文档库 最新最全的文档下载
当前位置:文档库 › 塞曼效应实验报告

塞曼效应实验报告

塞曼效应实验报告
塞曼效应实验报告

塞曼效应

【摘要】本实验运用法布里—珀罗标准具分光,观测Hg 绿线(546.1nm )的塞曼分裂现象。先标定磁场的B-I 曲线,判断电磁铁的性质,再利用法布里—珀罗标准具进行分光,观察Hg 绿线(546.1nm )的塞曼分裂情况,利用测量的数据计算自由光谱区和对应电流下的磁场。 关键词:塞曼效应、法布里—珀罗标准具、能级分裂、量子跃迁

一.引言

1896年荷兰物理学家塞曼发现如果把光源置于足够强的磁场中,光源发出的谱线发生变化,单条谱线分裂为多条,分裂的条数随能级的类别而不同,这种现象被称为塞曼效应。荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼效应的发现及其解释对研究原子中电子的角动量和反映角动量耦合作用的朗得因子等原子结构信息有重要的作用。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。

二.实验原理

1.塞曼效应

按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能ΔE ,由于原子的磁矩J μ 与总角动量J P 的关系为

J SJ S LJ L J P m e g

2cos cos =+=αμαμμ (公式1) 其中的朗德因子为:

)

1(2)1()1()1(1g ++++-++=J J S S L L J J (公式2) 由于J 一定时,M 有2J+1个可能的取值,所以,原子在外磁场中,每一个0≠J 的能级都分裂为2J+1个子能级,被称为磁能级。同一能级分裂的磁能级间距相等,为B B μg 。

对于不同的能级来说,如果它们的朗德因子g 不同,则磁能级间距不同。

原子能级产生磁分裂后,各磁能级之间的跃迁要准守选择守则:

禁戒)

时,(,禁戒)

(,000100010=→==±=?=→=±=?M M J M J J J

0=?M 时,在垂直于磁场方向上,可观察到电矢量平行于磁场方向的线偏振光;在平行于磁场方向上,观察不到谱线,观察到的为π线

1±=?M 时,在垂直于磁场方向上,可观察到电矢量平行于磁场方向的线偏振光;在平行于磁场方向上观察到的都是圆偏振光,观察到的为σ线

能级21E E →的跃迁辐射产生塞曼效应分裂后,各跃迁能级与无磁场时跃迁辐射的波数之差。 )g g mc

4e 2211M M B -=

?(πν )]()[(~122121M M g M g g L ---= (公式3) 其中

B B L 467.0mc

4e ~==π (公式4) 称为洛伦兹单位,习惯上L ~

的单位为1-cm

2. Hg 绿线(546.1nm )的塞曼分裂现象

图1 Hg 绿线(546.1nm )的塞曼分裂谱线

此分裂为反常塞曼效应。

3. 法布里—珀罗标准具

塞曼分裂的波长差非常小,普通的棱镜摄谱仪不能胜任,用分辨本领高的光谱仪器,大部分塞曼效应的实验仪器选择法布里—珀罗标准具(简称F-P 腔)

F-P 标准具是由两块玻璃板和夹在中间的一个间隔圈组成。平面玻璃板是平整的。 标准具光路图如下图所示,当单色光束以一小角度入射到标准具的M 表面上,光束在M 和M '两表面经过多次反射与透射,分别形成一些列的相互平行的反射光束1,2,3以及透射光

束??'''321,,

图2 F-P 标准具的多光束干涉

任何相邻光束的光程差?是一样的,即:

θndcos 2=? (公式5) 其中d 为两平行板之间的间距,大小为2nm ,θ为光束折射角,n 为平行板介质的折射率。考虑两束具有微小波长差的单色光1λ和2λ(λλλλλ≈≈>,,2121)。1λ和2λ和=的光强极大值对应于不同的入射角1θ和2θ,所有的干涉序形成两套花纹,如果1λ和2λ的波长差逐渐加大,使得2λ的K 序花纹与1λ的(K-1)序花纹重合,当:12)1λλ-=K K ( 考虑到靠近干涉圆环中央处的θ都很小,因而λd

2=K

所以: d 2-2

21λλλλ==? d

21~=?υ (公式6) λ?或υ

~?定义为标准具的色散范围,又称自由光谱区范围,给出了靠近干涉圆环中央处不同波长差的干涉花纹不重序时允许的最大波长差。

三.实验内容

1.计算F-P腔的自由光谱区,计算汞绿线的塞曼分裂间距,用洛伦兹单位L表示

2.标定磁场的B-I曲线

(1)电流上升和下降时各标定一次,电流的取值范围为0-5A

(2)画出实验B-I曲线,确定实验线性范围,确定实验中B的取值范围

3.调节光路

(1)测量两个凸透镜的焦距,选择其一作为会聚透镜,另一个为成像透镜,并说明理由(2)调整导轨位置,放入准直透镜,调节透镜与光源的距离,以获得准直光

(3)放入其他光学元件,调节光路

当在目镜中观察到清晰的,圆环状干涉条纹后,说明光路已满足要求。

图3 光路图

F-P腔的平行度条件:用眼睛直接观察F-P腔的出光面,上下、左右移动眼睛,如果有明显的干涉条纹从中心环冒出或吞没说明标准具表面不平行,请老师帮助调节。

4.光谱测量

(1)设计测量表格

(2)加磁场,观察谱线的分裂,确定电磁铁电流的取值范围

(3)在目镜中观察偏振特性(记录偏振角),可用手机拍照

(4)选取3-5给的磁场电流值,记录各分裂谱线位置(可选1-2个K值),利用公式计算各谱线的分裂间距,计算得到磁场B

(5)做B-I图,并与上面的标定曲线比较并分析原因。

四、实验结果分析讨论

1.B-I测量

图4 磁场在电流上升和下降时的B-I曲线

分析:电磁铁在电流上升的B-I曲线与电流下降时的B-I曲线基本重合,据此判断此电磁铁为软磁,可利用图线和测得的数据计算B。在0-3.4A的范围内B-I成线性关系。

2.

图5 无磁场时视野内条纹

分析:当I=0A时,视野内呈现多个绿色的同心圆环。圆环的直径差随着圆环序列的增大而减小。

图6 I=2.2A 时仅显示σ线

3.测量并计算B L D 和、~

2? 电流 1(mm ) 2(mm ) 3(mm ) 圆心(mm ) 2D ?(2mm ) L ~(1-cm ) B (T ) 0A 0.490 1.940

5.060 3.500 2

6.51 2.4A 0.915 2.35

5.38 3.865 25.6 0.36 0.770 3.2A 0.350 1.82 4.83 3.3

25.75 0.477 1.020 分析:不论磁场多大,自由光谱区都在25-272mm 之间,由此可认为在误差允许范围内,

自由光谱区不变,符合公式推导结果,自由光谱区与磁场无关是由标准具本身决定的。

分析:可以看出磁场计算值误差较大,但上升趋势相近。

误差原因:1.条纹有一定宽度,且边缘不清晰,测量存在误差。2.观察者本身视力不佳,测量时视野较暗,可能存在较严重的测量误差。3.仪器本身存在一定测量误差。

五、结论和建议

结论:本实验通过本实验运用法布里—珀罗标准具,测量Hg绿线(546.1nm)的塞曼分裂现象。通过实验观察到的谱线分裂现象较为明显,通过改变电流改变电磁铁的磁场强度,可明显的观察到谱线的分裂。并通过测量谱线可以计算出磁场的大小,但本次实验结果误差较大。

建议:在测量时先把视野调亮,确定谱线和坐标的大体位置,再调暗使谱线较为清晰。测量时,测微目镜刻度较难辨别,可能造成较大误差。本次实验使用手机拍照,手机镜头很难找到拍摄清晰的角度,并且手稍抖动,就拍不到图了。建议增加辅助的比较稳固的拍照设备。

六、参考文献

[1]熊俊.近代物理实验.北京.北京师范大学出版社.2007年3月

[2]近代物理实验补充讲义.北京. 北京师范大学物理学系实验教学中心

[2].姚启钧.光学..北京.高等教育出版社.2002

旁观者效应实验

实验地点: 繁华的街口 实验人数: 三人以下简称A.B.C 实验过程: (1)A乔装成路人,走在街口的时候假装突然发病,慢慢坐在地上,然后呼救。 (2)此时C在一隐蔽处,用DV机记录在A假装发病倒地过程中及接下来一段时间里,路人对A发生这一情况所做出的反应。 (3)一段时间过后,B乔装成路人,在走过A时,上前询问A的情况,并进行救助。(4)C在一旁用DV机记录在B做出上前询问及救助后,路人又是怎样的反应。 实验现象: 现象一:在A乔装成路人并在街口发病后,过往的众多路人并未上前进行救助或是拨打110,120等急救电话,期间有路人驻足观看,回头张望,抑或视而不见。 现象二:在B上前询问进行救助的行为发生后,有一个路人也走上前询问,接着跟多的路人上前围观和帮助。 实验结论: 现象一和现象二可以分别称为责任分散效应和从众效应。 责任分散效应也称为旁观者效应,是指对某一件事来说,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。因为前者独立承担责任,后者期望别人多承担点儿责任。“责任分散”的实质就是人多不负责,责任不落实。 正是由于在紧急状态下有其他目击者在场,才使旁观者无动于衷。旁观者效应,他们解释道,不是在于旁观者的“病态”人格,而是在于旁观者对其他观察者的反应。旁观者数量越大,旁观者效应越明显。总体来说,当紧急情形出现时,如果只有一人在场,约有半数的人会伸手相救;如果知道还有另外一个人在场,援助者只有33%;如果知道还有更多的人在场,援助者只有22%。 人们常常要以别人为参照物来定位自己,通过观察别人来判断自己是否正确,所以这就导致了多人在场时反应会变慢。同时每个人都以为别人会做,自己就不做了,或者抱着罚不责众的心态,所以也就没有人会上前帮助或报警了。 从众效应作为一个心理学概念,是指个体在真实的或臆想的群体压力下,在认知上或行动上以多数人或权威人物的行为为准则,进而在行为上努力与之趋向一致的现象。从众效应既包括思想上的从众,又包括行为上的从众。从众是一种普遍的社会心理现象,从众效应本身并无好坏之分,其作用取决于在什么问题及场合上产生从众行为,具体表现在两个方面:一是具有积极作用的从众正效应; 二是具有消极作用的从众负效应。 积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围并使个体达到心理平衡,反之亦然。 正是由于B的救助行为给旁人的引导,所以更多的人上前救助。

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

霍尔效应实验报告

霍耳效应实验报告 学号:200702050940 实验人:张学林 同组人: 杨天海 实验目的: 1、 观察霍耳效应; 2、 了解应用霍耳效应进行简单的相关测量的方法 实验内容: 1、确定样品导电类型; 2、测算霍耳系数、载流子浓度、霍耳灵敏度; 3、测算长螺线管轴线上的磁场分布。 实验原理: 一、关于霍耳效应 如图一所示。当电流通过一块导体或半导体制 成的薄片时,载流子会发生漂移。 而将这种通有电流的薄片置于磁场中,并使薄 片平面垂直于磁场方向。根据图一中的电流方向,并结合右手定则,我们可以看到:(1)无论导体中的载流子带正电荷还是负电荷,其受力均为F m 方向;(2)载流子均会沿X 轴方向运动,并最终靠在A 端。于是:(1)当载流子为正电荷时薄板A 端带正电荷,导致板A 端电势高于B 端;(2)当载流子为负电荷时薄板A 端带负电荷,导致板B 端电势高于A 端。 这就是霍耳效应。 二、关于霍耳效应性质的研究 如图一,关于霍耳效应的相关参量已如图所 示。 其中载流子所受的磁场力 m F qvB = (1) 载流子所受的电场力 e F qE = (2) 当其所受磁场力与电场力受力平衡时: (a B (b z y x (图一)

有关系, e m F F = (3) 且有, H H U E a vBa == (4) 我们又知道,(I v n nqab = 为载流子浓度) (5) 于是,由(1)~(3)可知 H IB E nqab = (6) 再结合(4)式可得 1 ()H IB U IB nqb nqb = = (7) 令 1 H R nq = (8) 为霍耳系数,并代入(7)式可得 H H B U R I b = (9) 那么,霍耳系数又可表示为 H H U b R IB = (10) 即, 1 H H U b R IB nq = = (11) 三、关于霍耳效应的应用 1、利用霍耳效应确定导体的类型 由(11)式可得,导体横向电势差与导体中载流子类型有关:当H U 为正时载流子为电子,导体为P 型半导体;反之,载流子为空穴,导体为N 型半导体。 2、利用霍耳效应计算霍耳系数 根据(9)式,可以固定B 、b ,改变I 得到U H ,多测几组U —I 值。然后根据几组U —I 值在直角坐标系中描 点,可根据拟合出来的直线的斜率求出霍耳系数。 3、 霍耳灵敏度的计算 若将(7)式中的括号以内的项定义为霍耳灵敏度,即令1 n H K R b nqb ==。于是,(二、2)中的霍耳系数计算出来,霍耳灵敏度也就计算出来了。 4、利用霍耳效应计算载流子浓度 由(7)、(11)式可得1H n R q = 。

从众效应

从众效应 【从众效应】“也称乐队花车效应”,也就是我们通常所说的“随大流”,是指当个体受到群体的影响,包括引导或施加的压力时,会怀疑并改变自己原来的想法、判断以及行为,并且朝着与群体大多数人一致的方向变化。从众效应可以是因为对方“人多势众带来的气场上的压迫感”,也包括有对方“有权威性或者领导性”,迫于对这些非本直接和客观因素的影响而从众。 比如,在大学课堂上教授拿出一个瓶子,说是某种名贵的精油,在点燃后,教室里有同学说闻到了花香,还有同学说是玫瑰花香,后来几乎所有人都闻到玫瑰花香。最后,教授说这只是一瓶普通的自来水。所以,第一个说闻到玫瑰花香的同学也许是一种联想导致的错觉,而后边说闻到玫瑰花香的同学是追随他人所产生的趋同性,如果说第一位同学是心理暗示起了作用,那么后边的一众同学是受了从众心理的影响。而这种从众心理效应本质上没有侵害任何一方的利益,所以最后同学们呵呵一笑,这个课题小测式就结束了。 众效应产生的原因 1.当个体在群体中,为了适应环境,融入集体,个体会倾向于跟从大众的一致性喜好。 2.当个体担心自己偏离群体,不想被突出,被独立,于是选择从众。 3.当个体对某个问题、事件缺乏自己独立见解时,或者对自己的答案不确定时,个体特别容易倾向于对照群体其他大多数的意见,选择从众。 4.当个体对群体认可度高,经常会过滤自己的观点,出现盲目从众。 5.还有,当群体中有权威人物时,个体也会倾向于相信群体的意见,看法,于是也陷入从众效应。 再深入的分析,有些从众行为也只是表现上的从众 1?表面服从,内心也接受,所谓口服心服;

2?口服心不服,出于无奈只得表面服从,违心从众; 3?完全随大流,谈不上服不服的问题。 与其人云亦云,不如独立思考 研究表明,女性比男性容易从众,幼儿,青少年比成人容易从众,缺乏自信的比自信的人容易从众。 顺便分析一下类似的一个心理学效应——责任分散效应。 它属于群体心理学的领域,在某个场景或某个事件中,单个个体的责任感会很强,会对情况做出积极的反应,如果是处于群体中,个体责任感就会减弱很多,往往会不采取行动或比较懈怠,它也叫做旁观者效应。例如:在某个紧急的情况下,某人有危险或者境地,如果只有一个人在场,他往往会采取行动,施于援手,因为此时他的责任感很强。不想因为对于事情置之不理感到内疚或者负罪,而当处于群体中时,责任就被分散,他会想反正还有其他人,不单只有我,这种情况就造成就集体冷漠,三个和尚没水喝就源于心理学效应。 其实从众也有它的积极影响,当人在情境不确定的时候,其他人的行为最具有参考价值,具备行为参照的功能。特别在职场中,新人往往选择与同事保持一致,这样可以更容易的被团队接受。另外,在团队凝聚力方面,也表现出从众的行为可以更受团队认同。 一群幼小的沙鸥,无忧无虑地嬉戏在绿色的湖水中。一只勇敢的小沙鸥尝试着,挣扎着,试图展开翅膀飞向蓝天。它一次次不停地扑摔着,挣扎着,失败着,其余的沙鸥只是看着,突然间,那只沙鸥成功了,自由地翱翔于天际。在那只飞的沙鸥引领下,第二只、第三只沙鸥开始了同样的尝试……突然有一天,所有的沙鸥都学会了飞翔。 所以,积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围和完成群体目标,能使个体达到心理平衡,增强内心的安全感和自信心,还有助于学习他人的智慧经验,扩大视野,克服固执己见、盲目自信修正自己的思维方式等。

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定 创建人:系统管理员总分:100 实验目的 了解光电效应的基本规律,学会用光电效应法测普朗克常量;测定并画出光电管的光电特性曲线。 实验仪器 水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。 实验原理 光电效应: 当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则转换为物体中一些电子的能量,是部分电子逃逸出物体表面。这种现象称为光电效应。爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。在光电效应现象中,光展示其粒子性。 光电效应装置: S为真空光电管。内有电极板,A、K极板分别为阳极和阴极。G为检流计(或灵敏电流表)。无光照时,光电管内部断路,G中没有电流通过。U为电压表,测量光电管端电压。 由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。故检流计采用“内接法”。 用一波长较短(光子能量较大)的单色光束照射阴极板,会逸出光电子。在电源产生的加速电场作用下向A级定向移动,形成光电流。显然,如按照图中连接方式,U越大时,光电流

I 势必越大。于是,我们可以作出光电管的伏安特性曲线,U=I 曲线关系大致如下图: 随着U 的增大,I 逐渐增加到饱和电流值IH 。 另一方面,随着U 的反向增大,当增大到一个遏制电位差Ua 时,I 恰好为零。此时电子的动能在到达A 板时恰好耗尽。 光电子在从阴极逸出时具有初动能2 2 1mv ,当U=Ua 时,此初动能恰好等于其克服电场力所做的功。即: ||2 12 a U e mv = 根据爱因斯坦的假设,每粒光子有能量hv =ε。式中h 为普朗克常量,v 为入射光波频率。 物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功A 上,另一部分则转化为电子的动能,让其能够离开物体表面,成为光电子。 于是我们得到爱因斯坦的光电效应方程:A m hv += 2 v 2 1 由此可知,光电子的初动能与入射光频率成线性关系,而与光强度无关。(光强度只对单位时间内逸出物体表面的光电子的个数产生影响) 光电效应的光电阈值: 红限:当入射光频率v 低于某一值0v 时,无论用多强的光照都不会发生光电效应。由光电效应方程易得这个频率h A v /0=,称为红限。 测量普朗克常量的方法: 用光波频率为的单色光照射阴极板,测量其遏制电位差Ua 。 于是有: A U e hv a +=|| 所以: e A v -= e h |U |a 这表明了截止电压|U |a 和光波频率v 成正比。 实验中获得单色光的方法: 使用水银灯发出稳定白光作为光源,再使用不同颜色的滤光片罩在光电管的入光口以得到相应颜色的单色光,还可以使用不同透光度的遮光片罩在水银灯的出光口以得到不同强度的

浅谈课堂气氛中的从众效应

浅谈课堂气氛中的从众效应 摘要:在现实生活中,课堂气氛已经成为许多家长和孩子衡量学校教育质量的一个关键指标。通过对现实生活中课堂的研究以课堂气氛为出发点发现其中存在的从众效应与课堂气氛的好坏有着密切的联系,以综述的方法探讨了课堂气氛中从众效的原因及其对课堂气氛的积极和消极作用,并提出如何对课堂气氛中的从众效应进行调控,对目前的课堂教学有实际意义。 关键词:课堂气氛从众效应作用 调控 中小学教学通常都是在课堂内进行的,因此课堂气氛是促进或抑制学生学习的重要因素,关系到学生的学习积极性和学习成绩的好坏。许多教育实践表明良好的课堂气氛能使学生情绪高昂,智力活动呈最佳状态,还会使学生得到一种愉快成功的体验,并陶冶情操保持一种积极的学习心态。因此,心理学家通过实验研究从不同角度分析了影响课堂气氛的因素,但并没有系统的从众的角度来研究。教育学家认为个别学生的态度与情感并不构成课堂气氛,当多数学生具有一致的态度与情感时就会形成具有优势的课堂气氛。因此,存在于班级的从众效应是影响课堂气氛的一个重要因素,在参考各种文献和名家观点的基础上分析从众效应对课堂气氛的影响,从现实的角度来考察从众与课堂气氛的关系,对当代课堂教学有重要意义。 1 课堂气氛 课堂气氛,又称班风,通常指伴随师生之间的人际互动而形成的某些占优势的态度和情感的综合状态。在实际教学中,我们经常看到不同类型的课堂气氛,有的课堂气氛积极热烈,有的则拘谨沉默,死气沉沉。即使是同一个课堂在不同的任课老师的指导下也是大不相同。实践表明,学生之间的相互感染可以影响课堂气氛,其中隐含着一种心理学效应——从众效应。 班级是一个特殊的群体,在这群体中有一定的社会交往结构,有多种人际关系、社会气氛、行为规范等等,日常的课堂教学正是在这样一个相对封闭的教学系统中进行,学生处于这种封闭的集体环境中很容易彼此影响形成群体压力。当课堂上大部分同学都积极回答问题时,其余的同学迫于群体压力或为了与群体保持一致也积极思考这样全班就会形成积极和谐的课堂气氛,在这种气氛下就会不

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

光电效应实验报告书

光电效应测普朗克常量 姓名:梁智健 学院:材料成型及控制工程166班 学号:5901216163 台号:22 时间:2017-10-16 实验教室:309 【实验目的】 1、验证爱因斯坦光电效应方程,并测定普朗克常量h。 2、了解光电效应规律,加深对光的量子性的理解。 3、学会用作图法处理数据。 4、研究光电管的伏安特性及光电特性。 【实验仪器】 1.光电效应测定仪 2.光电管暗箱 3.汞灯灯箱以及汞灯电源箱。 【实验原理】 1、当光照射在物体上时,光的能量只有部分以热的形式被 物体所吸收,而另一部分则转换 为物体中某些电子的能量,使这 些电子逸出物体表面,这种现象 称为光电效应。在光电效应这一 现象中,光显示出它的粒子性, 所以深入观察光电效应现象,对 认识光的本性具有极其重要的意 义。普朗克常数h是1900年普朗克 为了解决黑体辐射能量分布时提 出的“能量子”假设中的一个普

适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。 1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为v 的光子其能量为h v ?。当电子吸收了光子能量h v ?之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能212 m v ?,即爱因斯坦光电效应方程 212m hv mv W =+(1) 2、光电效应的实验示意图如图1所示,图中GD 是光电管, K 是光电管阴极,A 为光电管阳 极,G 为微电流计,V 为电压表, E 为电源,R 为滑线变阻器,调 节R 可以得到实验所需要的加 速电位差AK U 。不同的电压AK U ,回路中有不同的电流I 与之对 应,则可以描绘出如图2所示的 AK U -I 伏安特性曲线。 (1)饱和电流的强度与光强成 正比 加速电压AK U 越大,电流I 越大,当AK U 增加到一定值后,电流达到最大值H I ,H I 称为饱和电流,而且H I 的大小只与光强成正比。 (2)遏制电压的大小与照射光的频率成正比 如图3所示,电源E 反向连接,即当加速电压AK U 变为负值时,电流I 会迅速较少,当加速电压AK U 负到一定值Ua 时,电流0I =,这个电压Ua 叫做遏制电压,4所示。 212 a mv e U =?(2)

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

大物实验报告 光电效应

试验名称:光电效应法测普朗克常量h 实验目的:是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的 光电特性曲线。 实验原理 光电效应实验原理如图8.2.1-1所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 22 1 (2) 式(2)称为爱因斯坦光电效应方程。

3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验内容 通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。 1. 在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。 本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等. j i j i v v U U e h --= )(,求斜率,得到普朗克常量h. 入射光波长λ/nm 365nm

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

社会心理学--从众心理

从众心理 从众心理即指个人受到外界人群行为的影响,而在自己的知觉、判断、认识上表现出符合于公众舆论或多数人的行为方式,而实验表明只有很少的人保持了独立性,没有被从众,所以从众心理是大部分个体普遍所有的心理现象。由一个人或一个团体的真实的或是臆想的压力所引起的人的行为或观点的变化。“羊群效应”是指管理学上一些企业的市场行为的一种常见现象。 经济学里经常用“羊群效应”来描述经济个体的从众跟风心理。因此,“羊群效应”就是比喻人都有一种从众心理,从众心理很容易导致盲从,而盲从往往会陷入骗局或遭到失败。 (1)由于“羊群行为”者往往抛弃自己的私人信息追随别人,这会导致市场信息传递链的中断。但这一情况有两面的影响:第一,“羊群行为”由于具有一定的趋同性,从而削 弱了市场基本面因素对未来价格走势的作用。(2)如果“羊群行为”超过某一限度,将诱发另一个重要的市场现象一一过度反应的出现。(3)所有“羊群行为”的发生基础都是信息的不完全性。因此,一旦市场的信息状态发生变化,如新信息的到来,“羊群行为”就会瓦解。这时由“羊群行为”造成的股价过度上涨或过度下跌,就会停止,甚至还会向相反的方向过度回归。这意味着“羊群行为”具有不稳定性和脆弱性。 由于信息相似性产生的类羊群效应由于信息不完全产生的羊群效应 从众效应 引发大学生从众效应最值得注意的是“班级效应”和“宿舍效应” 班级效应”、“宿舍效应”在班风、舍风中的作用,由此可见一斑。反之,庸俗的从众行为往往会导致班风、舍风消极落后。 大学校园的从众行为,既有积极方面,又有消极方面。优化群体结构,利用从众行为的积极影响,防止其消极作用,具有重要的意义。 从众行为的过分普遍,反映了部分大学生自我意识弱化,独立性较差,缺乏个体倾向性的世界观、人生观、价值观,这是从众行为中消极现象抬头的主要原因,即使从众行为出现积极效应,但一旦失却这种从众氛围,又很容易不知所措,找不到自己努力的方向,走向社会后的迷悯、失落,实际上这是从众现象最直接的后遗症。 此外,一味从众也容易导致大学生心理障碍的发生。意味着自己失去了一片晴朗的天空,抛却了一片属于自己的领地。盲目从众意味着部分大学生丢失了以个体色彩的思维和行动编织的草帽,在喧哗与骚动中麻木自己,“创新意识“在头脑中只成了四个机械的汉字,所接受的高等教育也锈蚀成了斑驳的条条框框,毕业证书和学位证书只成了人生进程中的标志,却难以成为升华人生的动力。大学生,摆脱从众的盲目色彩,用独立的思想和明晰的脚印使自己主动融入集体的行列,这样,你将拥有一个真正属于自己的人生。

西安交大《塞曼效应实验报告》(资料参考)

塞 曼 效 应 实 验 报 告 应物31 吕博成学号:2120903010

塞曼效应 1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

光电效应 物理实验报告

光电效应 实验目得: (1)了解光电效应得规律,加深对光得量子性得理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 得光电子在电场得作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I得大小,即可得出光电管得伏安特 性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图 中可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为 0,这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱与,饱与 光电流IM得大小与入射光得强度成正比。 3)对于不同频率得光来说,其截止频率得数值不同,如右图: 4) 对于截止频率V0与频率得关系图如下所示。V0与成正比关系。当入射光得频率 低于某极限值时,不论发光强度如何大、照射 时间如何长,都没有光电流产生。 5)光电流效应就是瞬时效应。即使 光电流 得发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过得时间之多为10-9s得数量级。 实验内容及测量: 1 将4mm得光阑及365nm得滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值得变化,寻找电流为零时对应得V AK值,以其绝对值作为该波长对应得值,测量数据如下: 波长/nm 365 404、7 435、8 546、1 577 频率8、214 7、408 6、897 5、49 5、196

/ 截止电压/V 1、679 1、335 1、107 0、557 0、434 频率与截止电压得变化关系如图所示: 由图可知:直线得方程就是:y=0、4098x-1、6988 所以: h/e=0、4098×, 当y=0,即时,,即该金属得截 止频率为。也就就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=0、40975,与EXCEL给出得直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管得伏安特性曲线 1)用435、8nm得滤色片与4mm得光阑 实验数据如下表所示: 435、8nm 4mm光阑 I-V AK得关系 V AK I V AK I V AK I V AK I V AK I V AK I 0、040 1、9 0、858 4、2 2、300 9、3 6、600 19、5 12、000 27、3 22、000 35、8 0、089 2、1 0、935 4、4 2、500 10 6、800 19、9 12、500 27、7 22、700 36、2 0、151 2、3 1、096 4、9 2、700 10、6 7、200 20、5 13、000 28、3 24、100 37 0、211 2、4 1、208 5、3 2、900 11、1 7、800 21、5 14、200 29、4 25、700 37、9 0、340 2、7 1、325 5、6 3、200 12 8、700 23 15、000 30、1 26、800 38、3 0、395 2、9 1、468 6、1 3、800 13、9 9、100 23、6 16、100 31、1 27、500 38、7 0、470 3、1 1、637 6、7 4、200 14、8 9、800 24、6 16、600 31、6 29、500 39、5

相关文档
相关文档 最新文档