文档库 最新最全的文档下载
当前位置:文档库 › 高考物理二轮复习 电磁感应综合练习

高考物理二轮复习 电磁感应综合练习

高考物理二轮复习 电磁感应综合练习
高考物理二轮复习 电磁感应综合练习

2009届高考物理二轮复习 电磁感应综合练习

1.如图所示,在光滑水平面上有一个竖直向上的匀强磁场,分布在宽度为l 的区域内。现有一个边长为a 的正方形闭合导线框(a < l ),以初速度v 0垂直于磁场边界沿水平面向右滑过该磁场区域,滑出时的速度为v 。下列说法中正确的是

A.导线框完全进入磁场中时,速度大于(v 0+ v )/2

B.导线框完全进入磁场中时,速度等于(v 0+ v )/2

C.导线框完全进入磁场中时,速度小于(v 0+ v )/2

D.以上三种都有可能

2.如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直。现用一平行于导轨的恒力F 拉ab ,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率

A.等于F 的功率

B.等于安培力的功率的绝对值

C.等于F 与安培力合力的功率

D.小于iE

3.两根相距为L 的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R 0。整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下以速度v 1沿导轨匀速运动时,cd 杆也正好以速度v 2向下匀速运动。重力加速度为g 。以下说法正确的是

A.ab 杆所受拉力F 的大小为R

v L B mg 21

22-μ B.cd 杆所受摩擦力为零

C.回路中的电流强度为()R v v BL 221+

D.μ与v 1大小的关系为1

222v L B Rmg =μ

4.如图所示,电动机牵引一根长l =1.0m ,质量为m=0.10kg ,电阻为R =1.0Ω的导体棒MN ,沿宽度也是l 的固定导线框,在磁感应强度为B =1T 的匀强磁场中从静止开始上升。当导体棒上升了h =3.8m 时达到了一个稳定的速度。该过程中导体产生的电热为2.0J 。已知电动机牵引导体棒过程中电压表、电流表的示数分别稳定在7.0V 和1.0A ,电动机内阻为r =1.0Ω。不计导线框的电阻及一切摩擦。求:⑴导体棒达到的稳定速度v 。⑵导体棒从静止

到达到稳定速度所经历的时间t 。

5.如图所示,一只横截面积为S =0.10m 2,匝数为120匝的闭合线圈放在平行于线圈轴线的匀强磁场中,线圈的总电阻为R =1.2Ω。该匀强磁场的磁感应强度B 随时间t 变化的规律如右图所示。求:⑴从t =0到t =0.30s 时间内,通过该线圈任意一个横截面的电荷量q 为多少?⑵这段时间内线圈中产生的电热Q 为多少?

6.如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金

属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计。在t =0时刻,磁感应强度为B 0,adeb 恰好构成一个边长为L 的正方形。⑴若从t =0时刻起,磁感应强度均匀增加,增加率为k (T/s),用一个水平拉力让金属棒保持静止。在t =t 1时刻,所施加的对金属棒的水平拉力大小是多大?⑵若从t =0时刻起,磁感应强度逐渐减小,当金属棒以速度v 向右匀速运动时,可以使金属棒中恰好不产生感应电流,则磁感应强度B 应怎样随时间t 变化?写出B 与t 间的函数关系式。

7.如图所示,长L 1=1.0m ,宽L 2=0.50m 的矩形导线框,质量为m=0.20kg ,电阻R =2.0Ω,其正下方有宽为H (H >L 2),磁感应强度为B =1.0T ,垂直于纸面向外的匀强磁场。现在,让导线框从下边缘距磁场上边界h =0.70m 处开始自由下落,当其下边缘进入磁场,而上边缘未进入磁场的某一时刻,导线框的速度已经达到了一个稳定值。求从开始下落到导线框下边缘到达磁场下边界过程中,导线框克服安培力做的功是多少?

8.如图所示,处于匀强磁场中的两根足够长、

电阻不计的平行金属

t /s

d

c

a b

e

f

导轨相距1.0m ,导轨平面与水平面成θ=37o角,下端连接阻值为R 的电阻。匀强磁场方向与导轨平面垂直。质量为0.20kg ,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。⑴求金属棒沿导轨由静止开始下滑时的加速度大小;⑵当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8.0W ,求该速度的大小;⑶在上问中,若R =2.0Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小和方向。(g =10m/s 2,sin37o=0.60,cos37o=0.80)

9.图中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计。导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1。当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率v 和滑动变阻器接入电路部分的阻值R 2。

10.如图所示,顶角θ=45o的金属导轨MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均为r 。导体棒与导轨接触点为a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处。求:⑴t 时刻流过导体棒的电流强度I 和电流方向。⑵导体棒作匀速直线运动时水平外力F 的表达式。⑶导休棒在0-t 时间内产生的焦耳热Q 。

a

P

11.如图所示,边长L =2.5m 、质量m =0.50kg 的正方形金属线框,放在磁感应强度B =0.80T 的匀强磁场中,它的一边与磁场的边界MN 重合。在力F 作用下由静止开始向左运动,在5.0s 内从磁场中拉出。测得金属线框中的电流随时间变化的图象如下图所示。已知金属线框的总电阻R =4.0Ω。⑴试判断金属线框从磁场中拉出的过程中,线框中的感应电流方向,并在图中标出。⑵t =2.0s 时金属线框的速度和力F 的大小。⑶已知在5.0s 内力F 做功1.92J ,那么金属线框从磁场拉出的过程中,线框中产生的焦耳热是多少?

12.如图(a)所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图(b)所示。两磁场方向均竖直向上。在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。⑶探讨在金属棒滑到圆弧底端进入匀强磁场

/s

B

t

0 0

2B (b)

13.如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5m ,现有一边长l =0.2m 、质量m =0.1kg 、电阻R =0.1Ω的正方形线框MNOP 以v 0=7m/s 的初速度从左侧磁场边缘水平进入磁场。求:⑴线框MN 边刚进入磁场时受到安培力的大小F 。⑵线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q 。⑶线框能穿过的完整条形磁场区域的个数n 。

参考答案

1.B (进入、穿出过程穿过线圈的磁通量变化量相同,因此通过导线截面的电量q 相

同;而进入、穿出过程线圈受到的安培力冲量为I=Blit=Blq ,也相同,因此动量变化相同,即速度变化相同。)

2.B (安培力的功率就是电功率;F 和安培力的合力做功增加ab 的动能。)

3.D (只有ab 产生感应电动势;F 应等于安培力和ab 所受摩擦力之和;由cd 重力与

摩擦力平衡得D 。)

4.⑴v =2m/s (电动机输入功率P 入=IU=7W ,内阻消耗I 2r =1W ,输出机械功率P=6W ;

匀速时牵引力等于重力跟安培力大小之和利用P=Fv 列式得v )⑵t =1.0s (棒上升h 过程用动能定理:牵引力做功Pt ,克服重力做功mgh=3.8J ,克服安培力做功等于导体中产生的电热2J ,动能增量0.2J )

5.⑴2.0C (R

n q φ

?=

)⑵18J (I 1=5A ,Q 1=6J ;I 2=10A ,Q 2=12J ) 6.⑴(B 0+kt 1)kl 3/r (感应电流大小恒定为r

kL I 2

=

,拉力与安培力平衡,因此

()L

r

kL kt B BLI F 20+==)⑵B =B 0L /(L +vt )(任何时刻穿过回路的磁通量都跟0时刻相同:

B 0L 2=BL (L +vt ))

7. 0.80J (只有进入过程导线框克服安培力做功。取开始下落到线圈刚好全部进入磁

场过程用动能定理,当时的速度就是稳定速度)

8.⑴4m/s 2(由牛顿第二定律得)⑵10m/s (稳定时合力为零:

θθμsin cos 22mg mg R v L B =+,得8.022=R v L B ,由已知82

22=R

v

L B 因此得v )⑶0.4T ,垂直于导轨平面向上 9. 4.5m/s (稳定时安培力跟重力平衡:m g R v l B =22而总功率R

v l B P 2

22=,代入数据得v )6.0Ω(总电阻3Ω,内阻1Ω,因此R 1、R 2并联后阻值2Ω) 10.⑴()r

Bv I 220

+=

(t 时刻电动势为Bv 02

t ,总电阻为(2+2)v 0tr ,由此得电流)⑵()

r

t

v B F 222

02+

=

(拉力跟安培

力等大:F =BIv 0t )⑶(

)

r

t v B Q 2

2

3

02222+

=

(功率P=I 2R ∝R ,因此有Q=t R I t P 2=)11.⑴逆时针

方向 ⑵0.5N ⑶1.67J 12. ⑴R t L B I 02

0=逆时针方向,大小方向都不变。⑵R

t L B Q 0420= ⑶感生电

动势为0

2

01t L B E =,动生电动势为gH L B E 202=。当gH t L 20=时,回路感应电流为零;

当gH t L 20>时,回路感应电流为逆时针方向,大小()

R

t gH

t L L B I 0002-=

;当gH

t L 20<时,回路感应电流为顺时针方向,大小()

R

t L

gH t L B I 0002-=

。13.⑴F =2.8N ⑵Q=2.45J (提示:

设从开始到自由下落,线框下落的高度为H ,当时线框速度为v H ,由竖直分运动得v H 2=2gH ,由能量守恒:2202

121H mv Q mv mgH +=+

。)⑶4(提示:每次进入、穿出磁场过程穿过线框的总电量是q=Bl 2/R =0.4C ,线框受到的安培力总是水平向左的,每次进入、穿出磁场过程安培力的冲量I=BlIt=Blq=0.08N s ,全过程水平方向用动量定理:2nI=mv 0,n =4.4)

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

(最新原创)2021年高考二轮复习物理学案- 电磁感应附答案

(最新原创)2021高考二轮复习物理学案(6)电磁感应一.典例精析 题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B,师雪清方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直. 现使线框以速度v匀速穿过师雪清磁场区域. 以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图师雪清象描述不正确的是() 师雪清 师雪清

解析:在第一段时间内,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。 在第二段时间内,BLvt BS ==Φ,BLv E =,R BLv R E I ==,R BLv P 2)(=。 在第三段时间内, BLvt BS 2==Φ,BLv E 2=,R BLv R E I 2==,R BLv P 2)2(= 师雪清 在第四段时间内, BLvt BS ==Φ,BLv E =,R E I =,R BLv P 2)(=。此题 选B 。师雪清 规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:师雪清 ⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。 ⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状。师雪清 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。 师雪清 题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t=0时刻,磁感应强度为B d c a b e f

大学物理电磁感应部分复习资料

71 电磁感应及电磁场理论 基本内容小结 一、 电磁感应的普遍规律 1、楞次定律 感应电流的方向总是企图使感应电流本身所产生的通过回路面积的磁通量去补偿或者说反抗引起感应电流的磁通量的改变。 感应电流总是阻止或减缓产生感应电流的各种变化(相对运动,转动……)。 2、电源电动势与非静电场强度 所有电源内部都由连接电源正负极的导体构成回路,它与电源外的导体(外电路)连成闭合回路。断路时整个回路处处无电流,通路时回路各截面电流强度相等——电流的连续性。电流通过导体时产生电势降落消耗电能,电源有维持两极电势差、把不同形式的能量转化为电能的能力,这种能力强弱用电动势ε表示,它的大小等于断路时电源两极的电势差,方向由电源负极经电源内部指向正极。 电源内部存在着不同于静电力的电场力称为“非静电力”k F r ,它能作用在 任何电荷上因而是“电场力”,它不是保守力故不是静电力。可引入非静电力强 度/k k E F q =r r 。断路时,在电源内部导体中处处有0k E E +=r r ,使电荷受力平 衡而非定向运动,因而没有电流,这时两电极之间的电势差即电动势为: l d E k i ρ ρ??= 正极 负极(内) ε [(内)表示经由内电路]

72 通路时k E r 并不改变:l d E l d E l d E l d E k k k k i ρ ρρρρρρρ????=?+ ?= ?= 负极 正极(外) 正极 负极(内) 正极 负极(内) ε 可见等于单位正电荷按电动势方向绕电路一周时电源非静电力所作功。 3、法拉第电磁感应定律 m i d dt εΦ=- 式中i ε 、m Φ分别是回路中的感应电动势、通过回路所围面积磁通量的代数值。使用该式时要规定电路的绕行正方向,由右手螺旋法则确定回路所围面 积的正法线方向。m Φ的正、负表示磁感应强度B r 方向与回路所围面积的法线 方向相同、相反;i ε的正、负表明电动势的方向与规定的电路绕行正方向相同、相反。 若线圈是多匝线圈的串联,m Φ称为磁通链,这时感应电动势是各单匝线圈感应电动势的串联,当通过各单匝线圈的磁通相等记为Φ时则m N Φ=Φ。 i d N dt εΦ =- 4、感应电流 当电路闭合时,通过回路截面的感应电流与磁通量的变化率成正比,即 1I m i d R dt Φ=- 5、感应电量 当通过回路的磁通由1Φ改变为2Φ时通过回路截面的电量(感应电量)q 与磁通变化的快慢无关,只与磁通改变量有关,即 121 ()q R =Φ-Φ。 二、 动生电动势 由于回路所围面积的变化或面积取向变化而引起的感应电动势,称为动生

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

高三物理二轮复习 专题10 电磁感应练习

专题十电磁感应 1.法拉第“磁生电”这一伟大的发现引领人类进入了电气时代。下列实验现象,不属于电磁感应现象的是( ) 2.物理课上,老师做了一个奇妙的“跳环实验”。如图所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环。闭合S瞬间,套环立刻跳起。某同学另找来器材再探究此实验,他连接好电路,经重复实验,线圈上的套环均未动。 对比老师演示的实验,这位同学在实验时可能存在的问题是( ) A.电源电压低 B.线圈匝数过多 C.线圈接在直流电源上 D.套环的材料与老师的不同 3.如图(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻,接通S,使电路达到稳定,灯泡A发光,则( ) A.电路(a)中,断开S,A将渐渐变暗 B.电路(a)中,断开S,A将先变得更亮,然后渐渐变暗 知识内容考试要求困惑 必考加试 电磁感应定律b 楞次定律c 法拉第电磁感应定律d 电磁感应现象的两类情况b 互感和自感b 涡流、电磁阻尼和电磁驱动b 导线通电后,其下 方的小磁针偏转 通电导线AB在磁场 中运动 金属杆切割磁感线 时,电流表指针偏转 通电线圈在磁场中 转动 A B C D

C.电路(b)中,断开S,A将渐渐变暗 D.电路(b)中,断开S,A将先变得更亮,然后渐渐变暗 4.如图所示是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合电键调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开电键S。重新闭合电键S,则( ) A.闭合瞬间,A1立刻变亮,A2逐渐变亮 B.闭合瞬间,A2立刻变亮,A1逐渐变亮 C.稳定后,L和R两端电势差一定相同 D.稳定后,A1和A2两端电势差一定相同 5.左图是用电流传感器(相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R,L是一个自感系数足够大的自感线圈,其直流电阻值也为R。右图是某同学画出的在t0时刻开关S切换前后,通过传感器的电流随时间变化图象。关于这些图象说法正确的是( ) A.图甲是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况 B.图乙是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况 C.图丙是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况 D.图丁是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况 6.在“探究电磁感应的产生条件”实验中,如图所示,线圈A通过滑动变阻器和开关连接到电源上,线圈B连接到电流表上,线圈A插在B的里面,下列说法正确的是( ) A.开关闭合瞬间,电流表指针发生偏转 B.开关断开瞬间,电流表指针不发生偏转 C.开关闭合后,将线圈A从B中拔出时,电流表指针 不发生偏转 D.开关闭合后,移动滑动变阻器的滑片P时,电流表 指针不发生偏转 7.在“探究感应电流的方向规律”实验中,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场 §8-1电磁感应定律 一、电磁感应现象 电磁感应现象可通过两类实验来说明: 1.实验 1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势 由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。 3.电动势的数学定义式 定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即 () ??=l K l d K :非静电力 ε (8-1) 说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为 表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正 极时,非静电力所做的功。 (2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:() ??=l K l d K :非静电力 ε (3)电动势是标量,和电势一样,将它规定一个方向,把从负极经 电源内部到正极的方向规定为电动势的方向。 二、电磁感应定律 1、定律表述

在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。数学表达式: 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有 dt d i Φ- =ε (8-2) 上式中“-”号说明方向。 2、i ε方向的确定 为确定i ε,首先在回路上取一个绕行方向。规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ -=ε计算i ε。 三、楞次定律 此外,感应电动势的方向也可用楞次定律来判断。 楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。 说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表 述。 (2)楞次定律是能量守恒定律的反映。 例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设 以匀速度向右运动,求回路中感应电动势。 解:取回路顺时针绕行,l AB =,x AD =, 则通过线圈磁通量为 由法拉第电磁感应定律有: “-”说明:i ε与l 绕行方向相反,即逆时针方向。由楞次定律也能得知,i ε沿逆时针方向。 讨论:(1)如果回路为N 匝,则?=ΦN (?为单匝线圈磁通量) (2)设回路电阻为R (视为常数),感应电流 dt d R R I i i Φ-==1ε 在1t —2t 内通过回路任一横截面的电量为 可知q 与(12ΦΦ-)成正比,与时间间隔无关。 例8-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

二轮复习电磁感应难题

二轮复习电磁感应难题 一.选择题(共10小题) 1.如图所示的电路中,灯泡A、B和电感L与直流电源连接,电感的电阻忽略不计,灯泡A的阻值是灯泡B的2倍,电键K从闭合状态突然断开时,下列判断正确的有( A ) A.A先变亮,然后逐渐变暗B.B先变亮,然后逐渐变暗 C.A立即熄灭,B逐渐变暗D.A、B两灯泡都逐渐变暗 2.如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN,其中OM=R,线框总电阻为r,圆弧MN的圆心为O点,将导线框的O点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B.从t=0时刻开始,让导线框以O点为圆心,以恒定的角速度ω沿逆时针方向做匀速圆周运动,则线框中的电流有效值为( D ) A.B. C. D. 3.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动穿过磁场.外力F随时间t变化的图线如图乙所示.已知线框质量m=1kg、电阻R=1Ω、边长L=0.5m.以下说法不正确的是( D ) A.做匀加速直线运动的加速度为1m/s2 B.匀强磁场的磁感应强度为2T

C.线框穿出磁场时速度为1m/s D.线框穿过磁场的过程中,线框上产生的焦耳热为 1.5J 4.如图所示,水平桌面上放一闭合铝环,当一条形磁铁从铝环正上方附近迅速向下靠近铝环时( A ) A.铝环有收缩的趋势,对桌面的压力大于铝环重力 B.铝环有扩张的趋势,对桌面的压力大于铝环重力 C.铝环有收缩的趋势,对桌面的压力小于铝环重力 D.铝环有扩张的趋势,对桌面的压力小于铝环重力 5.如图一面积为S的单匝矩形线圈处于一个交变的匀强磁场中,磁感应强度的变化规律为:B=B0sinωt.下列说法正确的是( B ) A.线框中不会产生方向不断变化的交变电流 B.在t=时刻,线框中感应电流将达到最大值 C.对应磁感应强度B=0的时刻,线框中感应电流也一定为零 D.若增大磁场交变频率,则线框中感应电流的频率也将同倍数增加,但有效值不变 6.如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为E1,下落距离为0.8R时电动势大小为E2,忽略涡流损耗和边缘效应.关于E1、E2的大小和铜棒离开磁场前两端的极性,下列判断正确的是( B ) A.E1<E2,a端为正B.E1<E2,b端为正 C.E1>E2,a端为正D.E1>E2,b端为正 7.如图所示照直放置的螺线管与导线abcd构成闭合电路,电路所围区域内有方向垂直纸面向里的匀强磁场,螺线管下方水平桌面上有一个导体圆环.欲使导体圆环受到向上的磁场力,磁感应强度随时间变化的规律应是( A )

大学物理习题17电磁感应

班级______________学号____________姓名________________ 练习 十七 一、选择题 1. 如图所示,有一边长为1m 的立方体,处于沿y 轴指 向的强度为0.2T 的均匀磁场中,导线a 、b 、c 都以50cm/s 的速度沿图中所示方向运动,则 ( ) (A)导线a 内等效非静电性场强的大小为0.1V/m ; (B)导线b 内等效非静电性场强的大小为零; (C)导线c 内等效非静电性场强的大小为0.2V/m ; (D)导线c 内等效非静电性场强的大小为0.1V/m 。 2. 如图所示,导线AB 在均匀磁场中作下列四种运动, (1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行 于磁场的转动。关于导线AB 的感应电动势哪个结 论是错误的? ( ) (A)(1)有感应电动势,A 端为高电势; (B)(2)有感应电动势,B 端为高电势; (C)(3)无感应电动势; (D)(4)无感应电动势。 3. 一“探测线圈”由50匝导线组成,截面积S =4cm 2,电阻R =25∧。若把探测线圈在磁场中迅速翻转?90,测得通过线圈的电荷量为C 1045-?=?q ,则磁感应强度B 的大小为 ( ) (A)0.01T ; (B)0.05T ; (C)0.1T ; (D)0.5T 。 4. 如图所示,一根长为1m 的细直棒ab ,绕垂直于棒且过其一端a 的轴以每秒2转的角速度旋转,棒的旋转平面垂直于0.5T 的均匀磁场,则在棒的中点,等效非静电性场强的大小和方向为( ) (A)314V/m ,方向由a 指向b ; (B)6.28 V/m ,方向由a 指向b ; (C)3.14 V/m ,方向由b 指向a ; (D)628 V/m ,方向由b 指向a 。 二、填空题 1. 电阻R =2Ω的闭合导体回路置于变化磁场中,通过回路包围面的磁通量与时间的关系为)Wb (10)285(3 2 -?-+=Φt t m ,则在t =2s 至t =3s 的时间内,流过回路导体横截面的感应电荷=i q C 。 (1) (2) (3) (4)

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

2020届二轮复习 电磁感应与电路 作业

课时作业7电磁感应与电路 A卷专题强化练 一、选择题(1~7题为单项选择题,8~10题为多项选择题) 1.[2019·全国卷Ⅲ,14]楞次定律是下列哪个定律在电磁感应现象中的具体体现() A.电阻定律B.库仑定律 C.欧姆定律D.能量守恒定律 命题意图:本题考查了对基本规律的理解能力,体现了能量观念这一重要核心素养. 解析:楞次定律的本质是感应磁场中能量的转化,是能量守恒定律在电磁感应现象中的具体体现,故选项D正确. 答案:D 2. 有一个本来无电流的固定的金属圆环如图所示,虚线为其轴线.在其右侧有一个条形永磁体,永磁体在圆环的轴线上,当永磁体绕垂直于纸面的水平轴OO′匀速转动时,如果从右往左看,下列情况下,关于圆环中感应电流的方向和大小的说法正确的是() A.当永磁体顺时针开始转动瞬间,感应电流沿顺时针方向,感应电流最大 B.当永磁体顺时针开始转动瞬间,感应电流沿逆时针方向,感应电流最大 C.当永磁体逆时针开始转动瞬间,感应电流沿顺时针方向,感应电流最小 D.当永磁体逆时针开始转动瞬间,感应电流沿逆时针方向,感应电流最小 解析:根据楞次定律可知,不管永磁体是顺时针转动还是逆时针转动,开始转动瞬间垂直向左穿过圆环的磁感线条数减少,由楞次定律可知感应电流的磁场方向一定向左,根据安培定则可知,感应电流的方向是顺时针方向(从左往右看),此时穿过圆环的磁通量最大,磁通量的变化率最小,所以感应电流最小,选项C正确.

用绝缘导线绕成一圆环,环内有一用同样绝缘导线折成的内接正 现把它们放在方向垂直环面向里的匀强磁场当匀强磁场均匀变化时,在圆环和四边形线框中产生的感应电流不考虑感应电流产生的磁场对磁场变化的影响 副线圈的匝数比,电压表和电流表均为理想电表, V)的正弦交流电,图中 不计,反向电阻为无穷大

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

北京市高三物理二轮复习 电磁感应专题教学案

高考综合复习电磁感应专题(二) 一、电磁感应现象:一切电磁感应现象都可以归结为磁通量的变化引起的: 如: 二、感应电流的方向判断: 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 对于导体切割磁感线时的感应电动势方向的判断,也可以利用右手定则:伸开右手,让磁场穿过掌心,大拇指指向运动方向,四指指向导体内感应电流方向或导体内感应电动势的正极。 三、法拉第电磁感应定律: (1)在电磁感应现象中产生的感应电动势大小,跟穿过这一回路的磁通变化率成正比。 表达式:——平均值

(2)导体在磁场中切割磁感线产生电动势。 表达式:ε=BLv(垂直切割)——瞬时值 若v不与B垂直,则可以将v分解为垂直于B和平行于B,其中垂直分量产生感应电动势。 (3)自感现象:由于通过导体本身电流发生变化而引起的电磁感应现象。 自感电动势,即与电流的变化率成正比,式中L为自感系数由线圈本身的长度、横截面积、匝数以及有无铁芯决定。 [例题分析] 例1、通电直导线与闭合金属框彼此绝缘,它们处于同一平面内,导 线位置与线框轴重合。为了使线框中产生如图所示方向的感应电流,可 以采取的措施是: A、减弱直导线中的电流强度 B、线框以直导线为轴转动 C、线框向右平动 D、线框向左平动 分析:通电直导线产生磁场的磁感线是以电流为圆心的同心圆。闭 合线框在如图所示状态下磁通量j为零。当直导线中电流强度发生变化或线框以直导线为轴转动时,通过线框的磁通量j始终是零,Δj=0,故无感应电流产生。 当线框向右或向左平动时,通过线框的磁通量j都要增加。向右平动原磁场方向为“x”,向左平动原磁场方向为“·”为了阻碍磁通量的增加产生题目中要求感生电流的方向。由楞次定律可判断线框应向左平动,故D选项是正确的。 例2、如图所示,用金属导线变成闭合正方形导线框边长为L,电阻 为R,当它以速度v匀速地通过宽也为L的匀强磁场区过程中,外力需做 功W,则该磁场磁感应强度应为多大?若仍用此种导线变成边长为2L的正 方形导线框,以相同速度通过同一磁场区,外力应做功为原来的几倍? 解:正方形线框匀速通过磁场ΣF=0,当进入磁场时,cd边切割磁感 线产生ε→产生I→受F安:F外=F安。当出磁场时ab边切割磁感线产生ε→产生I→受F安,则F外=F安。 外力功W=F外·2L=F安×2L=BIL×2L=2BL2× 。 则磁感应强度。 当线框边长为2L时,此时真正产生感应电流的时候是当cd、ab边在磁场中运动时,外力功W'为:(此时电阻为原来的2倍)

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

高三物理高考二轮复习专题:电磁感应与电路

2010高考物理第二轮复习 专题四 电磁感应与电路 [方法归纳] 电磁感应是电磁学中最为重要的内容,也是高考的热点之一。电磁感应是讨论其他形式能转化为电能的特点和规律;电路问题主要是讨论电能在电路中传输、分配并通过用电器转化成其他形式能的特点和规律,本专题的思想是能量转化与守恒思想。 在复习电磁感应部分时,其核心是法拉第电磁感应定律和楞次定律;这两个定律一是揭示感应电动势的大小所遵循的规律;一个是揭示感的电动势方向所遵循的规律,法拉第电磁感定律的数学表达式为:n t ε?Φ =?,磁通量的变化率越大,感应电动势越大.磁通量的变化率越大,外界所做的功也越大.楞次定律的表述为:感应电流的磁场总要阻碍引起感应电流的磁通量的变化,从楞次定律的内容可以判断出:要想获得感应电流就必须克服感应电流的阻碍,需要外界做功,需要消耗其他形式的能量.在第二轮复习时如果能站在能量的角度对这两个定律进行再认识,就能够对这两个定律从更加整体、更加深刻的角度把握. 电路部分的复习,其一是以部分电路欧姆定律为中心,包括六个基本物理量(电压、电流、电阻、电功、电功率、电热),三条定律(部分电路欧姆定律、电阻定律和焦耳定律),以及串、并联电路的特点等概念、定律的理解掌握和计算;其二是以闭合电路欧姆定律为中心讨论电动势概念、闭合电路中的电流、路端电压以及闭合电路中能量的转化;其三,对高中物理所涉及的三种不同类别的电路进行比较,即恒定电流电路、变压器电路、远距离输电电路,比较这些电路哪些是基本不变量,哪些是变化量,变化的量是如何受到不变量的制约的.其能量是如何变化的. 在恒定电流电路中,如果题目不加特殊强调,电源的电动势和内电阻是基本不变量,在外电阻改变时其他量的变化受到基本不变量的制约. 在变压器电路中,如果题目不加特殊强调,变压器的输入电压不变,其他量改变时受到这个基本不变量的制约. 在远距离输电电路中,如果题目不加特殊强调,发电厂输出的电功率不变,其他量改变时受到这个基本不变量的制约. [典例分析] 1.电磁感应的图象问题 方法:图象问题有两种:一是给出电磁感应过程选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应的物理量.其思路是:利用法拉第电磁感应定律计算感应电动势.感应电流的大小,利用楞次定律或右手定则判定感应电流的方向,利用图象法直观,明确地表示出感应电流的大小和方向.掌握这种重要的物理方法. 例1、如图4—1(a )所示区域(图中直角坐标系x O y 的1、3象限)内有匀强磁场,磁感应强度方向垂直于图面向里,大小为B ,半径为l ,圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在图面内沿逆时针方向匀速转动,导线框回路电阻为R . (1)求线框中感应电流的最大值I 0和交变感应电流的频率f . (2)在图(b )中画出线框转一周的时间内感应电流I 随时间t 变化的图象.(规定在图(a )中线框的位置相应的时刻为t =0)

高考物理电磁感应

高考物理电磁感应

第一课时:电磁感应现象、楞次定律 _____班姓名_____________ 【知识梳理】 1.产生感应电流的条件:只要穿过闭合回路的磁通量发生变化.引起磁通量变化的原因很多,如面积的变化、正对面积的变化、磁场强度的变化等。 2.楞次定律:判断感应电流方向。感应电流的磁场总是阻碍引起感应电流磁场磁通量的变化。应用楞次定律判断感应电流的方向的具体步骤为:(1)明确原磁通量的方向(2)判断磁通量的增减情况(3)确定感应电流的磁场的方向(4)利用安培定则反推感应电流的方向. 4.导体切割磁感线产生感应电流的方向用右手定则来判断较为简便. 5.楞次定律中的“阻碍”作用正是能的转化和守恒定律的反映.愣次定律的另一种表述:感应电流的效果总是反抗引起感应电流的原因.当问题不涉及感应电流的方向时,用另一种表述判断比较方便.【知识梳理】 例1.(2002年上海卷) 如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度。两个相同的磁性小球,

同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面。下面对于两管的描述中可能正确的是( ) A.A管是用塑料制成的,B管是用铜制成的B.A管是用铝制成的,B管是用胶木制成的C.A管是用胶木制成的,B管是用塑料制成的D.A管是用胶木制成的,B A B 例2.(2003年上海综合卷11)唱卡拉OK用的话筒,内有传感器。其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号。下列说法正确的是:() A.该传感器是根据电流的磁效应工作的 B.该传感器是根据电磁感应原理工作的 C.膜片振动时,穿过金属线圈的磁通量不变D.膜片振动时,金属线圈中不会产生感应电动势

相关文档
相关文档 最新文档