文档库 最新最全的文档下载
当前位置:文档库 › 第二十四讲 代数式的恒等变形

第二十四讲 代数式的恒等变形

第二十四讲 代数式的恒等变形
第二十四讲 代数式的恒等变形

代数式的恒等变形

例题求解

【例1】已知有理数x ,y ,z 满足)(2

121z y x z y x ++=-+-+,那么(x —yz)2

的值为 . (2001年北京市竞赛题)

【例2】 若3

2

211-=

+=-z y x ,则222z y x ++可取得的最小值为( ) A .3 B .14

59 C .29

D .6。 (2004午武汉市选拔赛试题)

【例3】怎样的整数a 、b 、c 满足不等式:c b ab c b a 233222++<+++. (匈牙利数学奥林匹克试题)

【例4】 求方程m 2-2mn+14n 2=217的自然数解. (上海市竞赛题)

【例5】求实数 x 、y 的值,使得(y -1)2+(x+y -3)2+(2x+y -6)2达到最小值. 、

【例6】 为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD ,AB=10m ,BC=20m)上进行绿化,中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个直角三角形)上铺设草坪,并要求AC =AH=CF=CG ,那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH (中间种花的一块)面积最大?若存在,请求出该设计中AE 的长和四边形EFGH 的面积;若不存在,请说明理由.

学历训练

1.若03)(2222=+++-++c b a c b a ,则=-++abc c b a 3333 . (2003年江西省中考题)

2.设2122+=-b a ,2122-=-c b ,则222222444a c c b b a c b a ---++的值等于 . (第1l 届“希望杯”邀请赛试题) 3.分解因式:32422+++-b a b a = .

4,已知实数 x 、y 、z 满足5=+y x ,92-+=y xy z ,那么z y x 32++= . (“祖冲之杯”邀请赛试题)

5.若实数x 、y 满足052422=+--+y x y x ,则

x

y y x 23-+的值是( )

A .1

B .22

3

+ C .223+ D .232

6.已知20001999+=x a ,20011999+=x b ,20021999+=x c ,则多项式ac bc ab c b a ---++222的值为( )

A .0

B .1

C . 2

D .3 (2002年全国初中数学竞赛题)

7.整数x 、y 满足不等式y x y x 22122+≤++,则x+y 的值有( )

A .1个

B .2个

C .3个

D .4个 (第14届“希望杯”邀请赛试题) 8.化简312213242--+为( )

A .5-43

B . 43-l

C .5

D . 1 (2003年天津市竞赛题)

9.已知正整数 a 、b 、c 满足不等式c b ab c b a 8942222++<+++,求a 、b 、c 的值.

(江苏省竞赛题)

10.已知x 、y 、z 为实数,且满足??

?=+-=-+3

26

2z y x z y x ,求222z y x ++的最小值.

(第12届“希望杯”邀请赛试题)

11.实数x 、y 、z 满足??

?

=+-+-=0223362

z xy y x y

x ,则z y x +2的值为 .

12.若52

1

332412---=----+c c b a b a ,则a+b+c 的值为 .

13.x 、y 为实数,且y xy y x 242

2

2

+≤++,则x 、y 的值为x= ,y= .

14.已知941012422+++-=y y xy x M ,那么当x= ,y= 时,M 的值最小,M 的最小值为 .

15.已知4=-b a ,042=++c ab ,则a+b =( )

A .4

B .0

C .2

D .-2。 (重庆市竞赛题) 16.设0.>>b a ,ab b a 322=+,则

b

a b

a -+的值为( ) A .2 B .3 C .2 D .5 (江苏省竞赛题)

17.若 a 、b 、c 、d 是乘积为l 的4个正数,则代数式cd bd bc ad ac ab d c b a +++++++++2222 的最小值为( )

A .0

B .4

C .8

D .10

18.若实数a 、b 、c 满足9222=++c b a ,代数式222)()()(a c c b b a -+-+-的最大值是( ) A .27 D .18 C .15 D .12

19.已知x+y+z=1,求证:3

1222≥++z y x . (苏奥尔德莱尼基市竞赛题)

20.已知a>b ,且243)()(=+-+++b

a

b ab a b a ,a 、b 为自然数,求a 、b 的值.

21.已知a 、b 、c 是△ABC 的三边长,且满足

b a

a =+2

212,

c b

b =+2

212,

a c

c =+2

212,试求

△ABC的面积.

22.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产晶是第k档次(最低档次为第一档次,档次依次随质量增加),求k的值.(2003年山东省竞赛题)

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

2020年初中数学代数式的变形与代数式的求值练习题

代数式的变形与代数式的求值 (时间:100分钟 分数:100分) 一、填空题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.在x ,13,23xy ,12x+12y ,xy -2,a π 中,单项式有( ) A .2个 B .3个 C .4个 D .5个 2.x 的5倍与y 的差等于( ) A .5x-y B .5(x-y ) C .x-5y D .x 5-y 3.用正方形在日历中任意框出的四个数一定能被( )整除 A .3 B .4 C .5 D .6 4.现规定一种运算:a*b=ab+a-b ,其中a 、b 为常数,则2*3+1*4等于( ) A .10 B .6 C .14 D .12 5.已知一个凸四边形ABCD 的四条边长依次是a 、b 、c 、d ,且a 2+ab-ac-bc=?0,?b 2+bc-bd-cd=0, 那么四边形ABCD 是( ) A .平行四边形 B .矩形 C .菱形 D .梯形 6.若m 2x 2-2x+n 2是一个完全平方式,则mn 的值为( ) A .1 B .2 C .±1 D .±2 7.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,?另一个亏本20%,在这次买卖中这家商店( ) A .赔38元 B .赚了32元 D .不赔不赚 D .赚了8元 8.要使22969 m m m --+的值为0,则m 的值为( ) A .m=3 B .m=-3 C .m=±3 D .不存在 9.已知23x ++23x -+22189 x x +-的值为正整数,则整数x 的值为( ) A .4 B .5 C .4或5 D .无限个 10.已知有理数a 、b 满足ab=1,则M=11a ++11b +,N=1a a ++1b b +的大小关系是( ) A .M>N B .M=N C .M

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

200道代数式的恒等变形练习题

代数式的恒等变形 1.已知x 2+y 2+z 2-2x+4y-6z+14=O ,则(x-y-z)2009= 2.设x ,y 满足(x-1)3+2004y=1002,(y-1)3+2004x=3006,则x+y= . 3.分解因式:1)()(22++-+b a b a ab = 6.已知m 、n 为整数,且满足2m 2 + n 2 +3m + n - 1 = 0. 则m + n= 9.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足a 4+b 4+21 c 4=a 2c 2+b 2c 2.则△ABC 的形状是 . 10.若ax+by=7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,则()()17 199562x y xy a b ++-+= . 11.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,111111 ()()()3+++++=-a b c b c a c a b , 则a+b+c= . 12.若x ,y 是实数,且m=x 2-4xy+6y 2-4x-4y ,则m 的最小值为 .

13.已知17b a -=,2124a a +=,则b a a - 14.已知a ,b ,c 都是整数,且24a b -=, 210ab c +-=,求a b c ++= 15.实数x 、y 、z 满足:2+=y x ,012222=++z xy ,求x y z ++= 16. a 、b 、c 为三角形的三条边长,满足 ac 2+b 2c-b 3 =abc .若三角形的一个内角为100°,则三角形的另两个角之差的正弦等于 17.若a 、b 、C 为实数,222,1,3a b c a b c a b c >>++=++=,则b c +的取值范围是 18.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16.则111222xy z yz x zx y ++=+++ 19.已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1.则x 2+y 2= 20.已知y x z z y x x z y y x z z y x x z y -+-+=-+-+=++-+=p .则p 3+p 2+p= . 21.若正数m ,n 满足 43,+=m n = . 22.已知a+b=8,ab=c 2 +16,则a+2b+3c= . 23.已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为 . 24.若2x y -=,224x y +=,则20042004x y +的值是 。

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

代数式的变形竞赛题

代数式的变形(整式与分式) 在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍. 1.配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2. 例2 设x、y、z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求的值. 解将条件化简成 2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3 如果a是x2-3x+1=0的根,试求的值. 解∵a为x2-3x+1=0的根, ∴ a2-3a+1=0,,且=1. 原式 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明令p=m-a,q=m-b,r=m-c则 p+q+r=0. P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0 ∴p3+q3+r3-3pqr=0

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

初一代数式的变形整式与分式

[文件] sxjsck0009 .doc [科目] 数学 [关键词] 初一/代数式/整式/分式 [标题] 代数式的变形(整式与分式) [内容] 代数式的变形(整式与分式) 在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍. 1. 配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1 (1986年全国初中竞赛题)设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的 平方和,其形式是______. 解mn=(a 2+b 2)(c 2+d 2) =a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2. 例2(1984年重庆初中竞赛题)设x 、y 、z 为实数,且 (y-z)2+(x-y)2+(z-x)2 =(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1() 1)(1)(1(222++++++z y x xy zx yz 的值. 解 将条件化简成 2x 2+2y 2+2z 2-2xy-2x 2-2yz=0 ∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3(1987年北京初二数学竞赛题)如果a 是x 2-3x+1=0的根,试求 1825222 345+-+-a a a a a 的值. 解 ∵a 为x 2-3x+1=0的根, ∴ a 2-3a+1=0,,且132+a a =1. 原式. 1131 3)32)(13(22 232-=+-=+-+++-=a a a a a a a a a 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c 则

八年级数学代数式的求值复习题

全国初中(初二)数学竞赛辅导 第六讲代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值.

解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形: 即

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

初中数学竞赛专项训练之代数式、恒等式、恒等变形附答案

初中数学竞赛专项训练之代数式、恒等式、恒等变形 一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。 1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 4、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,2 26 23 2222 π π π + -=+ -=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值 ( ) A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式ab c ca b bc a 2 22+ +的值是 ( ) A. 3 B. 2 C. 1 D. 0 8、若13649832 2 ++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数 C. 零 D. 整数 二、填空题 1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____ 2、已知-1<a <0,化简4)1(4)1(22+-+-+a a a a 得_______

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

(完整)初中数学竞赛因式分解专题

初中数学竞赛专题——因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

代数式的恒等变换

代数式的恒等变换方法与技巧 例:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222(4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤????≥??+-≤≥??? 222(4)8(2)44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件 24(4)44048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是403p ≤≤ 。 这时,原方程有惟一实根x =。 一、分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。 例1:当x 取什么样的实数值时,下列等式成立: (a =; (b 1=; (c 2=。 解: (0)m m =≥ 记方程左边为f(x), 则()f x =

1 |1|1|1 1 2 x x ≥ == ≤≤ 由此可知, 当m=时,原方程的解集为 1 [,1] 2 ; 当m∈时,解集为?; 当) m∈+∞ m =,解得2 1 (2) 4 x m =+。 即当) m∈+∞时,原方程的解集为2 1 {(2)} 4 m+。 例2:在复数范围内解方程组222 555 3, 3, 3. x y z x y z x y z ++= ? ? ++= ? ?++= ? 解:考虑数列* , n n n n a x y z n =++∈N。不难证明此数列满足递推式321 ()() n n n n a x y z a xy yz zx a xyza +++ =++-+++,其中 125 3,3 a a a ===。 利用基本恒等式,得2 12 1 ()3 2 xy yz zx a a ++=-=, 3123 11 [()] 33 xyz a a a xy yz zx a =--++=, ∴{} n a的递推式化为* 3213 1 33, 3 n n n n a a a a a n +++ =-+?∈N 由此得 432313543323 11 3349,331027 33 a a a a a a a a a a a a =-+?=---+?=- 由 5 3 a=,得 3 10273 a-=,∴ 3 3 a=。∴ 3 1 1 3 xyz a ==。 综上所述知,原方程组等价于 3, 3, 1. x y z xy yz zx xyz ++= ? ? ++= ? ?= ? 由韦达定理知,x,y,z是关于t的三次方程33 3310 t t t -+-=的三根, 此三次方程即3 123 (1)0,1 t t t t -=∴===, 这说明原方程组在复数范围内的解集为{(1,1,1)}。 注:此题还可以利用三次单位根 1 2 ω=-+的性质来解。 二、利用对称性 对称式一定是轮换式,但轮换式不一定是对称式。例如,x2y+y2z+z2x是轮换 式,但不是对称式。由轮换的特点,在解题中,为方便起见,可指定变元中x 1最大(或最小)。

初中数学竞赛“取特殊值”快速求出代数式的值(含答案)

“取特殊值”快速求出代数式的值 (初一、初二) 当已知条件是关于y x ,的二元不定方程()0,=y x f ,求关于y x ,的代数式()y x g ,的值时。我们可以将满足二元不定方程()0,=y x f 的一组特殊的解,代入()y x g ,中,计算得到结果,这比用常规的整体代入的方法简洁,快速。 1 例1 若,010432=-+y x 则y x x y xy y x x 65034203152223--++++= . (第3届“希望杯”全国数学邀请赛初二试题) 解:取二元不定方程010432=-+y x 的一组特殊的解:?? ???==250y x ,代入待求式得: 原式=10152525625402=-=?-?? ? ???+ 注意: 1.因为满足二元不定方程()0,=y x f 的解有无数组,所以,取满足二元不定方程()0,=y x f 一组特殊值的原则是:要求代入待求代数式()y x g ,中便于计算。 2.此题的常规解法是用因式分解的方法,凑出10432-+y x 这个因式,利用,010432=-+y x 整体代入求解。 y x x y xy y x x 65034203152223--++++ =()101015)1043(2=+++-+y x y x

3.相比较而言,取满足二元不定方程()0,=y x f 一组特殊值,再代入待求代数式()y x g ,来计算,这种解法要快速得多。对解答填空题,不失为好方法。 4.对待这类求值问题,我们常规的解题方法是将()y x g ,恒等变形为含有()y x f ,的代数式: ()y x g ,=()y x f ,()k y x +,? 其中()() 的整式为关于为常数, y x y x k ,,? 利用()0,=y x f 进而求出结果,即()k y x g =,。 例2.若1-=+y x ,则43222234585y xy xy y x y x y x x ++++++的值等( ) (A )0;(B )-1;(C )1;(D )3 (第14届“希望杯”全国数学邀请赛试题) 分析与解答:因为满足不定方程1-=+y x 的y x ,有无数个,为了计算简便,不妨取特殊值1,0-==y x 直接代入待求多项式计算。 原式=0+()41-=1 选(C ) 评注:常规解法是对待求多项式进行恒等变形,整理成关于y x +的新多项式()()()y x xy y x xy y x +++++24,然后再整体地将1-=+y x 代入计算,使用该方法要求解题者具有熟练的代数式恒等变形的能力。而取特殊值,则简化了计算过程,提高了解题的效率。 注意:上述解题方法,对已知条件是关于y x ,的二元不定方程()0,=y x f ,求关于y x ,的代数式()y x g ,的值有效,切忌不分青红皂白地使用该方法。 同步练习:

代数式的变形与代数式的求值专题训练

代数式的变形与代数式的求值 一、填空题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.在x,1 3 , 2 3 xy , 1 2 x+ 1 2 y,xy-2, a π 中,单项式有() A.2个 B.3个 C.4个 D.5个 2.x的5倍与y的差等于() A.5x-y B.5(x-y) C.x-5y D.x5-y 3.用正方形在日历中任意框出的四个数一定能被()整除 A.3 B.4 C.5 D.6 4.现规定一种运算:a*b=ab+a-b,其中a、b为常数,则2*3+1*4等于() A.10 B.6 C.14 D.12 5.已知一个凸四边形ABCD的四条边长依次是a、b、c、d,且a2+ab-ac-bc=?0,?b2+bc-bd-cd=0,那么四边形ABCD是() A.平行四边形 B.矩形 C.菱形 D.梯形 6.若m2x2-2x+n2是一个完全平方式,则mn的值为() A.1 B.2 C.±1 D.±2 7.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,?另一个亏本20%,在这次买卖中这家商店() A.赔38元 B.赚了32元 D.不赔不赚 D.赚了8元 8.要使 2 2 9 69 m m m - -+ 的值为0,则m的值为() A.m=3 B.m=-3 C.m=±3 D.不存在 9.已知 2 3 x+ + 2 3x - + 2 218 9 x x + - 的值为正整数,则整数x的值为() A.4 B.5 C.4或5 D.无限个 10.已知有理数a、b满足ab=1,则M= 1 1a + + 1 1b + ,N= 1 a a + + 1 b b + 的大小关系是() A.M>N B.M=N C.M

初高中衔接第四讲 《代数式的恒等变形》

第四讲 代数式的恒等变形 姓名 基础知识呈现 1、 恒等式与条件等式: 如果一个等式中字母取允许范围内的任意一个值,等式总能成立,那么这个等式就叫做恒等式。如:()a b b a a a b ab a b a +=+-=+-=-,,2222 等都是恒等式。而12=x 不是恒等式, 因为只有当2 1 = x 时,等式才成立。因此称为条件等式。 2、 恒等变形 把一个式子变形为与原式恒等的另外不同形式的式子,这种变形叫恒等变形,例如y z z x y x -+-=-就是恒等变形。 两个多项式恒等的充要条件是它们的对应项系数相等,即: ?++++=++++----01110111b x b x b x b a x a x a x a n n n n n n n 001111,,,b a b a b a b a n n n n ====--。 实际上,待定系数法的依据就是多项式的恒等的性质。 3、 代数式恒等变形是解决初等数学乃至高等数学问题的一种重要方法,是研究函数和方程的重要 工具。代数式的恒等变形包括:代数式化简,求代数式的值,证明恒等式或条件等式等等。 例题讲解 例1、 证明恒等式()()()() 22222 2 y x b a ay bx by ax ++=++-。 例2、 证明恒等式()() bc ac ab c b a c b a abc c b a ---++++=-++2 2 2 3 3 3 3。 例3、 证明恒等式() () ()2 2 2 2 111 1 1 1 ?? ? ??-+-+-=-+ -+ -a c c b b a a c c b b a 例4、 证明恒等式()()()()()a c c b b a b c a c b a a b c b a c c a b a c b -+ -+-=---+---+---2 22)( 例5、 已知11 ,11=+=+ z y y x ,求证:11=+x z 。

代数式恒等变形

代数式的恒等变形 模块一 基本代数式变形 知识导航 若已知x +y =5,xy =3,以此为基本量,可以求出一系列齐次式的值: ()2222x +y x y xy =+- ()()224x y x y xy -=+- ()24422222x y x y x y +=+- ||x y -= ()()()()233223x y x y x xy y x y x y xy ??+=+-+=++-?? 若已知x 2-5x +1=0,可得x + 1x =5,由此可以求出一些典型代数式的值: x 2+21x =212x x ??+- ?? ? 22114x x x x ????-=+- ? ????? 24242112x =x x x ??++- ??? 1x x -= 刻意练习 1.若x ﹣y =﹣4,xy =12,求22x y +,()2 x y +,x y +,22x y -,22x xy y -+,44x y +的值. 2.已知14x =x -,求221x x +,1x x +,221x x -,441x x +的值.

(2016—2017六中八上月考) 若0<x <1,1 3x =x +,则221 x =x -________. 练习 (2016—2017汉阳区八上期末) 已知a +b =5,ab =3,则11b a a b +++的值为( ) A .2 B .8 3 C .4 D .349 例2 (1)已知13x x +=,求2 42________1x x x =++ (2)已知2410a a ++=,且42321 33a ma a ma a ++++=5,求m . 练习 已知2421x x x ++=14,则4225155 _________3x x x -+=.

相关文档
相关文档 最新文档