文档库 最新最全的文档下载
当前位置:文档库 › 动圆专题复习

动圆专题复习

动圆专题复习
动圆专题复习

动圆专题

【知识梳理】动圆问题常常和与圆有关的性质联系在一起,比如圆的垂径定理及其推论,圆的等对等定理及其推论.所以要解决此类问题在圆中添加半径、弦心距是常用的技巧. 【例题点拨】例1 如图13-1,已知一次函数(0)y kx b k =+≠的图象经过点A (0,3),B (4,6) (1)求一次函数的解析式;

(2)点P 是一次函数直线上的一个动点,以点P 为圆心,5为半径作圆,如果P 在x 轴上截得的线段长为6,求点P 的坐标.

【思路分析】 P 在x 轴上截得的线段长为6,可以看作P 的一条弦长为6,又因为P 的半径为5,便可通过勾股定理求得弦所对的弦心距,就是点P 的纵坐标的绝对值.点P 在第一象限或第三象限.

例2 如图13-2,二次函数2

15222

y x x =-+

-的图像与x 轴的交点是A,B (点B 在点A 右

边),与y 轴的交点是M. (1)求证:O A M O M B

x

(2)P

是经过A,B两点的一个动圆,当P

与y轴相交,且在y轴上两交点的距离为3时,求圆心P的坐标.

【思路分析】由P

在y轴上两交点的距离为3要联想到x轴的交点A,B之间的距离也是3,继而考虑在同圆中弦相等考虑用等对等定理证明弦所对的弦心距相等,也就是点P的横坐标和纵坐标的绝对值相等.

【强化训练】170. 在平面直角坐标系中,直线

4

4

3

y x

=-+分别交x轴、y轴于点A,B

两点.

(1)求A,B两点的坐标.

(2)设P是直线AB上一动点(点P与点A不重合),P

始终和x轴相切,和直线AB相交于C,D两点(点C的横坐标小于点D的横坐标),设P点的横坐标为m,试用含有m的代数式表示C点的横坐标.

171. 如图13-3,已知直线l:

3

3

4

y x

=+,它与x轴、y轴的交点分别为A,B两点

.

x

(1)求点A ,点B 的坐标;

(2)设F 是x 轴上一动点,用尺规作图作出P ,使P 经过点B 且与x 轴相切于点F (不写作法和证明,保留作图痕迹);

(3)设(2)中所作的P 的圆心坐标为P (x ,y ),求y 与x 的函数关系式; (4)是否存在这样的P .既与x 轴相切又与直线l 相切于点B ,若存在,求出圆心P 的坐标;若不存在,请说明理由.

172. 已知二次函数2

12

y x bx c =++的图像经过点A (-3,6),并与x 轴交于点B (-1,0)

和点C ,顶点为P.

(1)求这个二次函数的解析式;

(2)在x 轴上是否存在一点M ,使以M 为圆心的圆与AC 、PC 所在的直线及y 轴都相切?如果存在,请求出点M 的坐标;若不存在,请说明理由.

173. 如图13-4,在矩形ABCD 中,2,3AB AD ==,点P 是边AD 上的一点,联结CP ,过点P 作P F C P ⊥交AB 于F ,以点C 为圆心,CP 长为半径作C ,把C 沿直线PF 翻折得到

x

,

'

C .

(1)如果

,

'

C

与直线AB相切,求PD的长;

(2)如果

,

'

C

过点A,求PD的长. F

B

A

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

圆的动点问题--经典模拟题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. 25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. 25.如图,在 半径为5的⊙O 中,点 A 、 B 在⊙O 上,∠AOB=90°,点 C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点 D ,设AC=x ,BD=y . (1)求y 关于x 的函数解析式,并写出它的定义域; (2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由. A B E F C D O A B E F C D O A B C P E M 第25题图1 D A B C M 第25题图2 N

(word完整版)初三数学圆所有经典难题

圆所有经典难题 一,选择题 1.下列命题中正确的有( )个 (1) 平分弦的直径垂直于弦 (2)经过半径一端且与这条半径垂直的直线是圆的切线 (3)在同圆或等圆中,圆周角等于圆心角的一半 (4)平面内三点确定一个圆 (5)三角形的外心到各个顶点的距离相等 (A) 1个 (B) 2个 (C) 3个 (D) 4个 2.AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( ) A .97° B .104° C .116° D .142° 3.下列说法正确的是 ( ) A 、三点确定一个圆。 B 、一个三角形只有一个外接圆。 C 、和半径垂直的直线是圆的切线。 D 、三角形的内心到三角形三个顶点距离相等。 4.在半径等于5cm 的圆内有长为35cm 的弦,则此弦所对的圆周角为( ) A 、60o或120o B. 30o或120o C. 60o D. 120o 5.如图4,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( ) A、2 B、3 C、4 D、5 6.与三角形三个顶点距离相等的点,是这个三角形的 ( ) A 、 三条中线的交点, B 、三条角平分线的交点, C 、三条高的交点, D 、三边的垂直平分线的交点。 7.圆的半径为5cm ,圆心到一条直线的距离是7cm ,则直线与圆( ) A 、有两个交点, B 、有一个交点, C 、没有交点, D 、交点个数不定。 8.两圆的半径比为 2 cm 与3cm ,圆心距等于小圆半径的2倍,则两圆的关系为 ( ) A 、相离, B 、外切, C 、相交, D 、内切或内含 9.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ), A B P O

专题——数轴上的动点问题

数轴上的动点问题 动点问题处理策略 1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。 2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。(简单说成左减右加) 3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论 4、绝对值策略:对于两个动点P,Q ,若点P,Q 的左右位置关系不明确或有多种情况,可用p,q 两数差的绝对值表示P,Q 两点距离,从而避免分复杂分类讨论 … 5、中点公式:若数轴上点A,B 表示的数分别为a,b ,M 为线段AB 中点,则M 点表示的数为 2 a b 类型一、数轴上两点距离的应用 例1、已知数轴上A,B 两点表示的数分别为-2和5,点P 为数轴上一点 (1)若点P 到A,B 两点的距离相等,求P 点表示的数 (2)若PA=2PB,求P 点表示的数 … (3)若点P 到点A 和点B 的距离之和为13,求点P 所表示的数。 B A O B A O B A O

练、已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一动点,对应数为x . (1)若P 为线段AB 的三等分点,则x 的值为_________ (2)若线段PA=3PB,则P 点表示的数为__________ ] 类型二、 绝对值的处理策略 例2、已知数轴上 A,B 两点表示的数分别为-8和20,点P,Q 分别从A,B 两点同时出发,P 点运动速度为每秒3个单位, Q 点运动速度为每秒1个单位,设运动时间为t 秒 (1)点P 向右运动,Q 点向左运动,当t 为何值时,P,Q 两点之间距离为8 ! (2)若P 点和Q 点都向右运动,多少秒后,P,Q 两点之间距离为8 (3)在(2)的条件下,另一动点M 同时从O 点出发,以每秒2个单位的速度向右运动,多少秒后,点M 到点P 和点Q 的距离相等 )

圆中动点问题2

圆中动点问题 一、选择题 【题1】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确 ...的是( C ) A、当弦PB最长时,ΔAPC是等腰三角形。 B、当ΔAPC是等腰三角形时,PO⊥AC。 C、当PO⊥AC时,∠ACP=300. D、当∠ACP=300,ΔPBC是直角三角形 【答案】 【题2】如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F两点,则EF的长( C )

A.等于42 B.等于43 C.等于6 D.随P点位置的变化而变化 【答案】分析:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OD:OA,即(r+x):1=9:(r﹣x),求出r2﹣x2=9,根据垂径定理和勾股定理可求出答案. 解答:解:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x, ∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,∴OA=4+5=9,0B=5﹣4=1, ∵AB是直径,∴∠APB=90°,∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA, ∴OC OD OB OA =,即 9 1 r x r x + = - 解得:r2﹣x2=9, 由垂径定理得:OE=OF,OE2=EN2﹣ON2=r2﹣x2=9, 即OE=OF=3,∴EF=2OE=6,故选C. 【题3】如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是0.5cm 【答案】解:∵⊙O1的半径为1cm,⊙O2的半径为2cm,∴当两圆内切时,圆心距为1,∵⊙O1在直线l上任意滚动,∴两圆不可能内含,∴圆心距不能小于1,故选D. 【题4】如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5cm或2cm≤d<3cm.

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

备战中考数学圆的综合-经典压轴题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积. 【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3. 【解析】 试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切. (2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论. (3)连接BD,由AG2=AF?AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案. 试题解析:解:(1)PA与⊙O相切.理由如下: 如答图1,连接CD, ∵AD为⊙O的直径,∴∠ACD=90°. ∴∠D+∠CAD=90°. ∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D. ∴∠PAC+∠CAD=90°,即DA⊥PA. ∵点A在圆上, ∴PA与⊙O相切.

(2)证明:如答图2,连接BG , ∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG. ∵∠GAF=∠BAG ,∴△AGF ∽△ABG. ∴AG :AB=AF :AG. ∴AG 2=AF?AB. (3)如答图3,连接BD , ∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF?AB ,55∴5 ∵CG ⊥AD ,∴∠AEF=∠ABD=90°. ∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴ AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE = -=. ∵224EG AG AE = -=,∴413FG EG EF =-=-=. ∴1132322 AFG S FG AE ?=??=??=.

动点问题--圆(含答案)

2.如图7,梯形中,,,, ,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. 1)当点落在梯形的中位线上时,求的值;(全等) 2)试用表示,并写出的取值范围;(相似) 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+ 相似) 答案】解:(1)如图1,为梯形的中位线,则,过点作 于点,则有: 在中,有 在中, 解得: 2)如图2,交于点,与关于对称, 则有:, 又与关于对称, 3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 解得:(舍去) 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与

【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明, (2)分两种情况①当t>1 时,点E在y轴的负半轴上,02 时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

七年级动点问题专题

七年级动点问题专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目,解决这类问题的关键是:动中求静,灵活运用有关数学知识解决问题。 数学思想:分类思想、数形结合思想、转化思想。 1.已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且|2b ﹣6|+(a+1)2=0,A 、B 之间的距离记作AB ,定义:AB=|a ﹣b|. (1)求线段AB 的长. (2)设点P 在数轴上对应的数x ,当PA ﹣PB=2时,求x 的值. (3)M 、N 分别是PA 、PB 的中点,当P 移动时,指出当下列结论分别成立时,x 的取值范围,并说明理由: ①PM+PN 的值不变,②|PM ﹣PN|的值不变. 2.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x . (1)PA=_________;PB=_________(用含x 的式子表示) (2)在数轴上是否存在点P ,使PA+PB=5?若存在,请求出x 的值;若不存在,请说明理由. (3)如图2,点P 以1个单位/s 的速度从点O 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问: 的值是否发生变化? 请说明理由. 3、在直角三角形ABC 中,BC =6,AC =8,点D 在线段AC 上从C 向A 运动.设CD =x ,△ABD 的面积为y . (1)请写出y 与x 的关系式; (2)当x 为何值时,y 有最大值,最大值是多少?此时点D 在什么位置? (3)当△ABD 的面积是△ABC 的面积的一半时,点D 在什么位置?

最新中考动点问题专题(教师讲义带答案)

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D. 1.C 考点二:动态几何型题目

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

初二数学动点问题专题分析

初二数学“动点问题”分析 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。 在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等. 一、建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢? 1.应用勾股定理建立函数解析式。 2.应用比例式建立函数解析式。 3.应用求图形面积的方法建立函数关系式。 二、动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。 (一)以动态几何为主线的压轴题。 1.点动问题。 2.线动问题。 3.面动问题。 (二)解决动态几何问题的常见方法有: 1.特殊探路,一般推证。 2.动手实践,操作确认。 3.建立联系,计算说明。 (三)本大类习题的共性: 1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数. 2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。 三、双动点问题 点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为中考试题的热点, 1.以双动点为载体,探求函数图象问题。 2.以双动点为载体,探求结论开放性问题。 3.以双动点为载体,探求存在性问题。 4.以双动点为载体,探求函数最值问题。 双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 四:函数中因动点产生的相似三角形问题五:以圆为载体的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。

2014年中考数学专题复习:与圆有关的动点问题(精品含答案)(最新整理)

2014 年中考数学专题复习:与圆有关的动点问题 1、如图,⊙O 的直径 AB=4,C 为圆周上一点,AC=2,过点 C 作⊙O 的切线 DC ,P 点为优弧 CBA 上一动点(不与 A .C 重合). (1) 求∠APC 与∠ACD 的度数; (2) 当点 P 移动到 CB 弧的中点时,求证:四边形 OBPC 是菱形. (3)P 点移动到什么位置时,△APC 与△ABC 全等,请说明理由. 2、如图,在⊙O 上位于直径 AB 的异侧有定点 C 和动点 P , AC= 1 2 AB ,点 P 在半圆弧 AB 上运动(不与 A 、B 两点重合),过点 C 作直线 PB 的垂线 CD 交 PB 于 D 点. (1) 如图 1,求证:△PCD ∽△ABC ; (2) 当点 P 运动到什么位置时,△PCD ≌△ABC ?请在图 2 中画出△PCD 并说明理由; (3) 如图 3,当点 P 运动到 CP ⊥AB 时,求∠BCD 的度数.

3、如图,在半径为 2 的扇形 AOB 中,∠AOB=90°,点 C 是弧 AB 上的一个动点(不与点 A、B 重合)OD⊥BC,OE⊥AC,垂足分别为 D、E. (1)当BC=1 时,求线段 OD 的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在, 请说明理由; (3)设BD=x,△DOE的面积为 y,求y 关于x 的函数关系式,并写出它的定义域. 4、如图,菱形ABCD 的边长为2cm,∠DAB=60°.点P 从A 点出发,以cm/s 的速度,沿AC 向C 作匀速运动;与此同时,点 Q 也从A 点出发,以 1cm/s 的速度,沿射线 AB 作匀速运 动.当 P 运动到 C 点时,P、Q 都停止运动.设点 P 运动的时间为 ts. (1)当P 异于A.C 时,请说明PQ∥BC; (2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P与 边BC 分别有 1 个公共点和 2 个公共点?

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

数轴上的动点问题专题(完整资料).doc

【最新整理,下载后即可编辑】 数轴上的动点问题专题 1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴 上一动点,其对应的数为x。⑴若点P到点A、点B的距离相等,求点P对应的数; ⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说明理由? ⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B 的距离相等? 2. 数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。 (1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;

(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表 示的数。 (3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存 在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求 出t 值;若不存在,说明理由。 3.已知数轴上有顺次三点A, B, C 。其中A 的坐标为-20.C 点坐标 为40,一电子蚂蚁甲从C 点出发,以每秒2个单位的速度向左 移动。 (1)当电子蚂蚁走到BC 的中点D 处时,它离A,B 两 处的距离之和是多少? (2)这只电子蚂蚁甲由D 点走到BA 的中点E 处时,需要几 秒钟? (3)当电子蚂蚁甲从E 点返回时,另一只电子蚂蚁乙同时从点 C 出发,向左移动,速度为秒3个单位 长度,如果两只电子蚂

蚁相遇时离B 点5个单位长度,求B 点的坐标 4. 如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。 ⑴求AB 中点M 对应的数; ⑵现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数; ⑶若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

动点问题-圆(含答案)初三数学

2.如图7,梯形中,,,,,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. (1)当点落在梯形的中位线上时,求的值;(全等) (2)试用表示,并写出的取值范围;(相似) (3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有: 在中,有 在中, 又 解得: (2)如图2,交于点,与关于对称, 则有:, 又 又与关于对称, (3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 则 又 解得:(舍去) ① ② ③ 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y 轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的 值;若不存在,请说明理由.(讨论对称轴+全等+相似) 【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解, (3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a, ②0<t≤1时,如图2,点E在y轴的正半轴或原点上, 同理可证△PMF≌△PNE, ∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2﹣a, (3)如图3,(Ⅰ)当1<t<2时, ∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0) ∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=1﹣t, 由(1)得△PMF≌△PNE [来源:学,科,网] ∴NE=MF=t,∴OE=t﹣1

初三数学-有关圆的经典例题

初三数学有关圆的经典例题 1. 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB与AC有不同的位置关系。 解:由题意画图,分AB、AC在圆心O的同侧、异侧两种情况 讨论, 当AB、AC在圆心O的异侧时,如下图所示, 过O作OD⊥AB于D,过O作OE⊥AC于E, ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB、AC在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC的顶点A、B在⊙O上,⊙O的半径为R,⊙O与AC交于D, (1)求证:△ABC是直角三角形; 分析: 则AF=FB,OD⊥AB,可证DF是△ABC的中位线;

(2)延长DO交⊙O于E,连接AE,由于∠DAE=90°,DE⊥AB,∴△ADF 解:(1)证明,作直径DE交AB于F,交圆于E 又∵AD=DC ∴AB⊥BC,∴△ABC是直角三角形。 (2)解:连结AE ∵DE是⊙O的直径 ∴∠DAE=90° 而AB⊥DE,∴△ADF∽△EDA 例3. 如图,在⊙O中,AB=2CD,那么() 分析: 解:解法(一),如图,过圆心O作半径OF⊥AB,垂足为E,

∵ 在△AFB中,有AF+FB>AB ∴选A。 解法(二),如图,作弦DE=CD,连结CE 在△CDE中,有CD+DE>CE ∴2CD>CE ∵AB=2CD,∴AB>CE ∴选A。 例 4. 求CD的长。 分析:连结BD,由AB=BC,可得DB平分∠ADC,延长 AB、DC交于E,易得△EBC∽△EDA,又可判定AD是⊙O 的直径,得∠ABD=90°,可证得△ABD≌△EBD,得DE=AD,利用△EBC∽△EDA,可先求出CE的长。 解:延长AB、DC交于E点,连结BD

相关文档
相关文档 最新文档