文档库 最新最全的文档下载
当前位置:文档库 › 各种simulation 插件的功能

各种simulation 插件的功能

各种simulation 插件的功能

simulation Xpress能对有简单的载荷和支撑的零件进行静态分析。simulation能对零件和装配体进行静态分析。

simulation Professional能进行零件和装配体的静态、热传导、扭曲、频率、掉落测试、优化、和疲劳分析。

simulation Premiun具有solidworks simulation Xpress所有功能,外加非线性功能和动力学分析。

Flow simulation 能多流体和气体力学进行分析。

各大仿真软件介绍

各大仿真软件介绍(包括算法,原理) 随着无线和有线设计向更高频率的发展和电路复杂性的增加,对于高频电磁场的仿真,由于忽略了高阶传播模式而引起仿真的误差。另外,传统模式等效电路分析方法的限制,与频率相关电容、电感元件等效模型而引起的误差。例如,在分析微带线时,许多易于出错的无源模式是由于微带线或带状线的交叉、阶梯、弯曲、开路、缝隙等等,在这种情况下是多模传输。为此,通常采用全波电磁仿真技术去分析电路结构,通过电路仿真得到准确的非连续模式S参数。这些EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。本文根据电磁仿真工具所采用的数值解法进行分类,对常用的微波EDA仿真软件进行论述。2.基于矩量法仿真的微波EDA仿真软件基于矩量法仿真的EDA 软件主要包括A D S(Advanced Design System)、Sonnet电磁仿真软件、IE3D和Microwave office。 2.1ADS仿真软件Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件,是美国安捷伦公司开发的大型综合设计软件,是为系统和电路工程师提供的可开发各种形式的射频设计,对于通信和航天/防御的应用,从最简单到最复杂,从离散射频/微波模块到集成MMIC。从电路元件的仿真,模式识别的提取,新的仿真技术提供了高性能的仿真特性。该软件可以在微机上运行,其前身是工作站运行的版本MDS(Microwave Design System)。该软件还提供了一种新的滤波器的设计引导,可以使用智能化的设计规范的用户界面来分析和综合射频/微波回路集总元滤波器,并可提供对平面电路进行场分析和优化功能。它允许工程师定义频率范围,材料特性,参数的数量和根据用户的需要自动产生关键的无源器件模式。该软件范围涵盖了小至元器件,大到系统级的设计和分析。尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟、线性或非线性电路的综合仿真分析与优化,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,使之成为设计人员的有效工具[6-7]。2.2Sonnet仿真软件Sonnet是一种基于矩量法的电磁仿真软件,提供面

油藏数值模拟学习心得

通过了几节课的“油藏数值模拟课”的学习,我知道了“油藏数值模拟”是应用计算机研究油气藏中多相流体渗流规律的数值计算方法,它能够解决油气藏开发过程中难以解析求解的极为复杂的渗流及工程问题,是评价和优化油气藏开发方案的有力工具。它主要是让我们石油石油工程专业的学生掌握一些基本的油藏数值模拟技术和技巧,学习基本的油藏渗流数学模型及其解法、计算方法和应用方法,培养我们用计算机解决油藏开发问题的能力。 “油藏数值模拟”涉及的学科较多,利用数学知识和计算机知识较多,我认为是非常难的。虽然教师教的很认真也很耐心,我仍然不能跟着老师的节奏。因为一开始就知道这个软件很有实际应用价值,所以我也就特别的想好好的学习它。可惜现在我面临着考研这座大山,我实在是没有充分的时间课下来好好的温习与研究老师上课所讲的东西。很遗憾,后来老师讲的东西我有些就不会了。好在前三四节课讲的内容还学会了,学会了模拟三层的油层概况。也许这点知识对我以后的再次学习会有不错的基础作用吧!总之还是很感谢老师的耐心教导。 在学习的过程中,我觉得油藏原始参数,如渗透率、孔隙度等的收集,以及油藏原始数据是否齐全准确非常重要,尤其是一开始填date时的单位的选择,这些都关系到数值模拟的效果。如果原始资料很少,数值模拟的效果就不可能好。数值模拟方法越复杂,所需的原始资料也越多。收集资料时,如发现必需的资料不够或不准确,应采取补救措施。通常要求准备的参数包括:①油藏地质参数。产层构造图,油、气、水分布图,油层厚度、孔隙度、渗透率、原始含油饱和度的等值图等。②流体物理性质参数。地面性质和地层状态下的物性数据,原始压力和地层温度数据,对凝析气田还需要相图和相平衡的资料。③专项岩心分析资料。油水相渗透率曲线,油气相渗透率曲线,油层润湿性,吸入和排驱毛细管压力曲线;对碳酸盐岩孔隙裂缝双重介质储层,还需渗吸曲线。④单井和分层分区的生产数据和有关测试资料。⑤油田建设和经济分析的有关数据。 将收集的油藏地质资料进行系统整理后,要将油藏的地质特征模式化,以充分反映油藏的构造特征和沉积特征,如油层物理性质参数的分布、油气水的分布、油气水在地面和地下的性质、驱油动力、压力系统和地温梯度等。油藏地质模型是否符合实际情况,直接影响数值模拟成果的准确性。 由于人们对油田实际地质条件的认识有一定的限度,计算时所用的参数也就有一定的局限性,因此,第一次模拟计算的结果,如压力、产量、气油比、含水率等与油田实际生产状况常有较大的出入。必须进行分析,修改相关的计算参数,重新进行计算。通常,经过多次修改可使计算结果与实际生产历史基本相符,误差在允许范围以内。从工程应用的角度看,可认为此时所应用的计算参数,反映了油田地下的实际状况,使用这些参数来计算和预测油田未来的动态,能够达到较高的精度。在油田开采过程中这类历史拟合要进行多次,使油田的模型逐步更接近实际而得到更适用的结果。

eM-Plant生产系统仿真软件功能介绍

eM-Plant 生产系统仿真软件功能介绍eM-Plant是用C++实现的关于生产、物流和工程的仿真软件。它是面向对象的、图形化的、集成的建模、仿真工具,系统结构和实施都满足面向对象的要求。 e M-Plant可以对各种规模的工厂和生产线,包括大规模的跨国企业,建模、仿真和优化生产系统,分析和优化生产布局、资源利用率、产能和效率、物流和供需链,以便于承接不同大小的订单与混和产品的生产。它使用面向对象的技术和可以自定义的目标库来创建具有良好结构的层次化仿真模型,这种模型包括供应链、生产资源、控制策略、生产过程、商务过程。用户通过扩展的分析工具、

统计数据和图表来评估不同的解决方案并在生产计划的早期阶段做出迅速而可靠的决策。 用eM-Plant可以为生产设备、生产线、生产过程建立结构层次清晰的模型。这种模型的建立过程,使用了应用目标库(Application Object Librari es)的组件,而应用目标库(ApplicationObject Libraries)是专门用于各种专业过程如总装、白车身、喷漆等等。用户可以从预定义好的资源、订单目录、操作计划、控制规则中进行选择。通过向库中加入自己的对象(object)来扩展系统库,用户可以获取被实践证实的工程经验用于进一步的仿真研究。 使用e M-Plant仿真工具可以优化产量、缓解瓶颈、减少在加工零件。 考虑到内部和外部供应链、生产资源、商业运作过程,用户可以通过仿真模型分析不同变型产品的影响。用户可以评估不同的生产线的生产控制策略并验证主生产线和从生产线(sub-lines)的同步。 eM-Plant能够定义各种物料流的规则并检查这些规则对生产线性能的影响。从系统库中挑选出来的控制规则(control rules)可以被进一步的细化以便应用于更复杂的控制模型。 用户使用e M-Plant试验管理器(ExperimentManager)可以定义试验,设置仿真运行的次数和时间,也可以在一次仿真中执行多次试验。用户可以结合数据文件,例如Excel格式的文件来配置仿真试验。 使用eM-Plant可以自动为复杂的生产线找到并评估优化的解决方案。在考虑到诸如产量、在制品(inventory)、资源利用率、交货日期(delivery dates)等多方面的限制条件的时候,采用遗传算法(genetic algorit

电力系统仿真软件介绍讲解学习

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由

等效静力法模拟风荷载的探讨

等效静力法模拟风荷载的探讨 摘要:本文应用CAESAR II软件采用等效静力法模拟风荷载,详细介绍如何编辑风荷载校核工况,进行加入风荷载的一次应力校核和导向支架的受力评定。 关键词:CAESAR II 风荷载校核管道工况编辑; Discussion on Simulating Wind Load with Equivalent Static Method ZHANG Xian-yue LIU Junchen (CPECC East-china Design Branch,Qingdao 266071,China) Abstract:The paper uses the equivalent static method to simulate the wind load in CAESARII software,particularly presents how to edit the wind load checking condition,and provides the method to how to consider the the primary stress of wind load and the forces of the guide supports. Key words:CAESAR II;wind load;check;pipeline;edit condition; CAESARII软件是由美国COADE公司研制开发的专业管道应力分析软件,它是以梁单元模型为基础的有限元分析程序,它可以进行静力分析也可以进行动力分析[1]。在炼油厂中,管道在工作状态下,除了要承受压力、重力、其他持续荷载作用,还要承受风荷载偶然荷载的作用,ASME B31.3[2]和GB50316[3]要求偶然荷载产生的一次应力不得超过操作状态许用受力的1.33倍。严格的说,风荷载属于动力荷载,应该采用动力学方法进行分析。但是由于动力分析方法过于复杂,难以应用于实际工程设计,所以风荷载计算时,可以采用等效静力法分析计算。该方法将风的荷载作用转化为等效静力荷载,然后采用静力方法进行分析[1]。 一、风荷载的输入 下面以某炼油厂的常减压装置常压塔顶油气线为例,举例说明风荷载的校核方法。根据常减压装置所在地的气象数据,确定基本风压值[4]和地面粗糙度[4]的类别,计算不同高度对应的风压值,输入到CAESAR II风荷载数据表中。考虑到风方向的不确定性,通常将东南西北四个方向的风全部引入到分析模型中,并进行相应的偶然工况编辑,完成受力校核计算。如图1所示填入风荷载和对应高度值: 图1 二、风荷载的工况编辑

手机多屏互动怎么用

第一篇手机多屏互动怎么用:如何实现手机与电视多屏互动?六种方法教学 很多朋友都想将手机屏幕推送到智能电视上,或用手机对电视进行控制,但是却不知道如何操作,下面就来总结下一些手机投屏电视的方法。 Mini HDMI/MHL Mini HDMI就是缩小版的HDMI接口,和标准HDMI 一样都是19针。MHL可简单认为是HDMI 的变种,只有5个Pin,所以他和手机上的微型CSB可以共用一个接口。现在有不少手机具备Mini HDMI/MHL 接口,只要将手机通过HDMI转换线连接到电视上,即可将手机画而同步显示在电视屏幕上。 此种方式的最大好处就是画而能很好的同步,即使1080P格式也能无损传输。但不方便的就是有线的朿缚。另外,带HDMI输岀的手机也并不多。所以此种方法仅作了解不做详细介绍,也不建议大家使用。 DLNA DLNA, Digital Living Network Alliance,是索尼、英特尔、微软等发起的一套PC、移动设备、消费电器之间互联互通的协议。它们的宗旨是“随时随地享受音乐、照片和视频”。安卓系统部分播放器就具备DLNA功能,例如腾讯视频,搜狐视频,迅雷看看就有这功能。可以将原来应该在手机屏幕的影片转移到超级电视或者乐视盒子端显示。 注意需要手机支持DLNA功能,并且需要将手机和超级电视巻于同一局域网络。 下面以腾讯视频为例,演示DLNA如何使用。 手机和超级电视处于同一局域网内。将超级电视的"多屏互动”功能开启°该选项在“设置” 一〉"系统” 一〉“多屏互动”。 打开手机上的“腾讯视频”应用,进入“设垃”菜单,将“开启DLNA”勾选。 手机播放视频时,轻触屏幕呼岀播放控制菜单,点击红圈处DLNA图标。 在弹岀的设备选择窗口中,列岀了当前周边的DLM设备,根据需要选择投屏的设备。 确认设备后还会弹出一个控制界而,显示当前正在缓冲视频。按下“播放”键,即可将视频内容巻于超级电视端播放。 在超级电视端视频播放过程中,可在手机端拖动进度条调肖播放进度,以及完成暂停, 静音等控制。 AirPlay

PETREL软件在油藏数值模拟研究中的应用

PETR EL软件在油藏数值模拟研究中的应用Ξ 向传刚 (大庆油田有限责任公司第七采油厂,黑龙江大庆 163517) 摘 要:在油藏数值模拟研究中,油藏数据流处理和生产历史拟合花费了数值模拟人员大量的时间。考虑到Petrel软件在人机交互计算及三维可视化方面的技术优势,以大庆PN油田七断块油藏为例,介绍了其优势功能在油藏数值模拟研究中的充分应用,实现了地质建模与数值模拟的软件一体化,方便了数据流处理,提高了历史拟合效率和精度,为该类断块油藏剩余油挖潜提供了更加直观、准确的依据和目标。 关键词:PETR EL;数值模拟;人机交互;三维可视化 目前,Petrel软件已经成为我国各大油田最常用的建模软件,其在相控建模算法、人机交互、函数计算和三维可视化方面具有其他建模软件不可比拟的优势〔1〕。然而其诸多优势功能的充分应用还没有得到足够的重视,尤其是在油藏数值模拟研究中,更有待加强应用,这对提高油藏数值模拟数据处理的效率及数模人员的多学科协同工作水平具有一定的现实意义。考虑到Petrel软件与ECL IPSE等主流数值模拟软件的兼容性,将Petrel软件的技术优势充分体现在油藏数值模拟研究中,可实现油藏地质建模与数值模拟真正意义上的一体化。论文拟以大庆PN油田七断块油藏为例,充分应用Petrel建模软件的人机交互计算及三维可视化功能,提高油藏区块数值模拟效率和精度,并最终实现剩余油定量三维可视化描述,对油藏的综合调整及措施决策具有指 导意义。 1 PETR EL在数值模拟研究中的可应用功能介绍众所周知,采用目前较为先进的Petrel软件,可以建立接近油藏实际地质特征的全三维精细地质模型〔2~3〕。当考虑到计算工作量,地质模型需经过一些“粗化”转化为油藏数值模拟所需的初始油藏模型,即用一系列等效粗网格去“替代”原地质模型的细网格,并使其能反映原模型的主要地质特征和流动响应特征。Petrel软件的网格粗化功能直接实现了三维精细地质模型向粗化模型的转化。 事实上,Petrel软件是一个真正意义上为油藏数值模拟服务的软件,如图1所示,将Petrel充分应用于油藏数值模拟研究中,除了能建立精细地质模型并提供粗化模型外,其可应用技术功能还包括:模型分区处理、三维可视化显示、人机交互参数调整、 用的经验,进行必要的理论研究。从作用原理上探讨品种的开发以及创造新的防缩孔流平剂提供理论上的依据,指导其发展,进入分子结构与功能效应的设计阶段。 [参考文献] [1] 涂料流平剂的应用研究进展.D evelop ing of study on pain t R heo logical A gen t. [2] 黄玮,黄琪.涂料技术与文摘Coatings T echno logy and A b stracts. [3] 杜威华,尹国强,康正.粉末涂料流平剂的合成 Syn thesis of leveling A gen t fo r Pow der Coatings. The Coa ti ng Progresses from the Fla tti ng Agen t Research CH EN G Chun-p ing D IN G Y ong-p ing (Inner M ongo lia U n iversity of Scien tific and T echno logy B ao tou T eacher’s co llege014030) Abstract:F low ed au tom atically the even p u lp is a k ind has the i m po rtan t fundam en tal research value and the b road app licati on p ro spect new functi on coating,the p resen t paper m ain ly in troduced the coating flatting agen t,like so lid state flatting agen t RB503,flatting agen t RB505,general flatting agen t T988 research su rvey. Key words:Coating;F latting agen t;T he Coating H elp s the M edicinal P reparati on Ξ收稿日期:2009-05-21 作者简介:向传刚(1982-),男,2007年7月毕业于成都理工大学,获油气田开发工程硕士学位,助理工程师,现在大庆油田有限责任公司第七采油厂地质大队攻关队工作,主要从事多学科油藏描述研究。

第4章 风荷载

第四章风荷载

主要内容: ?4.1 风的有关知识 ?4.2 风压 ?4.3 结构抗风计算的几个重要概念?4.4 顺风向结构风效应 ?4.5 横向结构风效应

4.1 风的有关知识 1 . 风的形成 由于存在压力差或气压梯度,空气从气压高的地方向气压底的地方流动而形成风。

2 . 两类性质的大风 1.台风 弱的热带气旋→引入暖湿空气→在涡旋内部产生上升和对流运动→加强涡旋→‥‥‥→台风 2.季风 冬季:大陆冷,海洋暖,风:大陆→海洋 夏季:大陆热,海洋凉,风:海洋→大陆

3. 我国的风气候总况 我国的风气候总体情况如下: (1)台湾、海南和南海诸岛,由于地处海 洋,年年受台风直接影响,是我国的最大风 区。 (2)东南沿海地区由于受台风影响,是我国大陆上的大风区。风速梯度由沿海指向内陆。台风登陆后,由于受地面摩擦的影响,风速能弱很快,在离海岸100km处,风速约减小一半。 (3)东北、华北和西北地区是我国的次大风区,风速梯度由北向南,与寒潮入侵路线一致。华北地区夏季受季风影响,风速有可能超过寒潮风。黑龙江西北部处于我国纬度最北地区,它不在蒙古高压的正前方,因此那里的风速不大。 (4)青藏高原地势高,平均海拔4-5km,也属较大风区。 (5)长江中下游、黄河中下游是小风区,一般台风到此已大为减弱,寒潮风到此也是强弩之末。 (6)云贵高原处于东亚大气环流的死角,空气经常处于静止状态,加之地形闭塞,形成我国最小风区。

4. 风级 为了区分风的大小,根据风对地面(或海面)物体影响程度,常将风划分为13个等级。风速越大,风级越大,由于早期人们还没有仪器来测定风速,就按照风所引起的现象来划分风级。风的13个等级如表4-1所示。

裂缝性油藏数值模拟方法

裂缝性油藏数值模拟方法 摘要:目前对天然裂缝性油藏的数值模拟可以大致分为连续性模型和离散性模型两大类;连续性模型又可以分为双重介质模型和单介质模型,双重介质模型主要是以Barrenblatt和Warren-Root在20世纪60年代提出的双重孔隙/双重渗透模型为基础,在这类模型中认为油藏中每一点都存在有基岩和裂缝两种介质,基岩被相互平行排列的裂缝分割称为单个的岩块,每种介质存在独立的水动力场,通过两种介质间的窜流的将其联系起来;而对于单介质模型,则是通过一定的方法将裂缝的渗透率和基岩的渗透率进行综合的考虑,得出整个油田的有效渗透率,该有效渗透率考虑了裂缝的密度、方位等的影响,然后将该有效渗透率输入到普通的单一介质模拟器中来对裂缝性油藏进行模拟; 由于双重介质模型不能够对不连续且控制着流体流动的大裂缝进行准确的模拟等原因,离散性模型在近段时间逐渐发展起来,而其又可以分为离散裂缝网络模型和离散管网模型;在离散裂缝网络模型中,对地质上描述出来的每个裂缝都进行了离散的显式的表示,同时根据局部裂缝的形状决定基岩的几何形状,由于地质上描述的裂缝数目一般较多,相应的在数值模拟中需要的离散点数目也就十分巨大,对模拟造成了一定的困难,所以目前很多的专家和学者又对该方法进行了进一步的改进,有许多简化的方法存在;离散管网模型则是先对所要模拟的区域进行了网格的划分,进而采用管子连接两个网格块,相应的两个网格块之间的传导率也采用管子的传导率来代替,这种方法的特点是数学上比较简单,灵活性较强,同时由于管子只对其连接的两个网格有影响,所以改变管子的传导率只会影响一个方向的传导性,而不会像常规的模拟器那样要同时影响两边的传导性,但是该方法目前研究较少。 0 前言 随着世界碳酸盐岩油气田的大规模开发,系统深入研究这类油气田的渗流模式及其在开发中的应用已成为重要课题。地质学家通过岩芯分析,确认碳酸盐岩(灰岩、白云岩)具有明显可见的裂缝、孔洞,含有密集的树枝状构造的粗裂缝以及连接的孔洞和孔隙。这类特殊的储集层结构不仅造成了井的高产、不稳定、跃变等开采特征,而且也造成各异的油气井压力降或压力恢复曲线特征。 碳酸盐岩油藏在孔隙结构和渗流机理上同砂岩油藏相比都存在很大的差别,由于天然裂缝的发育十分的不规则,裂缝的密度、长度、方位等参数都会因沉积过程以及沉积后应力的变化而变得非均质性极强,裂缝的发育程度和连接性也因此而各异,同时由于基岩的存在并向裂缝和/或井筒供液,造成了相同位置基岩

多屏互动详细操作方法

多屏互动详细操作方法 1.多屏互动多屏互动即是把手持终端(如智能手机)上的图、音、视频等内容,通过wifi 及设备传送到大屏幕或者音响设备上播放,实现播放内容的放大和分享。 通过多屏互动,我们选择影片时更方便便捷,看到有趣的影音视频或者照片亦可立刻发送到客厅的电视上与家人一起分享。多屏互动是通过Wifi 推送,控制完成不占用手机资源,推送完毕之后手机打电话或者关机都不影响推送内容的播放。 多屏互动与蓝牙的区别在于,播放时,蓝牙是手机和播放设备之间的数据交流,无法实现互联网播放;多屏互动是互联网与播放器之间的数据交换,手机只是控制端,当然多屏互动也能实现本地媒体播放。 六步实现多屏互动: 1)首次运行AirPlay 软件—→ 2)自定义命名设备名称,重启—→ 3)手机打开“腾讯视频”钮)—→ 6)大屏欣赏播放内容,可手机控制电视大屏播放状况。(已经设置过的可以忽略第 1、2 步,直接手机视频推送) ·使用图解: 1)运行AirPlay 软件 4)播放的在线影片5)点击并选择播放器(苹果手机第五步需点击

2)首次运行自动命名设备名称,可自定义大师5 在网络中被发现的设备名称,然后重启 自动命名 点击自定义命名

3)打开腾讯视频软件,并打开DLNA (必须与大师5 处于同一个局域网内) 4)选择播放节目,点击播放

5)点击并选择播放器,完成视频推送 播放时,菜单栏中出现图标,说明侦测到有多屏互动设备,选择对应的推送设备。

6)推送成功,播放器接收成功,电视开始播放 推送成功之后,可以在手机中拖动时间轴控制电视上的影片播放状况

系统工程复习题及答案

《系统工程》复习题及答案 第一章 一、名词解释 1.系统:系统是由两个以上有机联系、相互作用的要素所构成,具有特定功能、结构和环境的整体。 2.系统工程:用定量与定性相结合的系统思想和方法处理大型复杂系统的问题,无论是系统的设计或组织的建立,还是系统的经营管理,都可以统一的看成是一类工程实践,统称为系统工程。 3.自然系统:自然系统主要指由自然物(动物、植物、矿物、水资源等)所自然形成的系统,像海洋系统、矿藏系统等。 4.人造系统:人造系统是根据特定的目标,通过人的主观努力所建成的系统,如生产系统、管理系统等。 5.实体系统:凡是以矿物、生物、机械和人群等实体为基本要素所组成的系统称之为实体系统。 6.概念系统:凡是由概念、原理、原则、方法、制度、程序等概念性的非物质要素所构成的系统称为概念系统。 二、判断正误 1.管理系统是一种组织化的复杂系统。( T ) 2.大型工程系统和管理系统是两类完全不同的大规模复杂系统。( F ) 3.系统的结构主要是按照其功能要求所确定的。( F ) 4.层次结构和输入输出结构或两者的结合是描述系统结构的常用方式。( T) 三、简答 1.为什么说系统工程时一门新兴的交叉学科? 答:系统工程是以研究大规模复杂系统为对象的一门交叉学科。它是把自然科学和社会科学的某些思想、理论、方法、策略和手段等根据总体协调的需要,有机地联系起来,把人们的生产、科研或经济活动有效地组织起来,应用定量分析和定性分析相结合的方法和电子计算机等技术工具,对系统的构成要素、组织结构、信息交换和反馈控制等功能进行分析、设计、制造和服务,从而达到最优设计、最优控制和最优管理的目的,以便最充分填发挥人力、物力的潜力,通过各种组织管理技术,使局部和整体之间的关系协调配合,以实现系统的综合最优化。 系统工程在自然科学与社会科学之间架设了一座沟通的桥梁。现代数学方法和计算机技术,通过系统工程,为社会科学研究增加了极为有用的定量方法、模型方法、模拟实验方法和优化方法。系统工程为从事自然科学的工程技术人员和从事社会科学的研究人员的相互合作开辟了广阔的道路。 2.简述系统的一般属性 答: (1)整体性:整体性是系统最基本、最核心的特征,是系统性最集中的体现; (2)关联性:构成系统的要素是相互联系、相互作用的;同时,所有要素均隶属于系统整体,并具有互动关系。关联性表明这些联系或关系的特性,并且形成了系统结构问题的基础; (3)环境适应性:任何一个系统都处于一定的环境之中,并与环境之间产生物质、能量和信息的交流。环境的变化必然会引起系统功能及结构的变化。 除此之外,很多系统还具有目的性、层次性等特征。

模拟仿真软件介绍

模拟仿真软件介绍 模拟仿真技术发展至今,用于不同领域、不同对象的模拟仿真软件林林总总,不可胜数,仅对机械产品设计开发而言,就有机构运动仿真软件,结构仿真软件,动力学仿真软件,加工过程仿真软件(如:切削加工过程仿真软件、装配过程仿真软件、铸造模腔充填过程仿真软件、压力成型过程仿真软件等),操作训练仿真软件,以及生产管理过程仿真软件,企业经营过程仿真软件等等。这里仅以一种微机平台上的三维机构动态仿真软件为例,介绍模拟仿真软件的结构和功能。 DDM(Dynamic Designer Motion)是DTI(Design Technology International)公司推出的、工作于AutoCAD和MDT平台上的微机全功能三维机构动态仿真软件,包含全部运动学和动力学分析的功能,主要由建模器、求解器和仿真结果演示器三大模块组成(见图1)。 1.DDM建模器的功能 1)设定单位制。 2)定义重力加速度的大小和方向。 3)可以AutoCAD三维实体或普通图素(如直线、圆、圆弧)定义运动零件。 4)可以定义零件质量特性:

图1 DDM仿真软件模块结 ①如果将三维实体定义为零件,可以自动获得其质量特性。 ②如果用其他图素定义零件,则可人工设定质量特性。 5)可以定义各种铰链铰链用于连接发生装配关系的各个零件,系统提供六种基本铰链和两种特殊铰链。 基本铰链: ①旋转铰——沿一根轴旋转。 ②平移铰——沿一根轴移动。 ③旋转滑动铰——沿一根轴旋转和移动。 ④平面铰——在一个平面内移动并可沿平面法线旋转。 ⑤球铰——以一点为球心旋转。 ⑥十字铰——沿两根垂直轴旋转。 特殊铰链:

多屏互动使用说明V0[1].1

多屏互动使用说明 TCL 多屏互动功能是以智能电视为核心,通过内置闪联协议,实现互联网和局域网 的设备的互联互通、多媒体互动、远程控制等功能。 多屏互动为您提供如下功能: ?互联网影视推送播放:互联网视频网站影视资源浏览并推送到TCL 智能电视进行播 放; ?局域网多媒体文件手机推送:局域网资源发现、浏览和推送到TCL 智能电视进行播 放; ?手机遥控:手机作为遥控器,完全控制TCL 智能电视; ?即拍即看:手机拍照,即时分享到TCL 智能电视查看; 一、使用准备 1.1 安装手机端软件 请从****获取多屏互动手机端android 版本apk 安装包,并安装到android 手机或PAD上。启动手机端软件。

图1 手机端启动界面 1.2 启动电视端软件 在电视上找到“多屏互动”应用,点击打开,开启多屏互动。 图2 电视端启动界面 二、局域网多媒体文件推送 在局域网内,智能手机或PAD 可以将其存储介质上的电影、音乐、图片资源共享并推送到电视端进行播放。局域网功能不需要登录。 2.1 手机设置共享目录 运行手机端的“多屏互动”程序,按“菜单”键弹出出如图3所示菜单,点击“服务器设置”,弹出如图4 所示“服务器设置”界面。再点击“设置共享目录”选项。

选择需要设置的共享目录,点击“确认”按钮,设置;如果没有选择共享目录,直接点击确认,则共享手机的所有文件。 图3 手机端菜单界面 图4 服务器设置界面 2.2 推送播放本地共享资源

2.2.1 查找本地共享资源 在智能手机多屏互动程序界面的“搜索”栏,点击“局域网资源”,则在“结果”栏中显示设备的共享资源(包括图片、音乐、视频)。如点击“图片”,则显示共享的图片列表,如图5 所示。 图5 共享资源列表 选择多媒体资源列表上面的标题,即可以返回资源的上一级界面。 2.2.2 选择目标电视 在智能手机多屏互动程序界面的的“播放”栏,点击“局域网设备”,弹出局域网内在线电视列表。请确保智能电视处在开机并和手机接入同一个局域网。选择一个在线电视点击进入,出现如图6 所示的播放界面。

油藏数值模拟方法

第一章油藏数值模拟方法分析 1.1油藏数值模拟 1.1.1油藏数值模拟简述 油藏数值模拟是根据油气藏地质及开发实际情况,通过建立描述油气藏中流体渗流规律的数学模型,并利用计算机求得数值解来研究其运动变化规律。其实质就是利用数学、地质、物理、计算机等理论方法技术对实际油藏的复制。其基础理论是基于达西渗流定律。 油藏数值模拟就是利用建立起的数学模型来展现真实油藏动态,同时采用流体力学来模拟实际的油田开采的一个过程。基本原理是把生产或注人动态作为确定值,通过调整模型的不确定因素使计算的确定值(生产动态)与实际吻合。其数学模型,是通过一组方程组,在一定假设条件下,描述油藏真实的物理过程。充分考虑了油藏构造形态、断层位置、油砂体分布、油藏孔隙度、渗透率、饱和度和流体PVT性质的变化等因素。这组流动方程组由运动方程、状态方程和连续方程所组成。油藏数值模拟是以应用数学模型为基础的用来再现油田实际生产动态的过程。具体是综合运用地震,地质、油藏工程、测井等方法,通过渗流力学,借助大型计算机为介质条件建立三维底层模型参数场中,对数学方程求解重现油田生产历史,解决实际问题。 油藏数值模拟技术从50 年代的提出到90 年代间历经40 年的发展,日益成熟。现在进入另外一个发展周期。近十年油藏数值模拟为油田开发研究和解决实际决策问题提供强有力的支持。在油田开发好坏的衡量、投资预测及油田开发方案的优选、评价采收指标等应用非常广泛。 油藏数值模拟功能包括两大部分:①复杂渗流力学研究,②实际油气藏开发过程整体模拟研究,且可重复、周期短、费用低。 图1 油藏数值模拟流程图 1.1.2油藏数值模拟的类型 油藏数值模拟类型的划分方法有多种,划分时最常用的标准是油藏类型、需要模拟的油藏流体类型和目标油藏中发生的开采过程,也可以根据油气藏特性及开发时需要处理的各种各样的复杂问题而设定,油气藏特性和油气性质不同,选择的模型也不同,还可以根据油藏数值模拟模型所使用的坐标系、空间维数和相态数来划分。 以油藏和流体类型来划分,其模型有:气体模型、黑油模型和组分模型;以开采过程来划分,其模型包括:常规油藏、化学驱、热采和混合驱模型。 以油藏和流体描述为基础的油藏模型分为两类:黑油模型和组分模型。 (1)黑油模型,是常规油田开发应用的油藏数值模型,用于开采过程中,对油藏 流体组分变化不敏感的情况,是最完善、最成熟的。黑油模型假设质量转移完全取决于压力变化,适应于油质比较重的油藏类型,在这些模型中,流体性质B o、B g、R s决定PVT 的变化,如普通稠油及中质油的油气藏。 (2)组分模型,应用于开采过程中对组分变化敏感的情况。这些情况包括:挥发性油藏和凝析气藏的一次衰竭采油阶段,以及压力保持阶段。同时,多次接触混相过程通常也采用组分模型进行模拟。在组分模型中,适用于油质比较轻、气体组分比较高的油气藏,使用三次状态方程表示PVT变化,如轻质油或凝析气藏。 (3)根据一些特殊开采方式的需要而形成的其他类型的数值模型,如热采模型、注聚

培训的方法——游戏与模拟法123

培训的方法——游戏与模拟法 游戏与模拟法日益受到越来越多的教师和学生的喜欢。学生们欣赏它的趣味性,教师们则认为它在激发学生的学习动机和提高学习的吸引力方面具有无法比拟的优势。 在培训中,游戏与模拟应用广泛。它可用来为新学生介绍课程,也能为专家们传递知识;它们可用来进行高级培训,也可用来初级培训。并且,尽管已流行了几十年,它们的应用领域仍在不断扩大和快速变化。 (一)、游戏与模拟的历史与发展趋势 1、历史 游戏与模拟是一种古老的技术,其根源可以上溯到千年以前。那时的象棋就是对战争的一种模拟。现代战争游戏始于十九世纪的普鲁士。这个国家的军队训 练时经常将士兵分成两部分,排成各种队形进行模拟战争。在整个十九世纪,模 拟游戏的所有因素都已具备。到第一次世界大战时,现代模拟游戏的雏形已经形 成。本世纪,模拟游戏被用来培训制定战争策略,检验战争计划,评估戏剧脚本。 二十世纪游戏与模拟的革新,得益于游戏理论和计算机技术的发展。游戏理论的提出者是数学家J·V·纽曼恩,他定量描述了在竞争和不确定环境中的不 确定行为。他著的《游戏理论与经济行为》一书出版于1944年。在这本书里, 他解释了游戏的逻辑和策略,提出了游戏设计的原则。计算机技术的发展大大简 化了游戏理论的数学成分。它节省了复杂的数学运算,提高了数据分析的速度和 质量。计算机技术为教师们提供了一个“黑箱”,教师们再也没必要为游戏的所 有细节设计一个模型。计算机化的游戏和模拟也给人们以认真和公平的印象。 第一个商业游戏出现于十九世纪五十年代。受战争游戏的启发,美国管理协会的弗兰克·米歇尔第将战争游戏与模拟的原则应用于商业游戏。一年的工作导 致了美国管理协会的高级管理决策模拟系统的出现。此后,模拟与游戏在商业和 其他行业内得到了广泛应用。到1962年,美国已有三分之二的培训学校(中心) 采用了这种方法。 2、发展趋势 尽管在培训中运用模拟与游戏方法已具有几十年的历史,随着技术的发展,管理方面新的需求的出现,它仍在继续发展和变化。 自从1957年在培训中第一次运用游戏与模拟技术以来,计算机就成为这种方法的一部分。 个人计算机的出现,大大改变了游戏与模拟方法的应用范围与操作难度。个人计算机价格便宜,在普通百姓间的普及率越来越高。这就使得以前只能在高级 培训学校(中心)里进行的游戏与模拟,现在大规模进入小公司、个人的办公室甚

ABBRobotstudio仿真软件项目式使用说明

项目一:焊接机器人 1.打开Robot studio软件,单击创建新建空工作站,同时保存一下,如下图所示; 2.选择ABB机器人模型IRB1600,单击添加,选择承重能力和到达距离,选择确定,如下图所示: 3.导入设备-tools-Binzel air 22,并拖动安装在机器人法兰盘上: 4.选择建模-固体-矩形体,设定长宽高,点击创建: 5.选择基本-机器人系统-从布局创建系统-下一步-下一步-完成; 6.控制器启动完成后,选择路径-创建一个空路径, 创建成功后,修改下方参数:moveJ , V1000,Z100 8.激活当前路径,选择机器人起点,单击示教指令 9.开启捕捉末端或角点,同时将机器人的移动模式设为手动线性,将机器人工具移到矩形体的一个角点上,单击示教指令,形成第一条路径,依次示教四个角点,形成路径,右击路径,选择查看机器人目标,可将机器人移动到当前位置 10.路径制作完成后,选择基本-同步到VC,在弹出的对话框中全部勾选,并点击确定,同步完成后选择仿真-仿真设定-将路径添加到主队列,选择应用--确定; 11.选择仿真录像,点击播放,开始仿真录像。 项目二:搬运机器人 1.新建空工作站--导入机器人IRB4600--选择最大承重能力,选择建模-固体-圆柱体,添加两个圆柱体,半径为200mm,高度分别为60mm和500mm,把其中一个作为工具添加到法兰盘上,同时导入两个设备Euro pallet如下图所示: 2.右击物体或在左侧布局窗口中右击物体名称,在下拉菜单中选择设定颜色来更改颜色: 3.根据布局创建机器人系统,细节与项目一相同,系统完全启动后,选择控制器-配置编辑器,在下拉菜单中选择I/O,在弹出窗口中新建Unit,细节如下图所示; 4.Unit新建完毕后,右击新建signal,新建do1和do2,细节如下图所示: 5.新建完毕后,重启控制器 6.重启完毕后,选择仿真-配置-事件管理器-添加事件,细节如下图所示: 7.事件添加完成后,开始创建路径啊,依次示教,机器人到达指定位置时,右击插入逻辑指令,如图所示: 8.路径创建完成后,同步到VC,仿真设定,然后进行仿真录像 项目三:叉车搬运 1.打开软件,新建空工作站,导入机器人模型IRB4600,选择最大承重能力,然后选择基本--导入几何体--浏览几何体--选择本地几何体--打开,如下图所示: 2.利用平移和旋转指令,将不同几何体按下图位置摆放整齐: 3.创建一个300*300*70的方体分别作为tool,将其创建为工具,具体操作如下图所示: 4.设定tool的本地原点为它的中心点,如下图所示: 5.选中tool,点击创建工具,将tool创建为工具,具体操作如下: 6.创建完成后将其安装在机器人法兰盘上,右击机器人选择显示机器人工作范围,可看到机器人最大到达距离,再次选择取消显示: 4.创建四个200*200*200的方体分别作为Box1~Box4,设定为不同颜色,将Box2~Box4设为不可见 5.布局结束,如下图所示:, 6.根据布局创建机器人系统,待系统启动完毕后,选择控制器--配置编辑器-新建Unit --新建signal,包括do1~do 15,如下图所示: 7.设置完成后,重启控制器,打开事件管理器,添加所需事件,包括显示对象,附加对象,提取对象,移动对象四类事件,具体如下:

触发器功能模拟

EDA技术实验项目报告 项目题目:触发器功能模拟 姓名: 院系:应用技术学院 专业:电子信息工程(职教) 学号 指导教师: 综合成绩: 完成时间: 2012 年5月16 日

一、项目实验内容摘要 (1)实验目的: 1、掌握触发器功能的测试方法。 2、掌握基本RS触发器的组成及工作原理。 3、掌握集成JK触发器和逻辑功能及触发方式。 4、掌握几种主要触发器之间相互转换的方法。 5、通过实验,体会CPLD、FPGA芯片的高集成度和多I/O口。 (2)实验内容: 用“代码输入法”将基本RS触发器,同步RS触发器,集成J-K触发器,D触发器同时集成在一个FPGA芯片中模拟其功能,并研究其相互转化的方法。 实验的具体实现要连线测试。 (3)实验原理 如图2—3—1 图2—3—1 二、项目实验源代码 library ieee; use ieee.std_logic_1164.all; entity mff is port(sd,rd,r,s,clk,j,k,d:in std_logic; qrs,nqrs,qrsc,nqrsc,qjk,nqjk,qd,nqd:out std_logic); --定义多触发器I/O. end mff; architecture mff of mff is signal qtp, qbtp,dd,ndd: std_logic; begin rsff:process(rd,sd) --基本RS触发器功能模拟

begin if rd='0' and sd='1' then qrs<='0';nqrs<='1'; elsif rd='1' and sd='0' then qrs<='1';nqrs<='0'; elsif rd='1' and sd='1' then null; end if; end process rsff; rsc:process(clk,rd,sd,r,s) --同步RS触发器功能模拟begin if sd='0' then qrsc<='1'; nqrsc<='0'; elsif rd='0' then qrsc<='0'; nqrsc<='1'; elsif clk='1' then if r='0' and s='1' then qrsc<='0';nqrsc<='1'; elsif r='1' and s='0' then qrsc<='1';nqrsc<='0'; elsif r='0' and s='0' then null; end if; end if; end process rsc; jk:PROCESS(clk, sd, rd, j, k) --JK触发器功能模拟BEGIN IF sd='0' then qtp<='1'; qbtp<='0'; elsif rd='0' THEN qtp<='0';qbtp<='1'; elsif rising_edge(clk) then if j='0' and k='0' then null; elsif j='0' and k='1' then qtp<='0'; qbtp<='1'; elsif j='1' and k='0' then qtp<='1'; qbtp<='0'; else qtp<=NOT qtp; qbtp<=NOT qbtp; end if; end if; qjk<=qtp;nqjk<=qbtp; end process jk; dff:process (clk,rd,sd,d) --D触发器功能模拟begin if (rd='0') then dd<='0'; ndd<='1'; elsif(sd='0') then dd<='1'; ndd<='0'; elsif rising_edge(clk) then dd<=d; ndd<=not d;

相关文档