻Π型滤波交流声要小的多(毫伏表测试结果也如此),滤波电容适当增大;③推挽电子管的对称非常重要,一定要挑选交直流参数一致的,且推挽工作点应仔细调整一致;④灯丝采用直流供电好于交流供电,且电阻平衡后中心点接地而非一端接地,平衡电阻要并接0.1-0.33电容;⑤接地采用单点接地,各级用4M2的包银铜线连接至电源滤波电容;⑥电源变压器用铝板或铜板做屏蔽罩,并加一减震垫圈再固定与底板(底板用厚

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

电子管功放的调整

电子管功放的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。 工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。 胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。 调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。 降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。 一、栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负

一部电子管放大器组装完成

一部电子管放大器组装完成,试音正常,还只是完成了工作量的一部分,要想出好声,还有大量细致的工作要做,那就是调 试和校声,因为只有经过仔细、合理的调整、校验,使放大器各级放大管均工作在最佳的工作点上,并且再经过校声,使放大器 的音色圆润,音乐感丰富,动态凌厉、频响宽阔,才会乐声细致、清澈、悦耳动听。校声工作需要多花精力,需要的时间较长, 甚至几个月才能完成,因此要有毅力,有耐心。下面就谈谈电子管放大器的调试和校声的方法。 发烧友焊机时,一般是根据手中现有的元件,再选择优秀线路或照名机的线路按图索骥,进行焊接,元件的规格、数值虽然 与线路图上的要求相差不大,甚至有的元件档次还要高级一些,但元件的排、走线的长短、焊接的质量,或其他方面的差异,如 B+电压的高低,电流的大小等,都会影响放音的效果,所以焊出胆机不一定开声就靓,需要经过精心的调试,使各放大器工作在 量佳的工作状态,才能充分发挥每只胆管和线路的魅力,达到满意的放音效果。 胆机的调整和校声的内容包括:将噪音、交流声降低到可以接受的水平;调整电子管的屏压、屏流和栅负压,使电子管工作 在较佳的工作点上;更换级间耦合电容的容量和品牌,更换B+滤波电容的容量和品牌,甚至更换机内小信号线、电阻、电子管的 品牌等,使放音系统放出好声。 关于交流声的消除方法,过去已有较多文章介绍,本文不再重复。如果音量电位器开大后有“咝、咝”声,说明电路有自激 的现象,是元件排列、走线不合理引起的交连感应。可拨动某些导线或元件听有无反应,要逐根引线,逐个元件的查找,然后改 换位置消除感应。当音量电位器开度小时放音系统并无噪音,但扭到某一位置时突然有噪音,过了这个位置再开大,噪音反而消 失,这是输入部分的元件排列不合理造成的。消除的办法是输入部分的元件重新排列,改变走线。 三极管的工作点由屏压和栅负压决定。屏压确定后可调整栅负压来调工作点。五极管的屏压升高到一定程度后,帘栅压的变 化会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。当电源的容量较大,内阻较低时,调整屏流的大小,B+ 电压一般不会有变化,若电源的富裕量不大,屏流调得较大时B+电压会有较大的下降。 一、栅负压电路 电子管的栅极一般是接负压,习惯上称“栅负压”或“栅偏压”。栅负压的供给有两种方法:一种是利用电子管屏流(或屏 流加帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,称自给式栅负压,一般用于屏流较稳定的甲类放大器电路上。另 一种是在电源部分设一套负压整流电路(电源来自变压器的单独绕组或者从B+电源的负端抽取)供给栅负

MOSFET与电子管OTL功放的制作

黼蘩缀 鬻i麓“i;:;;{iih壤酾舔j嘶i蝎ishl【l。 日;1.缸日,。m叭jl爨眵攀ii鬻璧!lll豳 。i黪臻l嚣赣藏§ 羹豢纛 由日本山崎浩氏撰写的MOS—FETOTL功放,电路简洁,性能并由该管组成无输出变压器的双管并联推挽卓越,频晌宽阔,其音色可与4HB5电子管OTL功放相媲美。外形图式0TL功率放大电路,0TL功放上边管栅极见题图,电路见图1。 的偏置电压,由高压电源经470kQ电阻对地胆机与石机在音响界有不少共识,以总体上来看,胆机属于柔分压后取得,并经稳压后供给上边管的栅极,性,石机属于刚性。一般人们在欣赏音乐时。绝大多数人对胆韵的同时此稳压管起到强信号抑制,从而达到保温柔均情有独钟。 护功放管的作用。0TL功放级下边管的栅极HOS—FET场效应管的特性与胆管十分相似,故采用HOS—FET场偏置电压,由中点电压通过330kQ电阻对地效应管制作的功率放大器,同样具有浓郁的韵味,深受发烧友们的分压后取得,并同样设置了稳压管,以确保喜爱。 功放管的工作稳定。 赫鬻囊?瓣I麓徽蠹蓑耩i 由Hos—FET场效应管13uz45的oTL功输入级 放级高压为350V,中点电压为高压电源的一输入电压放大级由小功率场效应管BSSl25担任,并由该管组 半,功放级的电流为200mA,由中点经成共漏极电压放大电路,输入的音频信号经放大后由源极输出,并800恤F大电容后输出,输出负载阻抗为16Q,直接耦合至倒相管的栅极。 额定输出功率为40W。 为了提高整机电性能,故在输入管BSSl25的漏极与功放输出MOS—FET场效应管组成的0TL功率放大端之间设置了由56n与1.5kQ组成的整机电压负反馈网络,这样即器,具有体积小,重量轻,放大效率高的特可使功放整机的失真度、频率响应与信号噪声比等各项性能得到较点,0TL功放的频率响应比普通有输出变压大地改善。 器的频晌显著宽阔,高低频端的频率延伸范倒相兼推动级 围加宽,可满足现代数码音源的放音要求;倒相兼推动级仍由小功率场效应管BSSl25担任.并由该管组同日寸由MOS—FET场效应管的特性与电子管功成倒相电影,由于该管的源极与漏极所输出的电压相位差为180。,放机十分相似,故音色温顺柔和,音乐韵味同时,源极与漏极输出端的负载电阻均取值为22kn,因此,在十足。 BSsl25的两个输出端即可取得一对相位相反而幅值相等的推动电=巷辩毯器糕悉篝露耀蝴鬻舔!i 压,从而完成倒相兼推动工作,再分别经过两只O.22“F电容,将6HB5电子管OTL功放与HOS—FET功效应 推动信号电压耦合至0TL功放管的栅极。 管0TL功放的电路结构基本相同,该OTL功OTL功率放大级 放的音质清澄透明,频率响应宽阔,胆韵浓0TL功率放大级由四只大功率HOS—F盯场效应管BUZ45担任, 郁,额定输出功率亦为40W。电路见图2。 2005年第11期<瓷“>

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

电子管OTL功放电路及原理

电子管OTL功放电路及原理 OTL 是英文Output Transformer Less Amplifier 的简称,是一种无输出变压器的功率放大器。 一.OTL 电子管功放电路的特点普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均 比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输 出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的 阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因 此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非 线性失真与相位失真。为了消除这些不良影响,各种不同形式的电子管OTL 无输出变压器功率放大器应运而生,许多适用于OTL 功放的新型功率电子管 在国外也不断被设计制造出来。电子管OTL 功率放大器的音质清澄透明,保 真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达 10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明 显提高。 二电子管OTL 功放电路的形式图1(a)~图1(f)是OTL 无输出功放基本电路。图1(a)和图1(b)为OTL 功放两种供电结构的方式,即正负双电源式和单电源供电方式。在正负双电源式OTL 功放中,中心为地电位。这样可保证推挽 电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。单电源 式OTL 电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电 压等于电源电压的一半。同时,其输出电容C1 的容量必须足够大,不影响输 出阻抗与低频响应的要求。图1(c)和图1(d)为OTL 功放电子管栅极偏置的取

适合业余制作的优质电子管功放

适合业余制作的优质电子管功放王文林用电子管制作的优质功放音色醇美诱人,并且可以更好地消除一般价位的CD机普遍存在的数码味,与CD这种音源搭配正可谓“珠联璧合”,使播放的音乐更耐听,没有一般晶体管功放和IC功放常有的吵耳感。但对于一般的业余爱好者来说,优质胆机中的关键部件之一——输出变压器的自制是较为困难的。虽说时下已有种种高档输出变压器面世,但数百元一只的售价,令一般爱好者只能是望梅止渴。其实我们只要在电路结构上做些选择,就可以避开这一难点,用及普通的变压器制作出优质的电子管功放。本文电路就是采用了价格十分低廉的普通有线广播用的输出变压器,但从实际听音效果来看音色极美。现就该电路简述如下。

该电路采用了类似晶体管OCL电路的电路结构,但仍保留使用输出变压器。由于在电路中采用了对称的正负电源,其中O点的直流电位为零,这样在输出变压器T2的初级绕组中无论有无音频信号送入,始终没有直流电通过。正是由于这一点,我们不仅可以使用普通交迭铁芯的变压器,而且还可以将电子管功放中输出变压器采用的互耦接法改为本机电路中所使用的自耦接法。这种自耦接法带来的好处是极为显著的。对同一只音频变压器来说,自耦接法与互耦接法相比,自耦接法的频响、相移等电器指标都明显优于互耦接法,其效率更是数以倍计的提高。加之本机这种电路结构不像普通电子管机推挽变压器 需两个输入端子,并且要求两绕组对称,这样就给使用普且价廉的变

压器作输出变压器创造了条件。在本机中功放管采用了价格十分低廉且常见易得之电子管6P14(J),该管有较好的频响指标和较小的失真,又有较6P3P、6P6P一类功放管为高的跨异值。也就是说它的功率灵敏度较高,在本机电路中6P14(J)采用了五级管的三极管接法,更进一步降低了该管的失真和输出阻抗。功放管栅极上串入的1kΩ电阻是为了消除6P14(J)并管使用时可能产生的自激。本机的倒相级采用了频响指标较高的长尾式倒相电路,这级由6N8P双三极管组成的倒机电路更优。本机的输入级采用国产发烧电子管6N11(J)作并联调整式推挽放大,以提高输入级的频响,特别是高频的频响,并使输入级有较小的失真和较大的动态输入范围,因而更适应CD机这种具有较高输入电平和大动态音源的要求。 本机的调整和制作都比较简单。先在扬声器端接入一等阻值大功率的电阻作假负载。由于本机功放级与倒相级之间有隔直耦和电容,相互之间没有直流电位的牵连,这样其工作稳定性和调整均比晶体管OCL功放可靠、简单。通过电前将500Ω的可调电阻调到最大端,这样其上产生的各功放管的自生栅偏压都应超出-10V。因此可防止在调试过程中因栅偏压过小而可能对功放管造成的损害。充分预热后,可分别调4只500Ω的可调电阻,使各功放管的栅偏压(即500Ω可调电阻两端的电压)为10v左右。这时再测输出中o点与地之间的电压应在OV。否则应微调上下功放管阴极的500Ω可调电阻使回到OV。若o点电压虽被调至OV,但上下功放管阴极电阻上产生的栅偏压值(正常值为-10V)相当悬殊,则说明功放管的一致性差,应更

用EL34制作的合并式电子管功放(上) 精品

用EL34制作的合并式电子管功放(上)(组图) 电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。本机通用性强,制作简便,成功率高,升级换代方便。 电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。 本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压与部分元件参数即可。 常用功率管作A类与AB类推挽功放应用参考数据表: 图1 一、合并式功放电路简析

图2 图2 电子管合并式功放电原理图 图2为电子管合并式功放电原理图。输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流与跨导值大,屏极线性范围宽,输入动态范围大。输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。 倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。本电路由双三极电子管6N1l 或6N6来担任。上管为激励管;下管为倒相管。两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两管阴极的互耦作用,使屏极与阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。 值得注意的是:前级输入放大管与倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极与灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝与阴极间的击穿。故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。 此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V 以上,不允许有丝毫的漏电,否则将会影。向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。

电子管功放简易设计

电子管功放简易设计 电子管功放简易设计,写给初学者! 发烧之路 2009-06-10 12:15:30 阅读202 评论0字号:大中小 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率; 84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10,20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。

一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout,?,(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout,8V,输入电压Uin 记0.5V,则整机所需增益A,Uout/Uin,16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%,25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%,30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 在决定输出级用管和电路程式之后,根据输出级功率管满功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in(这里的U'in需要折算成峰峰值)确定电压放大级增益。Au,Up/U'in。例如2A3单管单端所需推动电压峰峰值为90V,输入信号峰峰值为1.4V,则所需增益Au,90/1.4=64倍,若为开环放大,则取1.1倍余

相关文档
相关文档 最新文档