文档库 最新最全的文档下载
当前位置:文档库 › ifstream 流 判断文件是否结尾的函数eof()

ifstream 流 判断文件是否结尾的函数eof()

ifstream 流 判断文件是否结尾的函数eof()
ifstream 流 判断文件是否结尾的函数eof()

fstream流的eof() 判断有点不合常理

按正常逻辑来说,如果到了文件末尾的话 ,那eof()应返回真

但是,c++输入输出流如何知道是否到末尾呢?

原来是根据的是: 如果fin>>不能再读入数据了,才发现到了文件结尾,这时才给流设定文件结尾的标志,此后调用eof()时,才返回真。

假设

fin>>x? //此时文件刚好读完最后一个数据(将其保存在x中)

但是, 这时 fin.eof()仍未假 因为,fin流的标志eofbit是FALSE, fin流此时认为文件还没有到末尾

只有当流再次读写时

fin>>x; 发现已无可读写数据,此时流才知道到达了结尾,这时才将标志eofbit修改为TRUE

此时流才知道了文件到底了末尾

也就是说,eof在读取完最后一个数据后,仍是False,

当再次试图读一个数据时,由于发现没数据可读了 才知道到末尾了,此时才修改标志,eof变为TRUE

以下例子:

[cpp]

01. i f s t r e a m f i n("D://l i n e.t x t")?

02.

03. o f s t r e a m f o u t("D://T_l i n e.t x t",i o s::t r u n c)?

04.

05.

06. l i s t t e s t_l i s t?

07.

08. t a g_P o i n t t e s t?

09.

10.

11.

12. w h i l e (!f i n.e o f())

13. {

14.

15.

16.

17. f i n>>t e s t.x?

18. f i n>>t e s t.y?

19. f i n>>t e s t.z?

20.

无法加载插件。

21.

22.

23.

24. t e s t_l i s t.p u s h_b a c k(t e s t)?

25.

26.

27. }

28.

29. f i n.c l o s e()?

30.

31.

在运行时 发现 test_list中的数据比文本中的数据多一行,也就是 文本中最后一行的数据写了两遍

始终无法理解

现在明白了:》

再读完最后一行后,

因为fin.eof()仍为假, 所以会继续while循环

当执行到while的第一个语句 fin>>test.x时,发现无可读数据了,此时修改流属性,fin.eof ()变为TRUE

再执行 fin>>test.y? fin>>test.z?时,因为已经到文件末尾了 ,所以 test保留了上次的值,也即test中的值为变,还是文本最后一行

的数据

此时再push_back(test),压入列表的仍是最后一行数据

由此导致了,列表中的数据比文本中的数据多一行

---------------------

知道了原因 ,便很好作出修改了

修改为:

[cpp]

01. w h i l e ( f i n>>t e s t.x&&f i n>>t e s t.y&& f i n>>t e s t.z)

02. {

03.

04.

05. t e s t_l i s t.p u s h_b a c k(t e s t)?

06.

07.

08. }

09.

10. f i n.c l o s e()?

这样便没问题了 ,当读取完最后一行数据后,将其放入列表中,此时判断while条件,也就是再次读取

无法加载插件。

数据,发现无数据可读,读取不成功 fin>>test.x返回False 由此结束循环。

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

多元凸函数的判定

多元凸函数的判定 1 引言 凸函数是一类基本函数,具有非常好的分析学性质,在极值研究、不等式证明、数学规划、逼近论、变分学、最优控制理论、对策论等领域有着广泛的应用. 人们对一元凸函数性质和判定方法已经有了丰富的研究,但随着凸函数应用范围的不断扩展,多元凸函数越来越多的被研究. 一元函数凸性的判定方法也被推广到多元函数,文献[4]将凸函数与导函数之间的关系推广,给出了用梯度判定多元函数凸性的方法,文献[5]将凸函数与二阶导数之间的关系推广,给出了用黑塞矩阵判定多元函数凸性的方法. 而多元函数的梯度与黑塞矩阵在计算中往往比较繁琐,本文将着力研究多元函数凸性判定方法的改进,使凸函数判定的计算更加简洁,应用更加方便. 2 定义及引理 本节主要介绍本文用到的定义及引理. 定义2.1[2] 设n R D ?,如果D 中的任意两点的连线也在D 内,则称D 为n R 中的凸集. 即对任意21,P P ,数)1,0(∈λ,总有 D P P ∈-+21)1(λλ. 定义 2.2[1] 设n R D ?为非空凸集,f 为定义在D 上的函数,若对任意 )1,0(,,21∈∈λD P P ,总有 )()1()())1((2121P f P f P P f λλλλ-+≤-+, (1) 则称f 为D 上的凸函数. 反之,如果总有 )()1()())1((2121P f P f P P f λλλλ-+≥-+, (2) 则f 为D 上的凹函数. 若上述(1)、(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 定义]2[3.2 )(P f 是定义在n R D ?上的多元函数,若在点),,,(210n x x x P ???存在对所有自变量的偏导数,则称向量))(,),(),((00021P f P f P f n x x x ???为函数)(P f 在点0P 的梯度,记作

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

凸函数的性质

凸函数的性质 【摘自[前苏]克拉斯诺西尔斯基等著《凸函数与奥尔里奇空间》(中译本)】 通常称函数)(x f 在区间),(b a 内是“下(上)凸函数”,若对于),(b a 内任意两点1x 和 2x )(21x x ≠与任意)1,0(∈t ,都满足“琴生(Jesen)不等式” 1212() [(1)]()(1)()f tx t x tf x t f x >+-<+- (※) 或 () 11221122()()()f t x t x t f x t f x >+<+ (※※) [其中1t 和2t 为正数且121=+t t ] 它的特别情形(取2 1 = t )是 ()()()121222f x f x x x f >++?? < ??? ()21x x ≠ (※※※) 在§2-7中曾把它作为下(上)凸函数的定义.。我们将证明,对于连续函数来说,不等式(※※※)与琴生不等式(※)是等价的。正因为这样,我们在教科书中就用简单的不等式(※※※)定义了下(上)凸函数(因为我们研究的函数都是连续函数)。下凸函数简称为凸函数,上凸函数简称为凹函数。请读者注意.....,这些称呼同国内某些教科书中的称呼是不一致的.....................。但是,我们的上述称呼与新近出版的许多教科书或发表的论文中的称呼是一致的。 因为函数的“上凸”与“下凸”是对偶的,所以,下面只讨论下凸函数的性质。相信读者一定能够把下面得出的结论,类比到上凸函数上。 (一)琴生不等式的几何意义 我们先解释一下琴生不等式的几何意义。如图一, 设231x x x <<,则21 21 3112323x x x x x x x x x x x --+--=(根据解析几何中的定比分点公式(*))。 根据琴生不等式(※※), )(3x f )()(2121311232x f x x x x x f x x x x --+--< [注意1 213212321,x x x x t x x x x t --=--=] 图一

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用 作者:祝红丽 指导老师:邢抱花 摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过 它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸 性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并 结合相关例题做了较详细的论述. 关键词 凹凸性 导数 不等式 应用 1 引言 函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变 量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确. 以函数()y f x 在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增 加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图 形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分 析. 作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学 者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研 究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛. 本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函 数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹 凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性, 及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判 别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函 数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都 能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代 的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函 数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的 函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

教你如何判断无损连接和函数依赖

教你如何判断无损连接和函数依赖 无损分解和保持依赖的判断 大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。 以下的论述都基于这样一个前提: R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。 首先我们给出一个看似无关却非常重要的概念:属性集的闭包。 令α为一属性集。我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。 下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result 中。 算法一: result:=α; while(result发生变化)do for each 函数依赖β→γ in F do begin if β∈result then result:=result∪γ; end 属性集闭包的计算有以下两个常用用途: ·判断α是否为超码,通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。若是,则α为R的超码。 ·通过检验是否β∈α+,来验证函数依赖是否成立。也就是说,用属性闭包计算α+,看它是否包含β。 (请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。) 看一个例子吧,2005年11月系分上午37题: ● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。 (37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3 首先我们按照上面的算法计算A1+ 。 result=A1, 由于A1→A2,A1∈result,所以result=result∪A2=A1A2 由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3 由于A2→A4,A2∈result,所以result=result∪A3=A1A2A3A4 由于A3→A2,A3∈result,所以result=result∪A2=A1A2A3A4 通过计算我们看到,A1+ =result={A1A2A3A4},所以A1是R的超码,理所当然是R的候选关键字。此题选A 。

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

关系模式的无损分解

1、已知关系模式R(ABC),F={A→C,B→C},求F+。 可以直接通过自反律、增广律、传递律加以推广: F+={φ→φ,A→φ,B→φ,C→φ,A→C,B→C,AB→φ,AB→A,AB→B,AB→C,AB→BC,AB→AB,AB→ABC,BC→φ,BC→C,BC→B,BC→BC,AC→φ,AC→C,AC→A,AC→AC,ABC→φ,ABC→A,ABC→B,ABC→C,ABC→BC,ABC→AB,ABC→ABC} 4.6 试分析下列分解是否具有无损联接和保持函数依赖的特点: (1)设R(ABC),F1={A→B} 在R上成立,ρ1={AB,AC}。 首先,检查是否具有无损联接特点: 第1种解法--算法4.2: (1) 构造表(2)根据A→B进行处理 结果第二行全是a行,因此分解是无损联接分解。 第2种解法:(定理4.8) 设 R1=AB,R2=AC R1∩R2=A R2- R1=B ∵A→B,∴该分解是无损联接分解。 然后,检查分解是否保持函数依赖 πR1(F1)={A→B,以及按自反率推出的一些函数依赖} πR2(F1)={按自反率推出的一些函数依赖} F1被πR1(F1)所蕴涵,∴所以该分解保持函数依赖。

2、设R(ABC),F2={A→C,B→C}在R上成立,ρ2={AB,AC} 首先,检查是否具有无损联接特点: 第1种解法(略) 第2种解法:(定理4.8) 设 R1=AB,R2=AC R1∩R2=A R2- R1=C ∵A→C,∴该分解是无损联接分解。 然后,检查分解是否保持函数依赖 πR1(F2)={按自反率推出的一些函数依赖} πR2(F2)={A→C,以及按自反率推出的一些函数依赖} ∵F1中的B→C没有被蕴涵,所以该分解没有保持函数依赖。 3、设R(ABC),F3={A→B},在R上成立,ρ3={AB,BC}. 首先,检查是否具有无损联接特点: 第1种解法: (1) 构造表(2)根据A→B进行处理没有一行全是a行。因此这个分解不具有无损联接特性。 第2种解法:(定理4.8) 设 R1=AB,R2=BC R1∩R2=B

函数的单调性与凸性的判别方法

高等数学教学样板教案 授课次序09 教 学 基 本 指 标 教学课题 函数的单调性与凸性的判别方法 课的类型 新知识课 教学方法 讲授 教学手段 演示 教学重点 掌握函数单调性的判别法、凸性判别方法 教学难点 利用函数的单调性可以确定某些方程实根的个数和证明不等式 教 学 基 本 内 容 第九节 函数的单调性与凸性的判别方法 一、函数单调性的判别法 1、()[,](,),()[,]()()0(0)f x C a b D a b f x a b f x '∈?≥≤ 在。 证:不妨设()[,]f x a b 在,0 0,0 ()()()lim 0,0 x x f x x f x f x x x ?→≥?>?+?-'=? ≤?,则()f x 在[,]a b ; ⑵如果(,)x a b ?∈,有()0f x '<,则()f x 在[,]a b 。 证:),,(,21b a x x ∈?,21x x <且应用拉氏定理,得 )())(()()(211212x x x x f x f x f <<-'=-ξξ ,012>-x x ,0)(),(>'x f b a 内,若在,0)(>'ξf 则).()(12x f x f >∴ .],[)(上单调增加在b a x f y =∴ ,0)(),(<'x f b a 内,若在,0)(<'ξf 则).()(12x f x f <∴.],[)(上单调减少在b a x f y =∴ 注意:①[,]a b I →,结论仍成立; ②,()0(0)x I f x '∈≥≤且只有个别点处()0f x '=,则在I 上()()f x 。 例1、判定sin y x x =-在[0,2]π上的单调性。 备注栏

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

凸函数判定方法的研究

凸函数判定方法的研究 鸡冠山九年一贯制学校 张岩 2013年12月15日

目录 摘要 (ii) 关键词 (ii) Abstract (ii) Key words (ii) 前言 (iii) 一、凸函数的基本理论 (1) 1、预备知识 (1) 2、凸函数的概念及性质 (2) 二、凸函数的判定方法 (4) (一)一元函数凸性的判定方法 (4) 1、利用作图判断函数凸性 (4) 2、其它判定方法 (5) (二)多元函数凸性的判定方法 (8) 1、多元凸函数的有关概念 (8) 2、多元函数凸性的判定方法 (9) 三、凸函数几个其他判定方法 (12) 四、总结 (14) 参考文献 (14) 致谢 (15)

凸函数判定方法的研究 摘要:凸函数是一类非常重要的函数,借助它的凸性可以科学准确地描述函数图像,而且可以用于不等式的证明。同时,凸函数也是优化问题中重要的研究对象,研究的内容非常丰富,研究的结果已在许多领域得到广泛的应用,因此凸函数及其性质以及凸性判定的充要条件的研究就显得尤为重要。本文首先给出了凸函数的一些基本概念和结论,然后针对一元和多元函数,对凸函数的判定做了研究和讨论,本文最后也给出几种新的判定凸函数的方法。 关键词:凸函数;梯度;Hesse 矩阵;泰勒定理 Abstract: Convex function is a kind of very important functions, with the help of its convexity we can accurately describe the graph of functions and it can also be used to prove the inequalities. As the significant object in optimization problems, the contents about convex functions we study are very abundant, the results obtained so far has been applied to many fields. Therefore, the topic we concern about is deserved to be discussed. In this paper, we firstly present some basic definitions and properties of convex functions, then aiming at the univariate function and multi-variable functions we give several criterions for determining the convexity of functions. Finally, some new principles are also given. Key words:Convex function; Gradient; Hesse matrix; Taylor Theorem

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

相关文档
相关文档 最新文档