文档库 最新最全的文档下载
当前位置:文档库 › 用勾股定理解题应注意的几个问题

用勾股定理解题应注意的几个问题

用勾股定理解题应注意的几个问题
用勾股定理解题应注意的几个问题

用勾股定理解题应注意的几个问题

山东 李平升

勾股定理是中学几何中一个很重要的定理,是继学习三角形三边关系之后用来描述特殊三角形三边关系的又一个重要的结论.它揭示了直角三角形三边长的内在联系,反映了三边之间特殊的平方关系,它为我们利用代数方法来研究几何图形提供了新的途径和方法,因此应用十分广泛.但在应用勾股定理时,经常会出现这样或那样的错误,那么怎样正确运用勾股定理呢?

一、注意分清直角边和斜边

例1 在Rt △ABC 中,a=8㎝,b=10㎝,90B ∠=,求第三边长c .

错解:由勾股定理,得22222810164c

a b =+=+=,∴C =

㎝.

分析:本题解法中错在没有正确运用题中所给的条件,忽视了90B ∠=,由于90B ∠=,所以b 应为斜边,而不是c .

正解:因为90B ∠=,222b a c ∴=+,2222210836c b a ∴=-=-=, 6c ∴=,故第三边长为 6㎝.

二、注意定理的应用条件

例2 已知△ABC 中,三边长a 、b 、c 为整数,其中a=3㎝,b=4㎝,求第三边c 的长. 错解: 由勾股定理,得222a b c +=,∴2223425c =+=,5c ∴=(㎝). 分析: 勾股定理使的条件必须是在直角三角形中,本题解法是受“勾3股4弦5 ”的影响,错把ABC 当成直角三角形,导致错误的使用勾股定理.

正解: 由三角形三边关系可得-<<+b a c b a ,17c ∴<<,又c 为整数,∴C

的长应为2㎝、3㎝、4㎝、5㎝或6㎝.

三、注意定理和逆定理的区别

例3 判断下列三条线断能否构成直角三角形:a=3、b=4、c=5.

错解:22234916255+=+==,即222a b c +=,所以根据勾股定理可知,a 、b 、c 能构成直角三角形.

分析: 本题错在在解题依据上混淆了定理和逆定理的条件结论,勾股定理是由“形”推得“数”,而逆定理则是由“数”推得“形”.因此不可混用.

正解: 22234916255+=+==,即222a b c +=,由勾股定理逆定理可知,三条线段能构成直角三角形.

四、注意解题语言叙述

例4 已知三角形的三边长为5、12、13,试说明三角形是直角三角形.

错解:因为直角边是5和12,斜边是13 ,所以222

51216913+==,故三角形是

直角三角形.

分析:解法中错在一开始就明示了“直角边”和“斜边”,事实上只有在三角形是直角三角形的条件下才能称其为“直角边”、“斜边”.

正解:22251216913+==,满足222a b c +=,由由勾股定理逆定理可知, 三角形是直角三角形.

五、注意分类讨论

例5 在Rt ABC 中,已知两边长为3、4,求第三边的长.

错解: 因为ABC 是直角三角形,∴ABC

5=.

分析: 本题错在只考虑3、4为直角边的可能,而忽视了4也可以作为斜边的情况,因此须分类讨论.

正解:(1)若4为直角边,

5=;(2) 若4为斜边, 则第三边的

=5

例6已知在ABC 中,AB=4,AC=3,BC 边上的高等于2.4,求ABC 的周长. 错解:如图1所示, A

B C D

图12.43

4

由勾股定理,得165

BD ==,

95CD ==,169555

BC BD DC ∴=+=+=. ∴ABC 的周长为45312AB BC CA ++=++=.

分析:上面解法中,只考虑了三角形的高在三角形内部的情况,忽视了高在形外的情况,即当ABC 是钝角三角形时.因此须分类讨论.

正解:

由勾股定理,得165BD ==

,95

CD ==. (1)若C ∠是锐角(如图1),则169555

BC BD DC =+=+=,这时ABC 的周长为 45312AB BC CA ++=++=;

(2) 若C ∠是钝角(如图2),

A

B D C

图22.434

则1697555BC BD DC =-=-=,这时ABC 的周长为

7424355AB BC CA ++=++=.所以ABC 的周长为12或425

. 例7已知在Rt ABC 中,两直角边的长为20和15,90BAC ∠=,求BD 的长. 错解: 如图3所示, A

B

C D 12图315

20

由题意根据勾股定理,得25BC ==,又由面积法可得

1120152522

AD ??=??,12AD ∴=,在Rt ADB 中,由勾股定理得

16=.

分析:本题错在只考虑了AB 的长是20的可能,忽视了AC 的长也可能为20的情况.因此须分两种情况求解.

正解: 由题意根据勾股定理,

得25BC ==,又由面积法可得1120152522

AD ??=??,12AD ∴=. (1)当AB=20时,如图3,

16=.

(2) 当AC=20时,如图4,

A

1520

B C

D

图4

=.

9

所以BD的长为16或9 .

当然,应用勾股定理解题时的错误不仅仅上述这些,错误也多种多样,但最根本原因是对定理不熟悉或理解不深刻造成的,为避免上述错误,大家一定要加强基础知识的学习,在正确理解的基础上强化练习,不断提高自己.

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理的应用教学设计20

勾股定理在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理理解:决实际问题的方法分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,有服务于生活的道理。 教学重点 如何利用勾股地理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 —,温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读了非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (二)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析---------画图---------解答 (RTΔ)(勾股定理) 三、探究提升 (一)出示课件4(思考题)

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理实际应用教学设计

勾股定理应用的教学设计教学目标 1.会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题。 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、复习旧知 复习勾股定理以及一些简单的计算 (1)勾股定理: (2)求出下列直角三角形中未知的边. A C B 二、合作探究 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理。 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为多少米.? 5 m处断裂,旗杆顶部落在离底部12 m处,问旗杆折断前 如下图,要将楼梯铺上地毯,则需要米长的地毯. 5米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为3米. ①球梯子的底端B距墙角O多少米? ②如果梯的顶端A沿墙下滑1米至C,请同学们猜一猜,底端B也将滑动1米吗? 算一算,底端滑动的距离。(结果保留1位小数). 6 1 A C B 2 30° C B 2 2

三.深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴 岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树的顶 端飞到另一棵树的顶端,小鸟至少要飞米。 2如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离 是。 4、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。 3、小东拿着一根长竹竿进一个宽为三米的城门,他先横着拿不进去,又竖起来拿,结果竿比城 门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米。 六、课后反思 我学到了什么—————— 还想知道什么——————

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

运用勾股定理证明与计算

勾股定理 学习目标 掌握勾股定理,会用面积法证明勾股定理。 导学过程 一、 忆一忆 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线是 (3)若∠B=30°,则∠B 二、学一学 1、(1)、画一个直角边为3cm 和4cm 的直角△ABC (2)、再画一个两直角边为5和12的直角△ABC 问题:你是否发现23+24与25,25+212和213 命题1:如果直角三角形的两直角边分 么 。 三、合作探究: 方法1、已知:在△ABC 中,∠C=90°,∠A 、∠B 求证: 222a b c += 证明:4S △+S 小正=S 大正 根据的等量关系:由此我们得出勾股定理 的内容是 b b

方法2、已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 根据如图所示,利用面积法证明勾 股定理 四、练一练: 1、在Rt △ABC ,∠C=90° (1)已知a=b=5,求c 。(2)已知a=1,c=2, 求b 。(3)已知c=17,b=8, 求a 。 ⑷已知a :b=1:2,c=5, 求a 。⑸已知b=15,∠A=30°,求a ,c 2、一个直角三角形的两边长分别为3cm 和4cm,则第三边的长为 。 3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________. 4.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 6、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积. 7.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积. b c c a A E B 3m 4m 20m

勾股定理解题方法

17.1 勾股定理 技巧1利用勾股定理计算线段的长 如图所示,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于点E ,若AC =6,BC =8,CD =3. (1)求DE 的长; (2)求AB 的长及△ADB 的面积. 解析:(1)根据角平分线的性质得出CD =DE ,从而DE =3; (2)首先利用勾股定理求出AB 的长,然后计算△ADB 的面积. 解:(1)∵ AD 平分∠CAB ,DE ⊥AB ,∠C =90°,∴ CD =DE . ∵ CD =3,∴ DE =3. (2)在Rt △ABC 中,由勾股定理,得 AB 10, ∴ △ADB 的面积为 S △ADB =12AB DE =1103152 ××=. 技巧2利用勾股定理解决折叠问题 如图所示,将长方形ABCD 沿着BD 折叠,使点C 落在 C'处,BC'交AD 于点E ,若AD =8.AB =4. (1)求△BDE 的周长; (2)求△BDE 的面积. 解析:(1)由将长方形ABCD 沿BD 折叠,知C'D =CD , ∠C =∠C',∠1=∠2,可证BE =DE ,即AE +BE =AD .在Rt △ABE 和Rt △BCD 中,利用勾股定理求出BE ,BD 的长,进而求出△BDE 的周长; (2)由题意,知C'=90°,即DC'⊥BC',则S △BDE = 12 BD ·C'D . 解:(l )∵ 将长方形ABCD 沿着BD 折叠, ∴ CD =C'D ,∠C =∠C',∠1=∠2. 又∵ ∠2=∠3, ∴ ∠1=∠3.∴ BE =DE . 设BE =DE =x ,则AE =8-x . 在Rt △ABE 中,BE 2-AE 2=AB 2, 即x 2一(8一x )2=42, 解得x =5,即BE =DE =5. 在Rt △BCD 中, BD ∴ △BDE 的周长为BE +DE +BD =10+ (2)∵ ∠C'=90°,∴ DC'⊥BC'.

勾股定理知识点和典型例题

新人教版八年级下册勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三 角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面 积为222()2S a b a ab b =+=++ 所以222a b c +=方法三: 1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = b = ,a ②知道直角三角形一边,可得另外两边之间的数量 关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长 边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理的实际运用

勾股定理的实际运用 一.勾股定理: (1)直角三角形两直角边的_______等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_____. (2)我国古代把直角三角形中较短的直角边称为_____,较长的直角边称为________,斜边称为______. 二.直角三角形的判别条件 1.直角三角形的判别条件(也称为勾股定理的逆定理) 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(此判别条件也称为勾股定理的逆定理).如图所示,在△ABC中,如果AC2+BC2=AB2.那么△ABC就是以∠C为直角的直角三角形. 2.判断直角三角形的步骤 (1)确定最长边. (2)算出最长边的平方与另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形. 3.直角三角形的判别条件与勾股定理的联系和区别 (1)联系 都是和直角三角形有关的内容,都和三角形的三边有关系,都渗透了数形结合的思想. (2)区别 勾股定理是由形到数,即由直角三角形得到三边之间的数量关系,是直角三角形的一个性质;而直角三角形的判别条件是由数到形,即由三边关系得到三角形的形状—直角三角形,是直角三角形的一种判别方法.

知识点一.确定几何体表面上的最短路线 1.解决几何体表面上两点之间最短路线问题的关键是把立体图形转化为平面图形,具体步骤是:(1)把立体图形展开成平面图形;(2)确定最短路线;(3)确定直角三角形;(4)根据直角三角形的边长,利用勾股定理求解 2.求立体图形表面上两点之间的最短路线长,主要涉及如下问题: (1)圆柱形物体表面上两点之间的最短路线长,主要涉及如下问题:(1)圆 柱形污图表面两点之间的最短路线长;(2)长方体表面两点之间的最短路线长;(3)台阶表面两点之间的最短路线长. 例题1:如图所示,有一个圆柱形油罐,要从点A处环绕油罐建梯子,正好到 点A的正上方点B,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB 是5m) 知识点二.利用直角三角形的判别条件判断垂直 利用直角三角形的判别条件判断三角形是直角三角形也是判断垂直的一种方法.在实际生活中常常需要判断两直线是否垂直,解决此类问题的一般方法是将实 际问题转化为数学问题.首先,结合题意画出符合要求的三角形,再利用直角三角形的判别条件判断垂直. 例题2.如图所示,如果只给你一把带有刻度的直尺,你能否检验∠P是不是直角?简述你的作法,并说明理由.

勾股定理解题思路

一、方程思想 例1 如图1,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知8cm AB =,10cm BC =,求EC 的长. 分析 设EC x =,则8DE x =-,由于折叠矩形的边AD 且D 落在点F 处,故AFE △和ADE △完全重合,则8EF x =-,10AF AD ==,在Rt EFC △中运用勾股定理,即可得到关于x 的方程,即可求出x 的值. 解 因为D ,E 关于AE 对称,所以AFE △和ADE △完全重合,即10AF AD BC ===,DE EF =,设EC x =,则8DE x =-, 所以在Rt ABF △ 中,由勾股定理,得6BF = =, 所以4FC BC BF =-=, 在Rt EFC △中,由勾股定理,得2224(8)x x +=-,解得3x =, 所以EC 的长为3cm . 说明 折叠问题和轴对称紧密相关,要注意分清对称轴,在求解这类问题时可以根据题意引进未知数,利用勾股定理来布列方程即能简易求解. 例2 如图2,ABC △中,22.5B ∠=,60C ∠=,AB 的垂直平分线交BC 于D ,BD =AE BC ⊥于E ,求EC 的长. 分析 由条件22.5B ∠=和AB 的垂直平分线交BC 于D 可想到连结AD ,这样就可以充分运用条件,构造方程求解. 解 连接AD ,则AD BD =, 因为22.5B ∠=,所以45ADE ∠=,所以AE DE =, 因为BD = 222AE =,即6AE =. 在Rt AEC △中,60C ∠=,则2AC EC =, 设EC x =,则2A C x =, 由勾股定理,得2226(2)x x +=, 得x = 即EC = 说明 遇到含30的直角三角形时一定要注意:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”的使用.即含30的直角三角形中三边之比是 图1 F 图2 C

1.解题技巧专题:勾股定理与面积问题

解题技巧专题:勾股定理与面积问题 ——全方位求面积,一网搜罗 ◆类型一 直角三角形中,利用面积求斜边上的高 1.如图,在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 的长为( ) A.10 13 B.15 13 C.6013 D.7513 2.如图,在△ABC 中,∠ACB =90°,AB =5,BC =3,CD ⊥AB ,垂足为D ,则CD 的长为________. ◆类型二 结合乘法公式巧求面积或长度 3.已知Rt△ABC 中,∠C =90°,若a +b =7cm ,c =5cm ,则Rt△ABC 的面积是( ) A .6cm 2 B .9cm 2 C .12cm 2 D .15cm 2 4.如图,在△ABC 中,AB =AC =5,P 是BC 边上除B ,C 点外的任意一点,则代数式AP 2+PB ·PC 等于(提示:过点A 作AD ⊥BC )( ) A .25 B .15 C .20 D .30 ◆类型三 巧妙割补求面积 5.如图所示是一块地,已知AD =8米,CD =6米,∠D =90°,AB =26米,BC =24米,求这块地的面积.【方法5②】 6.(2016-2017·西华县期末)如图,已知AB =5,BC =12,CD =13,DA =10,AB ⊥BC ,求四边形ABCD 的面积. ◆类型四 “勾股树”及其拓展类型求面积 7.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S =( ) A .25 B .31 C .32 D .40

勾股定理典型解题技巧及练习

专题复习一 勾股定理 常见勾股数如下: 3、常见平方数: 121112=; 144122=; 169 132=; 196142=; 225152 =;256162= 289172=; 324182=; 361192=; 400 202=;441212 =; 484222= 529232=; 576 242=; 625252=; 676262=;729272 = 4、已知斜边和一条直角边求另一条直角边 由a 2+b 2=c 2可得 a 2= c 2- b 2=(c+b) (c-b) (平方差公式) 例如,已知c=61, b=60, 则 a 2= c 2- b 2 = (61+60) (61-60) =121, 则 a=11 已知c=41, b=40, 则 a 2= c 2- b 2 = (41+40) (41-40) =81, 则 a=9 已知c=17, b=8, 则 a 2= c 2- b 2 = (17+8) (17-8) =25 x 9=52 x 32= (5 x 3)2 则 a = 5 x 3 =15 5、直角三角形斜边的中线等于斜边的一半。 如图,CD 为斜边AB 的中线,过D 作D E ⊥AC 于E,DF ⊥BC 于F 在RT ▲ADE 和RT ▲DBF 中, ∠DAE=∠BDF , AD=DB ∠ADE=∠DBF RT ▲ADE ≌RT ▲DBF ∴ EA=FD, 有因CEDF 为矩形, ∴FD=CE=EA=1/2 CA RT ▲ADE ≌RT ▲CDE ∴ CD=AD=DB=1/2 AB 6、直角三角形30°角的对边等于斜边的一半 7、三角形内角平分线上的点到两边的距离相等 8、任意三角形三个内角的角平分线相交于一点。该点称三角形的内心(内切圆圆心)。 9、任意三角形三个边上的垂线(高)相交于一点。该点称三角形的垂心 10、任意三角形三个边上的中线相交于一点。该点称三角形的重心。 11、任意三角形三个边上的垂直平分线(中垂线)相交于一点。该点称三角形的外心(外接圆圆心)。 12、三角形两边之和大于第三边,两边之差小于第三边,︱a-b ︱﹤c ﹤a+b 13、三角形面积计算公式:S=2 1 底边长 x 高 14、垂直平分线垂直且平分其所在线段。 垂直平分 线上任意一点,到线段两端点的距离相等。 15、点A 沿某一条线段(EF )折叠至点B ,折线EF 。则折线EF 垂直平分线段AB 。 16、直角三角形、锐角三角形、钝角三角形判断 :根据勾股定理a 2+b 2=c 2可判断c 边的对角 C 是否为直角。 若a 2 +b 2 >c 2 , 则∠C 为锐角; 若 a 2 +b 2 =c 2 则∠C 为直角; 若a 2 +b 2

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 请你画出圆柱的侧面展开图. 3. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. ?精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8 cm,底面半径等于2 cm.在 圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知 AB=5 cm,树干的直径为4 cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3.如图所示,有一根高为2 m的木柱,它的底面周长为0.3 m,为了营造喜庆的气 氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正

《勾股定理》方法学习

《勾股定理》方法学习 【例1】 在△ABC 中,已知∠B=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c,且a=5,b=12,求c 2. 【分析】 由∠B=90°,知b 才是斜边(如图) ,所以a 2+c 2= b 2,注意不要受思维定势(勾 股定理的表达式:)的影响而误认为c 是斜边 【解答】 由∠B=90°,则知b 是Rt △ABC 的斜边, 由勾股定理,得c 2=2 2 b a -=22 125-=119. 【总结】我们在运用勾股定理时,首先要正确识别哪个角是直角,从而确定哪条边是斜边,然后准确写出勾股定理表达式进行求解. 【例2】如图,在△ABC 中,AB = 25,AC = 30,BC 边上的高AD = 24,求BC 的长. 【分析】本例不能直接求出BC 的长,但通过观察图形可以发现BC 边上的高AD 把△ABC 分成了两个直角三角形,可以分别在两个直角三角形中救出BD 、DC 的长,从而救出BC 的长。 【解答】在直角三角形ABD 中,由勾股定理,得 BD 2=AB 2-AD 2=252-242=49,所以BD=7 ; 在直角三角形ADC 中,由勾股定理,得 CD 2=AC 2-AD 2=302-242=324,所以CD=18. 所以,BC = BD + DC = 7 + 18 = 25. 【总结】在直角三角形中已知两条边可以应用勾股定理救出第三条边,要注意发现题 目中的直角三角形,从而找到解题的思路。 【例1】用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称 例1图 例2图 直角三角形中有关边的计算 数形结合 例1图

为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的. 观察,你能验证222c a b =+吗?把你的验证过程写下来,并与同伴进行交流. 【分析】仔细观察图形,可以看出图中以c 为边的正方形面积有两种不同表示形式:即可以利用边长为C 来表示也可以用四个直角三角形的面积加上中间小正方形的面积来表示。 【解答】由图可知 S 正方形 =21 4()2 ab b a ?+- =222222ab b a ab a b ++-=+. S 正方形 =2c ,所以222a b c +=. 【总结】本例通过拼图来验证勾股定理,体现了“数形结合”的思想,需要对图形进行细致观察、分析,如图形中小正方形的边长为()b a -. 【例2】如图如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…己知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为n Sn S S (,32 为正整数),那么第8个正方形的面积8S = 【分析】求解这类题目的关键策略是:从特殊到一般,即先通过观察几个特殊的数式中的变数与不变数,得到一般规律,再利用其一般规律求解所要解决的问题. 2212223411,24,8 S S AC S AE S HE ======== 照此规律可知:16425==S 观察数1、2、4、8、16得4 3 2 1 216,28,24,22,21=====于是可得12-=n n S 因此128227188===-S 【解答】填:128. 【总结】本题利用了正方形是由两个全等的等腰直角三角形构成这个特点,在解题时要注意分析图形的构成。 【例1】在一棵树的10米高处有两只猴子,其中一只爬下树走向离树20米的池塘,而 例2图 勾股定理的综合应用

勾股定理的实际问题

勾股定理的实际应用 一、教学目标: 1.知识与技能:运用勾股定理解决一些实际问题的过程,进一步掌握勾股定理。 2.过程与方法:经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。 3.情感态度与价值观:培养数学意识,发展数学理念,体会勾股定理的应用价值。 二、教学重难点: 重点:勾股定理的应用。 难点:实际问题向数学问题的转化。 三、教学用具:多媒体课件 四、教学过程 一)前置性预习作业(课前自主完成,课上自主汇报) 一种盛饮料的圆柱形杯(如图),测得内部底面直径为5㎝,高为12㎝,吸 管放进杯里,杯口外面露出5㎝,问吸管要做多长? 二)师生互动性交流 一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么? 分析:木板的宽2.2米大于1米,所以横着不能从门框内通过.木板的宽2.2米大于2米,所以竖着不能从门框内通过.因为对角线AC的长度最大,所以只能试试斜着能否通过. 所以将实际问题转化为数学问题. 小结:此题是将实际为题转化为数学问题,从中抽象出Rt△ABC,并求出斜边AC的问题。 三、合作研讨 一个5m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m, 如果梯子的顶端A沿墙下滑1m,那么梯子底端B也外移1m吗? 分析:要求出梯子的底端B是否也外移1米,实际就是求BD的长,而 BD=OD-OB 如果梯子的顶端A沿墙下滑1.5m,那么梯子底端B也外移1.5m吗? 通过前面的题目设置陷阱,加深学生对此类问题的记忆。(只需验证即可) C B A

四、当堂检测 1、 如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了________米路, 却踩伤了花草。 2、如图,大风将学校内一棵树的树干吹裂,随时都可能倒下,十分危急。发现上报后学校领导迅速赶到现场,并决定从断裂处将树干锯断。现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗? 3、一大楼发生火灾,消防车立即赶到距安全距离大楼9米处,升起云梯到失火的窗口,已知发生火灾的窗口距地面有14.2米,云梯底部距地面2.2米,问云梯至少需要搭出多少米可以够到失火的窗口? 4、如图,盒内长,宽,高分别是4分米,3分米和12分米,盒内可放的棍子最长是多少分米? 五、小结: 应用勾股定理解决实际问题的一般思路: 在解决实际问题时,首先要画出适当的示意图,将实际问题抽象为数学问题,并构建直角三角形模型,再运用勾股定理解决实际问题. 1

(完整版)勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例 一、利用勾股定理解决立体图形问题 勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。 一、长方体问题 例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是() A、41cm B、34cm C、50cm D、75cm 分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD 是Rt△BCD 的斜边,BD 是Rt△ BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。 解:在Rt△ABC 中,AB=5 ,AC=4,根据勾股定理, 得BC= AB2 AC2 = 41 , 在Rt△BCD 中,CD=3,BC= 41 , 22 BD= BC2 CD2 = 50 。所以选C。说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。二、圆柱问题 例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?

分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。由题意可知,S、 F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3 的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。 解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16 (cm),在Rt△SBF 中,∠SBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34(cm),所以蜘蛛所走的最短路线的长度是34cm。 说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想转化思想。 二、利用勾股定理确定最短问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1(恩施自治州)如图 1 ,长方体的长为15,宽为10 ,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是() 图1 ①

勾股定理解题技巧知识讲解

精品文档 精品文档 例1 如图1,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知8cm AB =,10cm BC =,求EC 的长. 分析 折叠问题和轴对称紧密相关,要注意分清对称轴,在求解这类问题时可以根据题意引进未知数,利用勾股定理来布列方程即能简易求解. 例2 如图2,ABC △中,22.5B ∠=o , 60C ∠=o ,AB 的垂直平分线交BC 于D ,BD =AE BC ⊥于E ,求EC 的长. 分析 由条件22.5B ∠=o 和AB 的垂直平分线交BC 于D 可想到连结AD ,这样就可以充分运用条件,构造方程求解.遇到含30o 的直角三角形时一定要注意:“在直角三角形中,如果一个锐角等于30o ,那么它所对的直角边等于斜边的一半”的使用. 例3 已知一个直角三角形的两边长是3cm 和4cm ,求第三边的长. 分析 已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论. 例4 一个等腰三角形的周长为14cm ,一边长4cm ,求底边上的高. 分析 一边长4cm ,并没有指明是底边还是腰,所以应分类讨论.这里对等腰三角形的分类讨论,实际上就是对直角三角形的边的讨论. 例5 在一棵树的10米高处有两只猴子,其中 一只爬下树走向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高? 分析 根据题意画出图形,再在直角三角形中运用勾股定理构建方程求解.勾股定理的本身就是数形结合的体现,求解时它又与方程紧密相联. 例6 如图4,长方体的长为15cm ,宽为 10cm ,高为20cm ,点B 距点C 5cm ,一只蚂蚁如果要沿着长方体表面从点A 爬到点B ,需要爬行的最短路程是多少? 分析 由于蚂蚁是沿着长方体的表面爬行的,故需把长方体转化展开成平面图形,根据两点之间线段最短,蚂蚁爬行的路线有两种可能(如图5、图6)利用勾股定理容易求出图5、图6中AB 的长度,比较后即可求得蚂蚁爬行的最短路程. 说明 这里原本是求最短距离,却转化成研究长方体的展开图问题, 但最终还是利用勾股定理求两点间的距离问题. 图 3 B 图1 F 图2 C 图5 B A 图6 A B 图4

相关文档
相关文档 最新文档